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Preface

This volume is the result of a long project. My work started sometime in the
1990s, when Professor Simo Knuuttila urged me to edit, together with a few
colleagues, a volume on the history of logic from ancient times to the end of
the twentieth century. Even if the project was not realized in that form, I
continued with the plan and started to gather together scholars for a book
project titled The Development of Modern Logic, thus making a reference to
the famous book by William and Martha Kneale. Unlike that work, the new
volume was meant to be written by a number of scholars almost as if it had
been written by one scholar only. I decided to start with thirteenth-century
logic and come up with quite recent themes up to 2000, hence, to continue
the history written in The Development of Logic. My intention was to find
a balance between the chronological exposition and thematic considerations.
The philosophy of modern logic was also planned to be included; indeed, at the
beginning the book had the subtitle “A Philosophical Perspective,” which was
deleted at the end, as the volume reached far beyond that perspective. The
collection of articles is directed to philosophers, even if some chapters include
a number of technical details. Therefore, when it is used as a textbook in
advanced courses, for which it is also planned, those details are recommended
reading to students who wish to develop their skills in mathematical logic.

In 1998, we had a workshop of the project with most of the contributors
present. It was a fine beginning, organized by the Department of Philosophy
at the University of Helsinki and by the Philosophical Society of Finland.
We got financial support from the Academy of Finland and from the Finnish
Cultural Foundation, which I wish to acknowledge. I moved to the University
of Tampere in the fall of 1998. Unlike logic perhaps, life sometimes turns out to
be chaotic. As we were a large group, it was no surprise that various personal
and professional matters influenced the process of writing and editing. Still, we
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happily completed the volume, which became even larger than was originally
intended.

I wish to thank the contributors, from whom I have learned a great deal
during the editorial process. It has been a pleasure to cooperate with them.
Renne Pesonen and Risto Vilkko kindly assisted me with the editorial work.
I am very grateful to my colleagues for useful pieces of advice. There are
so many who have been helpful that it is impossible to name them all. My
special thanks are due to Auli Kaipainen and Jarmo Niemelä, who prepared
the camera-ready text for publication. Jarmo Niemelä also assisted me with
compiling the index. I wish to thank Peter Ohlin, editor at Oxford University
Press, who has been extremely helpful during the process. I have benefited
considerably from the help of my editors, Stephanie Attia and Molly Wagener,
of Oxford University Press. The financial support given by the Academy of
Finland is gratefully acknowledged. I have done the editorial work at the
University of Tampere, first at the Department of Mathematics, Statistics and
Philosophy and then at the Department of History and Philosophy. Finally, I
wish to express my deep gratitude to my mother and to my husband, whose
support and encouragement have been invaluable.

L. H.
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1

Introduction
Leila Haaparanta

1. On the Concept of Logic

When we state in everyday language that a person’s logic fails, we normally
mean that the rules of valid reasoning, which ought to guide our thinking,
are not in action for some reason. The word “logic” of our everyday language
can usually be analyzed as “the collection of rules that guide correct thinking
or reasoning.” That collection is assumed to be known naturally; a rational
human being follows those rules in normal circumstances, even if he or she
could not formulate them, that is, express them in language. When the word
“logic” (in Greek logos “word,” “reason”) refers to one subfield of philosophy
or of mathematics, it usually means the discipline concerning valid reasoning
or the science that studies that kind of reasoning.

In his logical studies, Aristotle (384–322 b.c.) considered inferences, which
are called syllogisms. They consisted of two premises and a conclusion, and the
validity of the argument of a syllogistic form was determined by the structure
of the argument. If the premises of a syllogism were true, the conclusion was
also true. According to Aristotle, the basic form of a judgment is “A is B,”
where “A” is a subject and “B” is a predicate. Forms of judgments include
“Every A is B,” “No A is B,” “Some A is B,” and “Some A is not B.” Unlike
Aristotelian logic, modern formal logic is called symbolic or mathematical, as
it studies valid reasoning in artificial languages.

Until the nineteenth century logic was mainly Aristotelian. Following Aristo-
tle, the main focus was on judgments that consisted of a subject and a predicate
and that included such words as “every,” “some,” and “is” in addition to letters
corresponding to the subject and the predicate. The Stoics, for their part, were
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4 The Development of Modern Logic

interested in what is nowadays called propositional logic, in which the focus is
on such words as “not,” “and,” “or,” and “if–then.”

It was not until the nineteenth century that symbolic logic, which had
its model in mathematics, became a serious rival of Aristotelian logic. The
grammatical analysis of judgments was challenged in the late nineteenth
century by logicians who took the model of analysis from mathematics. The
words “function” and “argument” became part of the vocabulary of logic,
and predicates that expressed relations as well as quantifiers were included
in that vocabulary. In the new logic, which was mostly developed by Gottlob
Frege (1848–1925) and Charles Peirce (1939–1914) and which was codified
in Principia Mathematica (1910, 1912, 1913), written by A. N. Whitehead
(1861–1947) and Bertrand Russell (1872–1970), the rules of logical inference
received a new treatment, as the pioneers of modern logic tried to give an
exact formulation of those rules in an artificial language.

Except for the collection of the rules of valid reasoning and the discipline
or the science that focuses on those rules, the word “logic” means a specific
language that fulfills certain requirements of preciseness. It also means a field
of research that focuses on such a language or such languages. Since the
seventeenth century, it has been typical of the field called logic to construct
and study a formal language or formal languages called logic or logics.

The old Aristotelian logic heavily relied on natural language. Aristotle
and his followers thought that natural language reflects the forms of logical
inference and other logical relations, even the form of reality. The pioneers of
modern logic sought to construct an artificial language that would be more
precise than natural languages. In the twentieth century those languages called
logics have been used as models of natural languages; hence, modern logic
that rejected the grammatical analysis of judgments has, among other things,
served as a tool in linguistic research. It is important to note that the pioneers
of modern logic, such as G. W. Leibniz (1646–1716) and Frege, did not intend
to present any tools of studying natural languages; they wished to construct
a symbolic language that would overcome natural language as a medium of
thought in being more precise and lacking ambiguities that are typical of
natural language.

As the views of the tasks and the aims of logic have varied in history, we may
wonder whether Aristotle and the representatives of modern logic, for example,
Frege, were at all interested in the same object of research and whether it is
possible to talk about the same field of research. In spite of differences, we may
name a few common interests whose existence justifies the talk about research
called logic and the history of that field. In each period in the history of logic,
researchers called logicians have been interested in concepts or terms that are
not empirical, that is, whose meanings are not, or at least not incontestably,
based on sensuous experience, and that can be called logical concepts or terms.
What concepts or terms have been regarded as logical has varied in the history,
but interest in them unites Aristotle, William of Ockham, Immanuel Kant,
and Frege as well as logicians in the twentieth and twenty-first centuries. Other
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points of interest have been the so-called laws of thought, for example, the law
of noncontradiction and the law of excluded middle. A third theme that unites
logicians of different times is the question of the validity of reasoning.

In several chapters of the present volume, the question concerning the nature
and the scope of logic is discussed in view of the period and the logicians that
are introduced to the reader.

2. What Is Modern Logic?
The starting point of modern logic is presented in textbooks in various ways
depending on what features are regarded as the characteristics of modernity.
Some say modern logic started together with modern philosophy in the late
Middle Ages, while others think that it started in the seventeenth century
with Leibniz’s logic. Still others argue that the beginning of modern logic was
1879, when Frege’s Begriffsschrift appeared.

If the beginning of modern logic is dated to the seventeenth century, its
pioneers include Leibniz, Bernard Bolzano (1781–1848), Augustus De Morgan
(1806–1871), George Boole (1815–1864), John Venn (1834–1923), William Stan-
ley Jevons (1835–1882), Frege, Peirce, Ernst Schröder (1841–1902), Giuseppe
Peano (1858–1932), and Whitehead and Russell. Unlike many contemporary
logicians, modern logicians believed that there is one and only one true logic.
Leibniz was the most important of those thinkers who argued that the terms
of our natural language do not correspond to the objects of the world in a
proper way and that therefore we have to construct a new language, which
mirrors the world correctly. Following Leibniz, modern logicians sought to
construct an artificial language that would be better than natural languages.
If we think that this kind of effort is an important feature of modern logic,
then we may say that modern logic started with Leibniz. The idea of calculus
has also been an important feature of modern logic. Logic has been considered
a system which consists of logical and nonlogical vocabulary, formation rules,
and transformation rules; the formation rules tell us what kind of sequences of
symbols are well formed, and the transformation rules are the basis on which
logical reasoning is performed like calculating.

Many early pioneers of modern logic relied on the grammatical subject-
predicate analysis in analyzing sentences that was also part of traditional
logic, as mentioned above. It was not until Frege’s logic that this division was
rejected. The division between arguments and functions thus became central
in logic. Frege also stressed that it was the distinction between individuals and
concepts that he wants to respect. If we stress that feature, we may say that
the philosophical ideas of modern logic can be found in medieval nominalists,
but that they did not become codified in formal languages until the latter
half of the nineteenth century in Frege’s and Peirce’s discoveries. Those two
logicians also made quantifiers into the basic elements of logic. As modern
thinkers, many late medieval philosophers were interested in individuals, but
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the distinction between an individual and a concept was not taken into account
in logic until Frege’s and Peirce’s discoveries. Frege regarded his logic as an
axiomatic theory. That feature can also be considered a typical feature of
modern logic.

As was said before, it is often thought that Frege’s Begriffsschrift gave birth
to modern logic. In that book there were many logical discoveries, such as
the theory of quantification and the argument-function analysis. Frege’s book
was both philosophical and mathematical. Later, in the first volume of his
Grundgesetze der Arithmetik (1893), Frege states that he is likely to have few
readers; all those mathematicians stop reading who, when seeing the words
“concept,” “relation,” and “judgment” think: “It is metaphysics, we do not
read it,” and those philosophers stop reading, who, when seeing a formula,
shout: “It is mathematics, we do not read it” (p. xii).

Charles Peirce discovered the logic of relatives in the 1870s. That logic
was inspired by Boole’s algebra of logic and De Morgan’s theory of relations.
Peirce’s articles “The Logic of Relatives” (1883) and “On the Algebra of
Logic: A Contribution to the Philosophy of Notation” (1885) contain the first
formulation of his theory of quantification that he calls his general algebra of
logic. Peirce’s algebra differed from that of Boole’s especially in that Peirce
introduced signs that refer to individuals in addition to signs that signify
relations. Second, he introduced the quantifiers “all” and “some.” Frege only
used the sign for generality and defined existence by means of generality
and negation. Both the logicians rejected Boole’s idea that judgments are
formed by combining subjects and predicates. Frege and Peirce, who made
their important discoveries independently of each other, Peirce maybe with
his group of students and Frege alone, had common features. They were both
philosophers and mathematicians and could combine philosophical ideas with
technical novelties in their logical thought.

Frege and Peirce both invented a notation for quantifiers and quantification
theory almost simultaneously, independently of each other. Therefore they
can be regarded as the principal founders of modern logic. However, as many
scholars have emphasized, most notably Jean van Heijenoort in his paper
“Logic as Calculus and Logic as Language” (1967), Jaakko Hintikka in his
papers “Frege’s Hidden Semantics” (1979) and “Semantics: A Revolt Against
Frege” (1981), and Warren Goldfarb in his article “Logic in the Twenties:
The Nature of the Quantifier” (1979), the two logicians seem to be far apart
philosophically. The division between the two traditions to which the logicians
belong has also been emphasized by a number of authors of the present volume.
The distinction between the two conceptions of logic, namely, seeing logic as
language versus seeing it as calculus, has been suggested from the perspective
of twentieth-century developments, but the origin of the division has been
located in nineteenth-century logic. Different interpretations of the history
of logic follow depending on how the distinction is understood. According to
van Heijenoort, Hintikka, and Goldfarb, those who stressed the idea of logic
as language thought that logic speaks about one single world. It is certain
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that Frege held that position. He thought that there is one single domain of
discourse for all quantifiers, as he assumed that any object can be the value of
an individual variable and any function must be defined for all objects. On
the other hand, those who supported the view that logic is a calculus gave
various interpretations or models for their formal systems. That was Boole’s
and his followers’ standpoint. Several other features of the two traditions are
mentioned in the chapters of the present volume.

The volume titled Studies in the Logic of Charles Sanders Peirce (1997)
introduces another pair of traditions, which are mathematical logic and alge-
braic logic and which are also touched upon in the present collection of articles.
Ivor Grattan-Guinness states in his contribution to the volume on Peirce that
the phrase “mathematical logic” was introduced by De Morgan in 1858 but
that it served to distinguish logic using mathematics from “philosophical logic,”
which was also a term used by De Morgan. However, in Grattan-Guinness’s
terminology, De Morgan’s logic was part of the algebraic tradition; using
algebraic methods in logic would be typical of what he calls algebraic logic.
The most common phrase used in the nineteenth century was “the algebra of
logic” or sometimes “logical algebra.”

In the figure which Grattan-Guinness presents to us, Boole, De Morgan,
Peirce, and Schröder belong to the tradition of algebraic logic, while Peano
and Russell belong to the tradition of mathematical logic. It seems that many
of those who belong to the tradition of logic as calculus belong to the tradition
of algebraic logic in Grattan-Guinness’s division, and that many of those
who think that logic is a language belong to what Grattan-Guinness calls
the tradition of mathematical logic. Grattan-Guinness gives us a few typical
features of the two traditions that he discusses. In algebraic logic, laws were
stressed, while in mathematical logic axioms were emphasized. Moreover, he
states that in mathematical logic, especially in the logicist version represented
by Russell, logic was held to contain all mathematics, while in algebraic logic
it was maintained that logic had some relationship with mathematics. In
Grattan-Guinness’s view, algebraic logic used part-whole theory and relied on
a basically extensionalist conception of a collection, while in mathematical logic
the theory of collections was based on Cantor’s Mengenlehre. In addition, there
was, in his view, an important difference between the traditions concerning
quantification; the interpretation of the universal and existential cases as
infinite conjunctions and disjunctions with the algebraic analogies of infinite
products and sums was typical of the algebraic tradition. Grattan-Guinness
also notes that the questions addressed in mathematical logic were more specific
than those addressed in algebraic logic.

Frege’s and Peirce’s logical views are discussed in several chapters of the
present volume. Many contributors also touch on the more general question
concerning the borderline between traditional and modern logic, the divisions
between the traditions of modern logic, and the shift from the modern logic
of the late nineteenth century and the early twentieth century till twentieth-
century logic. The periods of Western logic that are studied in the present
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collection of articles extend from the thirteenth century to the end of the
twentieth century. Unlike the rest of the contributions, the chapter on Indian
logic covers several schools whose history reaches far back in the history but
which are also living traditions in contemporary Indian logic.

3. Logic and the Philosophy of Logic
Besides the term “logic,” the terms “philosophical logic” and “philosophy of
logic” have various uses. Philosophy of logic can be understood as a subfield of
philosophy that studies the philosophical problems raised by logic, including
the problem concerning the nature and the scope of logic. Those problems also
include metaphysical, or ontological, and epistemological questions of logic,
problems related to the specific features of logical formal systems (e.g., related
to the basic vocabulary of logic) and logical validity, questions concerning the
nature of propositions, judgments, and sentences, as well as theories of truth
and truth-functions, and the questions concerning modal concepts and the
alternatives of classical logic, which some call by the name “deviant logics.”
The term “philosophical logic” is often used as a synonym of “philosophy of
logic”; occasionally it means the same as “intensional logic,” or it is used as
an opposite to “mathematical logic.” By metalogic, one normally means the
study of the formal properties of logical systems, such as consistency and
completeness, and thus distinguishes it from the philosophy of logic, which
studies their philosophical aspects.

The present volume deals with the history of modern logic and pays attention
both to the core area of logic and to the philosophy of logic. Such terms as
“classical logic,” “modal logic,” “alternative logics,” and “inductive logic” are
also used and explained in the chapters of the volume. The variety of logics
raises the problem of demarcation that is essential to the philosophy of logic:
which formal systems belong to the objects of logical research, and which ought
one to exclude from the field of logic? For example, the program of logicism,
which was supported by Frege, among others, was a position taken in the
discussion concerning the demarcation of logic.

Logic and philosophy have complicated relations. Nowadays logical tools
are often used as the methods of philosophy. Logical discoveries have also been
motivated by philosophical views, and philosophers have changed their opinions
because of logical discoveries. Logic can be said to have a philosophical basis,
and likewise there are philosophical doctrines that rely on developments of
logic. The present collection of articles studies some of those relations. To some
extent, it also pays attention to the relations between logic and mathematics
and logic and linguistics.

Logic and rationality are often tied together, but the concept of rationality
has many uses in everyday language and in philosophical discussion. We talk
about logical or argumentative rationality and refer to one’s ability to reason
or to give arguments, and we also think that one who is rational is able to
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evaluate various views critically and independently of authorities; in this latter
meaning, logic is considered to play a significant role. Moreover, rationality is
both theoretical and practical, the latter form of rationality being related to a
person’s actions, and philosophers also tend to regard one’s ability to control
one’s volitional and emotional impulses as a sign of rationality. There is no
one concept or “essence” of reason that can be detected in philosophical or in
everyday discussion. However, what we can find in most uses of the concept is
the general idea of control (control of thought, actions, passions, etc.), which
is also central in logical rationality.

Even if rationality as control or as rule-following seems to be crucially
important, rationality as a faculty of judgment is also in everyday use in the
practice of logicians as in all science. In the tradition of logic, it has been
important both to be able to follow rules or repeat patterns and to be able to
evaluate the commands and prohibitions. It is important both to be able to
think inside a given system and to be able to evaluate the very system from
the outside. The history of modern logic is a history of these two huge projects.

Philosophers and logicians have used the volume titled The Development
of Logic by William and Martha Kneale (1962) for decades. The ambitious
idea behind the present work was to write a book on the development of
modern logic that would bring the history of modern logic till the end of the
twentieth century and would also pay attention to the philosophy of logic
and philosophical logic in modern times. The idea was not to bring about a
handbook but a volume that would be as close as possible to a one-author
volume, that is, a balanced whole without serious gaps or overlaps. It was
taken for granted in the very beginning that that goal cannot be reached in all
respects. Each author has chosen his or her style, some wish to give detailed
references, others are happier with drawing the main lines of development with
fewer details; some express their ideas in many words, while others prefer a
concise manner of writing. However, what has been reached is a story that
covers a number of themes in the development of modern logic. The history
begins with late medieval logic and continues with logic and philosophy of
logic from humanism to Kant, that is, with two chapters whose scope is
chronologically determined. Chapters 4–7 cover the nineteenth century and
early twentieth century in certain respects, namely, they focus on the emergence
of symbolic logic in two ways, first, by paying attention to the relations between
logic and mathematics, second, by emphasizing the connections between logic
and philosophy. That discussion is completed by a chapter that focuses on the
themes of judgment and inference from 1837 to 1936.

The volume contains an extensive chapter of the development of mathe-
matical logic 1900–1935, which is continued by a discussion on main trends
in mathematical logic after the 1930s. The subfields of logic that are called
modal logic and philosophical logic are discussed in two separate chapters,
one dealing with the history of modal logic from Kant until the late twentieth
century and the other discussing logic and semantics in the twentieth century.
Separate chapters are reserved for the philosophy of alternative logics, for the
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philosophical aspects of inductive logic, for the relations between logic and
linguistics in the twentieth century, and for the relations between logic and
artificial intelligence. Eastern logic is not covered, but the main schools of
Indian logic are presented in the last chapter of the volume. While the former
part of the volume is chronologically divided, the chapters of the latter part
follow a thematic division.

Note
I have used extracts from my article “Peirce and the Logic of Logical Discovery,”
originally published in Edward C. Moore (ed.), Charles Peirce and the Philosophy of
Science (University of Alabama Press, Tuscaloosa, 1993), 105–118, with the kind
permission of University of Alabama Press. The chapter also contains passages from
my review article “Perspectives on Peirce’s Logic,” published in Semiotica 133 (2001),
157–167, which appear here with the kind permission of Mouton de Gruyter.
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2

Late Medieval Logic
Tuomo Aho and Mikko Yrjönsuuri

1. The Intellectual Role and Context of Logic
Our aim is to deal with medieval logic from the time when it first had full
resources for systematic creative contributions onward. Even before that stage
there had been logical research and important logicians. The most original
of them, Abelard, achieved highly significant results despite having only a
very fragmentary knowledge of ancient logic. However, we shall concentrate
on the era when the ancient heritage was available and medieval logic was
able to add something substantial to it, even to surpass it in some respects.
A characterization such as this cannot be adequately expressed with years or
by conventional period denominations; we hope though that the grounds for
drawing boundaries will become clearer during the course of our story.

1.1. Studies

It was characteristic of later medieval logic that it was pursued as an academic
discipline, as a major component in an organized whole of studies. Indeed, after
the Middle Ages, logic has never been allotted so large a share in the activities
of the universities. Moreover, logic was connected to certain classical texts
that were seen as natural foundations of this science. Thus, it is reasonable
first to say something about the system of studies in general and about the
nature of these works in particular.

Ever since Rome, school teaching had always centered on the trivium
of grammar, rhetoric, and dialectic. When schools developed and the most
prominent clusters of schools began to turn into universities, these disciplines
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found their place in the faculty of arts (artes). Dialectic, the art of arguing
and reasoning, was largely concerned with logical issues, and was often taken
to be the most important art of the trivium. Thus, the outcome was that
every student had to take extensive courses in logic. Perhaps the dialectical
background can throw some light upon the linguistic and semantic tone of
medieval logical thought.

The faculty of arts was always much bigger than the higher faculties (theol-
ogy, law, medicine). If there was a theological faculty in a university, it was
associated with advanced studies and required a preliminary education in
arts. But philosophical and logical research was pursued by theologians even
after proceeding to the higher faculty; in fact, the most competent scholars
often preferred the privileged higher faculty. Thus the history of logic must
take into account the production of both faculties. Many commentaries on
Peter Lombard’s theological Sentences contain important passages on logic,
and topics related to logic are often dealt with in the so-called quodlibetal
disputations, to mention just two examples.

We cannot pay much attention to the history of universities, though we
can say that the process of university education started in Italy in the twelfth
century, Bologna being the oldest university. Paris, however, was undoubtedly
the most important university for philosophy, and it received its official statutes
in 1215. Paris was a permanent international center for current philosophical
and theological discussion. Another place where logical research was often
especially popular was Oxford. These were the two capitals of medieval logic,
although the center of gravity shifted to Italy in the less innovative period
toward the end of the fourteenth century. During the fourteenth century, uni-
versities spread to the east and to the north. There were 15 universities in 1300,
30 in 1400, and about 60 in 1500, naturally of very different size and quality,
though one component of studies was standard everywhere, and that was logic.

1.2. The Growth of Logic
Medieval philosophers normally made use of an array of authoritative clas-
sical texts, which were taken to be trustworthy, though not infallible. The
curriculum was organized around these texts, and very often the problems
discussed were put forward as questions of interpretation and explication of
the texts. Hence the general breakthrough of Aristotelianism in the thirteenth
century represented a great change, establishing Aristotle as the main source
of academic studies. But in logic Aristotle had even before that been regarded
as the greatest of authors, and anti-Aristotelian reactions did not seriously
extend to logic. Rather than being rejected in the Middle Ages, Aristotle’s
own work in logic was built upon and developed ever further toward the end
of the period.

The famous standard translation for most of Aristotle’s texts was that by
William Moerbeke. With the logical works the case was different: Though
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Moerbeke translated some of them in the 1260s, the authority of the old Roman
translation by Boethius (c. 480–524) remained unquestioned. The Organon
that late medieval logicians used was the Latin text of Boethius. (For Posterior
Analytics, no translation by Boethius is known; its standard rendering was
made by James of Venice before 1150.) These translations are actually quite
accurate, although written in a very formal and literal idiom.

Three concise basic works belonged to the kernel of logic throughout the
Middle Ages. These were Aristotle’s own short Categories and De interpreta-
tione, and Porphyry’s introduction, Isagoge. In addition to these, the so-called
old logic (logica vetus) used Boethius’s logical works and a few minor ancient
texts (by, e.g., Apuleius and Augustine). The shape of logic changed consider-
ably when Aristotle’s complete works of logic became known in the middle of
the twelfth century. That opened the way for the new logic, logica nova, and
in a relatively short time the corpus of logica vetus was practically replaced by
new works. Even Boethius’s treatises on syllogisms fell into disuse. Except for
Aristotle and Porphyry, the only work that retained its place was Liber sex
principiorum, a treatise explaining the categories that Aristotle himself does
not dwell upon.

The period of logica nova used as its authoritative corpus all the six works in
Aristotle’s Organon: Categories, De interpretatione, Prior Analytics, Posterior
Analytics, Topics, and Sophistici elenchi. At first, dialecticians were especially
fascinated by fallacies and sophisms (Soph. el.), but gradually the investigation
turned more toward the formal theory of syllogism (Pr. Anal.). During the
thirteenth century, they encountered problems that could not be answered
by straightforward Aristotelian principles, and were thus drawn to new fields
of logic. After the introduction of such new subjects, logic came to be called
logica moderna, in contrast to logica nova, now called logica antiqua. This way
of speaking, however, did not imply any break with the earlier Aristotelian
tradition, only an expansion of investigation.

The first complete handbooks of logica moderna date from the second quarter
of the thirteenth century. The earliest known overview is Introductiones in
logicam by William of Sherwood from the 1230s, but the greatest success of all
was the Tractatus, also called Summulae logicales, by Peter of Spain (probably
from the 1240s). This comprehensive work maintained its status as a famous
standard textbook throughout the later Middle Ages and the Renaissance,
even in the time of printed books. It also served as the source for numerous
shorter courses. Similar ambitious textbooks were written by Roger Bacon
(Summulae dialectices, 1250s) and Lambert of Auxerre (Logica, 1250s). In a
way, these works can be seen as a synthesis of the founding period of logica
moderna: On the one hand, they were the first systematic presentations of
whole logic, on the other hand, they completed the new so-called terminist
logic. Simultaneously a more profound philosophical discussion was started by
the influential Robert Kilwardby, who wrote one of the first commentaries on
Prior Analytics (1240s).
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As to the logical content in the overall presentations of logic, significant
advance comes only much later, in the generation of Walter Burley (c. 1275–
1344) and William Ockham (c. 1285–1347). Ockham’s Summa logicae is from
the early 1320s, Burley’s De puritate artis logicae from the late 1320s. These
works manifest a turn in logical literature toward new problems and to a more
theoretical way of thinking. The greatest representative of the next period is
John Buridan (c. 1300–1361?); a comprehensive picture of his teaching in Paris
is given in his Summulae de Dialectica. In the latter half of the fourteenth
century, logic was already highly technical. In particular, a series of Englishmen
distinguished themselves, among them William Heytesbury (d. 1372?), Ralph
Strode (d. 1387?), and Richard Lavenham (d. 1399). A kind of summary of
this stage is the enormous Logica magna (c. 1400) by the Italian Paul of Venice
(c. 1369–1429).

1.3. Non-Latin Traditions
Our account will be only about the Latin West. The significance of Arabic
philosophy must be emphasized, and yet we shall not discuss the Arabic
logic per se, as it had its creative phase long before the time of Western late
medieval philosophy. Aristotle’s Organon was translated into Arabic in the
ninth century in Baghdad, and a commentary tradition started soon after
that. Logic was honored as a kind of grammar of reasoning, and for example,
al-Farabi (c. 870–950) underscored its importance as the “forecourt of all
philosophy.” Avicenna (Ibn S̄ınā, 980–1037), on the other hand, was already a
brilliant, independent exception: During his time, logical research was already
declining, and commentaries were replaced by handbooks. His work had a
profound influence on Western theories of meaning. In the twelfth century,
the Spanish Arabic school revived commentaries, and the last commentator,
Averroes (Ibn Rushd, 1126–1198), was also the greatest. The works of Averroes,
“the Commentator,” were soon translated and became highly appreciated in
Europe. In logic he was not as dominant as in metaphysics or in natural
philosophy, but undoubtedly his works belong to the background that was
always present. Averroes’s thought survived mainly in the West. In the Is-
lamic world, logic was integrated into studies of theology and law, and even
handbooks were gradually replaced by more or less elementary textbooks.
During the period we describe, from the thirteenth century on, Arabic logic
no longer produced anything but new versions and editions of established
textbooks.

On the other hand, a rich tradition of Jewish philosophy was alive in Europe
through the late Middle Ages. Logic was not its favorite field, but some Jewish
authors paid considerable attention to logical questions. However, these studies
had little interaction with Latin logic, and thus had to rely solely on Aristotle
as commented by Averroes and al-Farabi. Still, there were some innovations,
the most interesting figure being Gersonides (1288–1344). Writing in a rigorous
manner, he made a number of criticisms of traditional doctrines; among other
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things, he rejected the old Averroistic construction of modal syllogistics in
Prior Analytics (thus paralleling contemporaneous Latin developments).

Even today, very little is known about Byzantine logic. Apparently an
uninterrupted interest in logic, “the instrument of philosophy,” existed among
Byzantine scholars. It produced mainly Aristotelian commentaries, often in
the neo-Platonist spirit. Its independent progress was severely hindered by a
conservative, philological approach to Greek sources, and occasionally also by
religious scruples against the pagan heritage.

1.4. Texts
Aristotle was the essential basis of later medieval logicians, but other classical
ideas also played their part. First, Greek Aristotelian commentators had
discussed various problems in Aristotle’s logic and its correct systematization,
and their work became partly known (either directly or through Arabic sources).
Second, the Stoics had argued that Aristotelian predicate logic was insufficient
and required some background from the propositional logic that they studied as
the real logic. No complete Stoic works were preserved, but these Stoic themes
were transmitted, for example, by Augustine’s Dialectica and by Boethius.
We shall meet similar problems in the medieval theory of demonstration in
topics and consequences. Because of the Stoic influence, medieval logicians
were always in a different position from the ancient Peripateticians in that they
were aware of the necessity of essentially nonsyllogistic inference. Furthermore,
logic was obviously influenced by classical grammar, which provided it with
categories like nouns, verbs, and other parts of speech, as well as central
syntactical notions, the main authority being Priscian’s grammar of Latin.
Finally, some logical material had found its way into the work of famous
ancient authors, among them Cicero, and the Christian fathers.

From the middle of the thirteenth century, there was a rapid increase both in
logical studies and in Aristotelian studies in general. Soon the obligatory logical
curriculum included the whole of the Organon. Aristotle’s text is so concise
and difficult that it was always accompanied by commentaries and explanatory
texts. It was required that students mastered this material thoroughly, and
practical logical exercises became very popular as a supplement to lectures. A
major and growing part of studies was dedicated to logic. If we understand
logic in the widest sense, it appears that more than half of the program of
an arts faculty could be about logic. At least we may note that logic had an
undisputed place in medieval learning, and that it was not a specialist subject
since almost all leading philosophers wrote about logic.

Most logical works were closely connected to university teaching. The usual
teaching method in medieval universities was that a text was lectured on and
explained in detail. The intention was to build a consistent interpretation of
the text, to eliminate ambiguities and to resolve the problems and conflicts the
text gave rise to, and a typical medieval method of study included disputations
where some theses were argued for and against. The character of university
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teaching goes some way to explaining the literary types that became widespread.
In addition to simple lecture drafts, there were all kinds of commentaries,
ranging from elementary glosses to large systematic books. There were treatises
(tractatus), that is, manuals or more advanced surveys of some field, which
gradually became more independent of the underlying texts. The liking for
argumentation and disputation produced quaestiones, analytic works where
some specific question is resolved or a thesis defended. (Later, systematic
studies were organized in the form of a series of questions even though they
were often referred to as commentaries.) We must also remember that logical
subjects are often encountered as digressions in other works, for example, in
the extensive sentence commentaries of theologians.

There has been quite a decisive improvement in the accessibility of medieval
logic over the last three decades, when numerous texts have been published.
However, a large amount of material still remains unpublished and even
completely unstudied. In fact, it is quite possible that our whole view of the
outlines of medieval logic will undergo a change; indeed, such changes have
occurred before, and systematic historical research of this logic is still a very
young enterprise.

1.5. Interdisciplinary Relations
Obviously, logic had a well-established place in the system of disciplines
in the Middle Ages. But what kind of interaction did logic have with the
other sciences? Unfortunately, it is not easy to say anything definite about
this. First of all, formal philosophy of science was studied by logicians in
connection with the Posterior Analytics, which discusses the correct form and
nature of deductive theories. In this way, the methodology and philosophy
of science were a part of medieval logic. Also, the occasional attempts to
create calculative scientific speculations used heavy logic, but in general there
was little concrete connection of logic to particular natural sciences, which
took care of their own subjects. On the other hand, metaphysics—universally
considered a real science—was always relevant for logic. Thus, semantic theory,
so prominent in medieval logic, is immediately bound to metaphysical questions.
Just as early supposition theory employs a metaphysical basis, so in the late-
medieval nominalist trend it is impossible to separate logical from ontological
thought.

The role of theological matters is less transparent. Obviously theology
needed systematic thought and conceptual analysis, and was hence favorable
to logic. The conceptual examples and difficulties that logicians examined were
very often drawn from theology. Generally, the significance of theology for logic
must have been positive. Their union was made problematic, however, when
many philosophers began to think that some mysteries of faith, such as the
Trinity, were not only inscrutable but literally beyond logic—even if their exact
formulation could be a task for logic. Thus Ockham and Buridan thought that
certain theological notions had to be explicitly declared unsuitable for use as
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substitution instances in ordinary logical principles, and a few authors were
even more radical on this point. On the other hand, there was—of course—some
religious hostility which regarded logical reasoning as an unhealthy method in
theological matters.

2. Language as the Subject Matter of Logic
Thinkers in the Middle Ages were anxious to discuss the correct system
and classification of sciences. Since their philosophy of science was realist,
they believed that the classification should be based on the order of nature.
Logic, however, clearly has special features that make its place in this scheme
problematic. Is it a science that has as its subject matter some part or aspect
of reality? Or is it merely the art of using linguistic idioms? Or is its function
something else altogether?

2.1. A Science “of Words” or “of Reason”
The first known medieval textbook of logic, Garlandus Compotista’s Dialectica
from the late eleventh century, already sets the discussion of this topic on a
track that was to have crucial influence on the kinds of innovations that were
to be achieved in medieval logic. Throughout the Middle Ages, logical theories
had a very intimate relation to actual language use. According to Garlandus,
logic is concerned with actual utterances (voces). After Garlandus, Abelard,
for example, continues on the same track, but refines the position: As he sees
it, statements are not built from mere spoken sounds but from words that
have a signification (sermones). Thus, they also constitute the subject matter
of logic. Logic is “a science of words” (scientia sermonicalis).

It seems that well into the thirteenth century the idea that logic studies
actual language use remained basically unchallenged. Teachers and students of
logic considered that their studies helped in the acquisition of argumentative
skills for actual scientific disputations. Given the status of Latin as the lan-
guage of all medieval learning, it was natural to make the appropriate logical
distinctions from the viewpoint of spoken Latin. This gave an important status
to essentially linguistic structures even in the later developments of medieval
logic.

In approaching many particular features of medieval logic, it is crucial to
remember this pragmatic way of looking at the subject matter of logic. In the
Middle Ages, the art of logic was not taken to be concerned with abstract
structures in the way modern logic and modern mathematics are, but with
actual linguistic practices of reasoning. It was generally accepted that logic is,
at least in some sense, a practical science giving advice on how to understand
and make assertive statements and how to argue and reason in an inferential
manner—though opinions varied whether this practical characterization of
logic was accurate in any deeper sense.
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In the Arab world logic was thought of in a different manner, and thus
toward the thirteenth century under Arabic influences the Latin world became
aware of a different way of looking at the character of logic as a field of research.
According to al-Farabi, the logos (in Arabic, al-nutq) discussed in logic occurs
on two levels, one inscribed in the mind, and the other existing externally
in spoken sounds. Thus, we may even separate different senses of the Greek
word logos in accordance with the level of discourse at issue. Avicenna was
also influenced by al-Farabi’s discussion, and gave even further impetus to the
idea that logic is concerned with intellectual structures rather than with what
we do in spoken discourse. Thus, logic should be called “a science of reason”
(scientia rationis), as the Latin world translated the idea.

In the thirteenth-century Latin tradition, both the idea of logic as “a
science of words” and as “a science of reason” had a foothold. In his major
classification of all the university disciplines, De ortu scientiarum, Robert
Kilwardby (c. 1215–1279) gave a definition of the nature of logic that combined
the two views. It is worth taking a closer look at his definition, because it also
clarifies the medieval way of locating branches of logic in terms of Aristotle’s
logical works in the Organon.

According to Kilwardby, logic is “a science of words” (scientia sermonicalis)
in the sense that “it includes grammar, rhetoric and logic properly so-called.”
But as Kilwardly immediately points out, “in the other sense, it is a science of
reason,” and in this sense it is “distinguished from grammar and rhetoric.” It
may seem that here Kilwardby would be demarcating two different disciplines
both ambiguously called “logic.” But this is not really his intention, as he
hastens to explain: Logic properly so-called must in his opinion be listed as
one of the “sciences of words”; it is the science of words that attends to their
rational content. As he sees it, logic does not study arguments as mere words
nor as mere rational structures, but as rational structures presented in linguistic
discourse. The grammatical and rhetorical features of these arguments, for
example, do not pertain to the art of logic. Logic studies the rational structures
expressed and understood in linguistic discourse—neither rational structures
as such, nor linguistic structures as such.

The core of logic can in Kilwardby’s view be found in Aristotle’s Prior
Analytics. This is because at its core, logic is concerned with reasoning, and this
is the main topic of Prior Analytics and its system of syllogistic reasoning. It is
of some interest to note that Kilwardby is very Aristotelian in claiming that all
forms of valid reasoning can be reduced to the categorical syllogism discussed
in Prior Analytics. This was not the received view at the time, and Kilwardby’s
position did not win unconditional approval. Abelard had discussed the theory
of conditional inference and clearly would not have accepted such a principle.
Indeed, conditional inferences were throughout the Middle Ages a standard part
of logical curriculum. Soon after Kilwardby, toward the end of the thirteenth
century, the theory of consequences (consequentiae) grew into a self-conscious
general theory of inference that had no specific reference to the syllogistic
system; syllogism was increasingly presented as a special case of inference.
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Kilwardby pushes aside one aspect of Aristotle’s discussion in the Prior An-
alytics. According to Kilwardby, only dialectical and demonstrative syllogisms
are relevant to logic, while the rhetorical syllogisms discussed by Aristotle fall
out of the scope of logic because they take “the form that is suited to the singu-
lar, sensible things considered by the orators.” Logic as a science is concerned
with universal rational structures as captured in discursive reasoning.

In Kilwardby’s presentation of the structure of logic, the system developed
in the Prior Analytics is put to further use in the Posterior Analytics and the
Topics. As Kilwardby sees it, the division into different works is based on the
matter to which the syllogistic structures are applied. The Posterior Analytics
discusses the way in which the syllogistic form is applied to “specific matter”
and yields scientific demonstrations. For its part, Topics is concerned with
“common matter” and shows how we can construct good inferences relying
on generic considerations. Aristotle’s Sophistici Elenchi, for its part, plays in
Kilwardby’s view the role of considering what can go wrong in constructing
an inference.

As Kilwardby shows, the role of De interpretatione and Categoriae can
also be considered in terms of the syllogism. De interpretatione considers
the propositional structures that are essential for constructing syllogisms. A
syllogism must be construed so that it has a middle term, and for this purpose
it is necessary to see how assertive statements usable as premises can be
built to consist of two terms conjoined affirmatively or disjoined negatively.
Categoriae goes into the structure even more deeply, considering the terms
and their signification in reality.

From the mid-thirteenth century onward, Avicenna’s conception of logic as
a science of reason gained increasing currency in philosophical discussions on
the subject matter of logic. To some extent this happened at the expense of the
earlier view of logic as a science of words. As we have already seen, Kilwardby
restricts the meaning in which logic is a science of words so that it no longer
carries much weight. Albert the Great’s general position concerning the nature
of logic is similar, but in the beginning of his commentary on Aristotle’s
Categories he takes the explicit position that logic is strictly speaking not a
“science of words” at all. Rather, logic is concerned with argumentation, and
argumentation should be referred to reason rather than to words.

Albert’s student Thomas Aquinas (1224?–1274) followed him in this matter.
In his more elaborate system, the subject matter of logic consists of three con-
ceptual operations of the mind, namely, formation of concepts, of judgments,
and of inferences. This systematization can be traced back to Plotinus and
the neo-Platonic commentators of Aristotle’s logic in a more explicit way than
Kilwardby’s system. The first two operations are discussed, respectively, by
Aristotle’s Categories and De interpretatione, and the third by the other four
works included in the Organon. As Aquinas saw it, making a judgment—and,
in fact, anything that logic is concerned with—requires an intellectual act
of understanding. Thus, making a judgment is not primarily to be under-
stood as a speech act but as a mental act. According to Aquinas, externally
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expressed linguistic structures should be seen as results and representations
of intellectual acts, and only in this intermediate way does logic come to be
concerned with linguistic structures. In the first place, logic is concerned with
the intellectual operations by which the universal features of material reality
are understood.

The detailed structure of Aquinas’s presentation of the subject matter of
logic has the crucial feature that it relies heavily on the Aristotelian idea
that all inferences can be presented as syllogisms. As Aquinas saw it, all of
logic can be understood in terms of syllogistic structures. Since he thought
that logic deals with the three basic operations of the intellect, any inference
would have to be based on them. However, there are understandably quite
stringent limitations on the extent to which logic can be derived from these
basic operations. For example, with the claim that all assertions are made
by the composition of a predicate with a subject, Aquinas was almost forced
to reject conditionals as assertions. However, hypothetical propositions had a
long tradition deriving from Stoic logic and had been dealt with already by
Boethius, and thus Aquinas was compelled to comment on them. As he put
it in the first section of his commentary on De interpretatione, hypothetical
propositions “do not contain absolute truth, the understanding of which is
needed in demonstration . . . but they signify something to be true on condition.”
According to Aquinas’s logic, conditionals could not be used as premises in
scientific demonstrations.

Neither Albert nor Aquinas worked much with the actual details of logical
systems, and their discussion has more of the character of the philosophy
of logic. However, the distinctive flavor of medieval logic showed itself in its
close connections to actual language use, and it incorporated analysis of a
much wider variety of linguistic structures than the simple predications in-
cluded in the syllogistic presented in the Prior Analytics. Moreover, Abelard’s
work had already made medieval logicians acutely aware of a concept of in-
ferential validity that was essentially unconnected to the syllogistic structure.
While Kilwardby, Albert the Great, and Aquinas defended the strong Aris-
totelian program of reducing all inferential validity and thereby all logic to
an analysis of the syllogistic system, actual work in logic was taking another
course.

In the subsequent development, Aquinas’s three operations of the mind were
often referred to, but usually understood in a loose and suggestive manner. It
became standard to treat logic with the organizational principle that Categories
studies concepts and De interpretatione propositions, while Prior Analytics
and the three subsequent Aristotelian works concentrate on inferences. It was,
furthermore, commonly accepted that there are many traditional logical genres
inherited from the twelfth century that do not fit into this basic scheme. For
example, there was an abundance of literature on the so-called syncategorematic
terms, analyzing the logical properties of words such as “except” (praeter),
“begins” (incipit), “whole” (totum) and “twice” (bis). Such problems had little
connection to the development of syllogistic systems. Furthermore, it remained
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a problem to explain how such logical genres could fit into the description of
logic as a science of reason, because many of them were quite clearly motivated
by the analysis of linguistic structures.

2.2. Mental Language
An interesting alternative way of characterizing logic as concerned with mental
concepts rather than Latin words was being developed at the time Aquinas
was working, and it gained momentum among logicians in the latter half of
the thirteenth century. It was based on quite a different understanding of
the workings of the human mind from that of Aquinas’s Aristotelian outlook.
Roger Bacon (c. 1214–c. 1293) rejected the idea that the human understanding
works only with real universals existing intentionally in the mind. Rather, the
mind should be understood in terms of a discourse consisting of singular acts
of intellection whereby different singular things are understood in different
ways. According to Bacon, logic is not concerned with an external discourse
but with the internal discourse of the mind, with “mental expressions and
terms” (dicciones et termini mentales). In other words, Bacon posits a mental
language to serve the role of the subject matter of logic. As we shall see, this
approach was to play a major role in later developments.

First, however, we must take a closer look at the content of Bacon’s sug-
gestion. One of the central classical texts that Bacon refers to was Boethius’s
distinction between three levels of discourse (oratio): intellectual, spoken, and
written. In making the distinction, Boethius was commenting on Aristotle’s
De interpretatione 16a10, and Boethius’s way of reading the passage was well
known in the late Middle Ages, but it remained a debated issue how one should
understand the intellectual level of discourse and how one should relate logic
as a discipline to these levels.

It seems clear, though, that Bacon understood the intellectual discourse in a
way that can with good reason be called linguistic. He even takes pains to show
how word order functions in this discourse. Without going into details, it is
sufficient here to point out that he looked at the structure of mental sentences
in terms of Aristotelian predication: The subject comes first, then the predicate,
both with their “essential determinations.” They are then followed with the
various “accidental parts” of the composition. Especially his way of dealing
with these “accidental parts” shows how looking at thought as a linguistic
phenomenon gives Bacon a clear advantage in comparison to Aquinas from
the logician’s point of view. Through his theory of mental language, Bacon
is able to attribute considerably more logically relevant linguistic structure
to the intellectual level. One of the aims of this enterprise was—as is evident
to any logician—to show how to solve ambiguities of scope arising in Latin
through the relatively loose rules concerning word order. In this way, Bacon
worked toward a theory of an ideal language to serve logical functions as early
as the 1240s, if the current scholarly opinion of the date of his Summa de
sophismatibus et distinctionibus is correct.
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The mental discourse that Bacon was after is abstracted from spoken
languages like Latin and overcomes their arbitrariness. However, there is
also the other side of the coin: He specifically wanted to find the basis for
certain logically relevant Latin structures from mental discourse. Although
he thought that grammatical gender has no correlate in mental discourse,
the subject-predicate structure and many syncategorematic expressions have.
Indeed, Bacon seems to find from the mental discourse even more than a
logician would need. In many issues, it becomes apparent that he was working
more as a linguist than as a logician. His aim was a universal grammar rather
than a universal language suitable for logic.

Commentators have, accordingly, connected Bacon to the movement of
speculative grammar emerging in the latter half of the thirteenth century. The
approach to linguistic analysis employed by this school is often called “modist.”
The label reflects the specific use of a threefold series of concepts: “Modes
of being” (modi essendi) in reality were paralleled in language by “modes of
signification” (modi significandi) and in the mind by “modes of understanding”
(modi intelligendi). The movement was more closely connected to language
theory than logical theory, and accordingly we will only discuss it briefly
here.

The main idea of modist theory was to approach Latin expressions as
generated from a universal grammatical structure accurately reflecting the
structure of reality. That is, they thought that grammar is (in the words of
Bacon) “substantially one and the same in all languages, although varied in its
accidents.” Other central figures of this movement include Boethius of Dacia,
Martin of Dacia, and Radulphus Brito. At the beginning of the fourteenth
century, the program lost ground, although much of the terminological innova-
tions, including the term “mode of signifying,” survived until the Renaissance
in the standard vocabulary of logicians.

According to the modists, all words have two levels of meaning. Words have
in addition to their own specific meanings certain more general meanings, or
so-called modes of signifying. To be more exact, a phonological construction
gains a special meaning when it is connected to a referent that it “is imposed”
(imponitur) to mean (in the so-called first imposition). Furthermore, the word
is also “imposed” (in the second imposition) to mean its referent in a certain
grammatical category with certain modes of signifying. For example, pain can
be referred to by a variety of Latin words in different grammatical categories:
dolor refers to it as a noun, doleo as a verb, dolens as a participle, dolenter as
an adverb, and heu as an interjection. In all these words the special signification
is the same, but the modes of signifying are different.

The modists found no theoretical use for the most central logical term of the
terminists, “supposition” (suppositio; it will be described with more detail in
the next section). In their view, the varieties of ways in which words are used in
sentential contexts are based on modes of signifying contained in the words, and
thus they were not willing to admit that the sentential context as such would
have an effect on how the term functions—which is one of the leading principles
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of the supposition theorists. Rather, their approach was generative in the sense
that the sentences were to be generated from words that have their signification
independently. This approach made it unnatural to distinguish the sentential
function of a term from its signification. It may, however, be noted that the
term “consignification,” meaning the function of syncategorematic terms in
the terminist approach, was used by modists to express the way in which
phonological elements of actually used words mean modes of signification: For
example, the Latin ending -us “consignifies” nominative case, singular number,
and masculine gender. The thirteenth-century grammarians recognized the
congeniality of syncategorematic terms and modes of signifying: Both are
understood as the elements of discourse that show how the things talked about
are talked about and what in fact is said about them.

From the viewpoint of the history of logic, it is important to recognize
that from the twentieth-century viewpoint, the modist conception of grammar
can be characterized as making the subject a “formal science.” The criteria
of congruence were taken to depend solely on the grammatical structure,
or the consignifications of the elements of the sentence, regardless of the
special significations of the terms used in the sentence. Modists thought of
the generation of language as putting semantically significant elements into
grammatical structures. It seems that at least the Parisian master Boethius of
Dacia wanted to develop also logic into this direction and wanted to make a
distinction somewhat like the twentieth-century distinction between logical
form and semantic content. Nevertheless, it was only some decades later at the
time of John Buridan that the substance of logic was thoroughly reconsidered
from this viewpoint.

2.3. The Universality of Logic
From the viewpoint of practicing logicians, the debate concerning the subject
matter of logic at the end of the thirteenth century probably seemed like a
search for a credible account of the universal basis of the invariable features of
argumentation found in the logical analysis of actual use of language. That is,
what is the universal basis on which the validity of an inference formulated in
a particular language is grounded?

It was accepted as relatively clear that logic is about actually or potentially
formulated tokens of terms, propositions, and arguments that are linguistic in
some sense of the word. It was clear that such discursive arguments existed
in such external media as spoken or written Latin expressions. However,
logic aimed at, and appeared to have found, some kind of universality, and
such universality apparently could not be achieved if logic was tied to a
particular spoken language. Instead, thirteenth-century discussions converged
in finding the universality of logic in intellectual operations. But what are
these intellectual operations? Can we speak of a mental language serving as
the domain of logic? In particular, is a mental proposition linguistic in any
relevant sense? And because it was assumed that an affirmative predication is
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based on or performs a composition, one had to ask what exactly does this
composition put together.

At the turn of the fourteenth century, we find different logicians giving
different answers to these specific questions. At that time, the most common
answer was the one inspired by Bacon. It was based on looking at the mental
discourse from the viewpoint of “imagined spoken words,” and accepting it
as the privileged medium of logical arguments. This kind of explanation is
straightforward and relatively acceptable from the metaphysical viewpoint, but
is, of course, less satisfactory in explaining the kind of universality achieved in
logic. If mental language is nothing but imagined Latin words, there seems to
be little reason for assuming it to have any more universal status than Latin
has. Yet that appears to be what Bacon wished to propose.

The realist Walter Burley seems to have approached the problem from
the viewpoint of the universality of logic. Given his realist metaphysics, it is
understandable that he contributed the concept of “real proposition” (propositio
in re). He aimed at explaining mental propositions as consisting of real external
things, which are conceived and propositionally combined in the mind. This
model of the metaphysical basis of mental language of course works only
if conceptual essences are understood in a realist way without separating
them from the things themselves. Also, such “real propositions” are not very
language-like.

The nominalist William Ockham formulated the most innovative and by
far the most influential theory of mental language. He ridiculed the position of
Burley by asking how it could be that the subject of a proposition formulated
in Oxford is in Paris while the predicate is in Rome. A suitable example of
such a proposition would be “Paris is not Rome.” Ockham seems to have gone
back to Bacon’s theory, but with the awareness of some of its shortcomings.

With his nominalist metaphysical outlook, he strongly held the view that all
the metaphysically real things involved in mental propositions are particular
mental acts or states. But the substantial logical strength of his theory of
mental language was really that it was formulated in a way that was sufficiently
neutral from the metaphysical point of view. Indeed, Ockham himself started
with the idea that mental language consists of ficta (that is, of intellectually
imagined objects of thought that do not have any kind of existence outside
the mind but are simply “made up” by the mind) but ended with the view
that mental language is better understood as consisting of intellectual acts
intentionally directed at real or possible things. At one stage of his career he
was working on the theory of mental language without being able to make
up his mind which of these two rather different views would provide the
appropriate metaphysical foundations.

In the first chapters of Summa Logicae, William Ockham addresses the
Boethian idea of three levels of language. In opposition to Aquinas’s treatment
of the same topic, Ockham claims that written language is subordinated
to spoken language rather than signifies it. Similarly, spoken language is
subordinated to mental language rather than signifies it. That is, according
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to Ockham, all three languages similarly signify things in the external world.
They are, furthermore, all equally languages. Written language is inscribed
on external material things, and spoken language exists as a continuum of
sounds. Similarly, mental language consists of real qualities of the thinking
mind. Furthermore, in Aquinas’s picture intellectual acts were the significations
of linguistic expressions and by their nature could not serve as a medium of
communication. For Ockham, mental language could by its nature serve equally
as a medium of communication if only there were beings who could perceive its
expressions apart from the “speaker” him- or herself. In fact, Ockham thought
that we have every reason to suppose that the angels described in the Christian
doctrine communicate in the same language in which we think.

The main difference between mental language and the two other kinds
of language is the naturalness of mental language. Unlike spoken ordinary
languages, which we nowadays call natural, Ockham’s mental language is
natural in the sense of not being conventional. The expressions of mental
language have their significations naturally, without explicit or implicit consent
or any other kind of conventionality involved. A mental word is capable of
signifying only the things it really signifies, and it signifies exactly those things
to all competent users of the word. (It may be noted that Ockham admits that
in angelic communication some mental expression may be unfamiliar to the
perceiver and thus unintelligible to him.) In principle, there are no ambiguous
terms in the mental language. This is one of the central features that make
Ockham’s mental language an ideal language, which is then suitable for the
purposes of a discipline like logic.

There are also two other senses in which Ockham aims at description of an
ideal universal language. On the one hand, he tries to describe in general terms
what must be required of any language that is used for thinking, and assumes
that mental language has only such necessary features without any accidental
“ornaments of speech.” Since these features are necessary requirements of
thought, all thought must comply with them. Thus, Ockham constructs a
theory of a language that is universal in the sense of being used by all intellects
that think discursively.

On the other hand, according to Ockham, mental language is directly
related to the constitution of the world. It reflects accurately mind-independent
similarities between real things. Thus, a fully developed mental language would
be universal in its expressive power: There cannot be any feature of the world
that could be conceived by an intellectual being but not expressed in mental
language. Everything that can be thought can also be cast in terms of mental
language. From this principle it also follows that all linguistic differences
between expressions of spoken languages that result in different truth values
(which are not “ornaments of speech”) have their correspondents on the level
of mental language.

From the logical point of view, perhaps the most interesting ideal feature of
Ockham’s mental language is its compositionality, which makes it a recursive
system. Complex expressions get their meaning from their constituent parts
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in a systematic way. In this respect, mental language shows similarities to
twentieth-century formal calculi, although it is much more complex.

According to Ockham, the expressions of mental language consist of cate-
gorematic and syncategorematic parts with specific linguistic roles (we will
return to this distinction more fully in the next section). A categorematic
term (e.g., “animal”) signifies real individuals and refers to them as the other
elements of the propositional context determine. A syncategorematic term
(e.g., “every”) does not signify any external things but rather, as Ockham puts
it, “performs a function with regard to the relevant categorematic term.” Typi-
cally, syncategorematic terms affect the way in which the significations of the
categorematic terms result in reference (or suppositio) in the sentential context.
We may say that the categorematic terms of a sentence determine which things
are talked about, whereas the syncategorematic terms determine how they
are talked about and what is actually said about them. The number of basic
categorematic terms of the ideal mental language accords to the variety of
things that could exist in the world; they express the natural kinds of possible
things. Ockham’s view of the number and selection of syncategorematic terms
is more difficult to determine. On the one hand, it is clear that he is thinking
of a much wider variety of such logical constants than twentieth-century logic
used. On the other hand, it is equally clear that most of his logical rules
concern the effects of syncategorematic terms on logical relations between
sentences.

Because the compositional characteristics of mental language depend on
the distinction between categorematic and syncategorematic terms, Ockham’s
mental language seems to conform to the twentieth-century ideal principle of
logical formalism, namely, the idea that all sentences directly reveal their logical
form. This seems to be one of the features of the mental language that Ockham
is most interested in, and much of his logic is devoted to systems elaborating
on the functions of syncategorematic expressions. However, Ockham’s theory
has interesting details that reflect a conscious decision not to accept logical
form (as we nowadays understand it) as the guiding universal principle in
determining the logical validity of an inference.

The theory of mental language was also discussed and developed after
Ockham, but without major revisions. The most important innovator was
John Buridan, who altered much of the terminology used in defining language
and gave a rather different account of how the simple terms of language are
learned, but these revisions resulted in few changes that would be relevant to
our purposes here. After Buridan, some minor topics like the role of proper
names and individual terms, and the nature of word order as explanatory of
issues of scope were discussed. These can hardly be called revolutionary with
regard to the nature and purposes of logic.

At the peak of its success, medieval logic had thus found a definition of
its subject matter that provided a relatively reasonable explanation both of
its universality and of its dependency on discursive linguistic structures. For
the logicians of the second quarter of the fourteenth century, logic was the art
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of constructing and using mental propositions. It studied the basic syntactic
features of mental language, the ways and forms of assertions that can be
produced in it, and the ways these assertions can be organized in inferential
relations. Because mental language was understood as capable of expressing all
possible universal structures of discursive thought, logic studied the universal
art of reasoning.

3. Terms
3.1. The Notion of a Term

Textbooks of “traditional logic” used to divide their material into three sections:
the doctrines of terms, propositions, and inferences. This practice is based on
ancient grounds, of course, but Aristotle nowhere says that all logic should
be so divided, and medieval logic did not at first do so. In thirteenth-century
logic books, often the chapters are still relatively independent, or at least
not organized according to such a general plan. But then, at the turn of the
century, this idea soon became dominant. We find it, for example, in both
Burley and Ockham, in spite of their sharp disagreement. We are going to
follow this familiar order, starting with terms.

Everybody agreed that terms were the ultimate units of discourse. In a
way this is obvious, but the emphasis on this fact in logical contexts also has
a nontrivial sense which shows the Aristotelian character of medieval logic.
For the logic that Aristotle had developed was term logic, unlike that of the
Stoics. But Aristotle gave two different explanations of terms. In Categories
he speaks about noncomposite expressions (“such as ‘man’, ‘ox’, ‘runs’, or
‘wins’ ”). In Prior Analytics he says (24b16–18): “I call that a term into which
a proposition is resolved, i.e., the predicate or that of which it is predicated,
when it is asserted or denied that something is or is not the case.” These
explanations lead to very different uses of the word “term.”

In the first sense, a term is simply any word. Many medieval logicians
mentioned even meaningless words, like “ba,” “bu,” but only to concentrate on
ordinary words. In this sense, which is that of grammarians, it is only required
that a term is a noncomposite significant element of the language. Or it can
be a composite expression signifying one thing.

In the second sense, which is more exciting for the logicians, a term is
something that can stand as a subject or a predicate of a proposition. This
excludes wide classes of words from the status of terms. According to the
strictest definition, a term is only that type of nominal expression that can
figure as S or P in a categorical proposition “S is P.”

This leads to a question concerning the structure of terms because S and P
can be complex expressions. Buridan, for instance, took a strictly propositional
view and argued that a simple proposition has exactly two terms. In this
usage a term is identified with an extreme (extremum) of a proposition. But
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since the various words occurring within such terms can be extremes in other
propositions, authors kept on saying that propositions can have complex terms
that are composed of simple terms.

The theory of terms is obviously connected to grammar, and Priscian’s
classifications had a strong influence on earlier writers. But logically it was
important to eliminate Latin contingencies and consider as general cases as
possible. However, that is a problematic requirement regarding terms: What
could be those language-independent terms? Different ways to tackle this
question systematically were offered first by so-called speculative grammar,
and then by the mentalistic interpretation of language, which was finally
victorious, but both approaches emphasized the universality of language. For
late medieval logicians, the terms were in the first place mental terms that
occurred in mental propositions.

3.2. Categorematicity
A distinction that is especially important for logic was made between cate-
gorematic and syncategorematic terms. This distinction was well known to all
logicians, and they usually introduced it immediately after the definitions of
terms. The source of these notions was in grammar, but logicians gave them
a new function, following a hint from Boethius. Priscian had written about
“syncategorematic, i.e., consignificant, parts of speech”: Most words are gram-
matically categorematic since they can occur as subjects or predicates, but for
instance, conjunctions, prepositions, adverbs, and auxiliary verbs cannot. They
are syncategorematic and signify only together with other words. Logicians
proceeded from this picture to distinguish two ways of meaning and to describe
the logical behavior of philosophically interesting syncategorematic words.

Syncategorematic words were first studied in special treatises. This genre of
Syncategoremata was popular from the last quarter of the twelfth century to
near the end of the thirteenth century. Well-known treatises of this kind were
written by Peter of Spain, William of Sherwood, Nicholas of Paris, and even
the famous metaphysician Henry of Ghent. Later, the subject was incorporated
into general textbooks of logic. The distinction itself had its systematic place at
the outset of the exposition of the theory of terms, since it was utilized in many
questions; particular syncategoremata were then discussed in their due places.

Even in the fourteenth century most authors apparently based their defini-
tions of syncategoremata on different ways of signifying. According to Ockham,
“categorematic terms have a definite and determinate signification. . . . Examples
of syncategorematic terms are ‘every’, ‘no’, ‘some’, ‘all’, ‘except’, ‘so much’,
and ‘insofar as’. None of these expressions has a definite and determinate
signification.” Buridan states: “Syncategorematic terms are not significative
per se, as it were, but only significative with another.” Paul of Venice still
defended this view against “a common definition” that a syncategorematic
term cannot be the subject or the predicate or a part of either. Such a purely
syntactical criterion had been supported by Albert of Saxony (1316–1390).
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Syncategorematic expressions were usually counted as terms. A theoretical
reason for this was a slogan that was in use at least from Peter of Ailly onward:
A term is a sign that in a proposition represents something or somehow. Syn-
categoremata, indeed, signify “somehow” (aliqualiter), for thirteenth-century
treatises had already pointed out that syncategoremata serve to show how
the categorematic terms ought to be understood. It is thus essential for their
signifying that they are joined with other terms to elaborate their meanings.

Present-day readers will easily associate syncategorematic terms with logical
constants. This is partly correct but must not be taken too literally. For one
thing, the class of syncategoremata of language is much wider than the small
sets of logical constants nowadays. However, the medievals ignored most
syncategoremata and studied only those which seemed to be philosophically
interesting. These were just words with special logical peculiarities, and hence,
for these terms, the comparison with logical constants may be justified. The
lists of different logicians varied greatly, but several dozens of words were
thus discussed. Among them belonged sentential connectives; words like “only”
and “except”; quantifiers; modal operators; words like “whole” and “infinite”;
some verbs like incipit and desinit (“begins” and “ends”); and the copula est,
that is, the copulative use of the verb “to be,” esse. General textbooks listed
them but did not usually go into details of particular syncategoremata. In the
fourteenth century, such closer study often took place by means of sophismata:
In this literature it was typical to analyze sentences that were problematic or
ambiguous because of syncategorematic words (see section 6).

Buridan expressly said that the matter of a proposition consists of purely
categorematic terms while syncategoremata belong to its form. From this
point of view, it is interesting to notice that the notion of syncategorematicity
proved difficult because it did not determine a precise class. Thus Buridan
had trouble with attitude operators: Verbs like “to know” and “to promise”
clearly have a formal function and yet they are independently meaningful. The
two criteria, the semantical and the grammatical, did not always coincide, and
Peter of Ailly suggested that they should be wholly separated. A term could
therefore be syncategorematic either “by signification,” or “by function,” or in
both ways.

3.3. Predicables
In a proposition something is said of something, as Aristotle taught. It is
therefore logically important to have some idea of the various types of things
that can be thus predicated, the predicables (praedicabilia). Medieval logicians
based their classification here on Porphyry and Boethius. Obviously, a pred-
icable is something that can be said (predicated) of something else, but in
a stricter sense, it is only a universal term that can be predicated of many
things. This distinction was made already in thirteenth-century textbooks, and
it is easy to see that predicables have a close connection to the most famous
medieval metaphysical problem, the problem of universals.
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Explaining Aristotle’s Categories, Porphyry mentioned five types of universal
terms: species, genus, differentia, proprium, and accidens. These were the “five
universals” (quinque voces) that recur in medieval discourses. They reveal
various relations of the predicate to the subject: What kind of information
does the predicate give us about the subject? When it is said that S is P, the
predicate P may express a species to which S belongs, or a genus to which
every S belongs, or a characteristic essential feature of them (differentia), or a
nonessential but necessary property of every S and only them (proprium), or
their accidental feature (accidens). (The P of species is a somewhat obscure case
here because it can be predicated of individuals, too, unlike the others.) Added
to a genus, a specific difference (differentia specifica) defines a species, which in
turn can be a genus for lower subspecies. In this way, the famous “Porphyrian
tree” is generated, ranging from uppermost genera down to individuals.

The doctrine of predicables was a standard part in medieval logic texts, and
it was a relatively unproblematic part: The difficulty, of course, is metaphysical
and concerns the essential, necessary, and accidental qualities. Logicians,
however, used the five universals as metalinguistic tools to classify predicates.
A more ontological question is that of categories, or praedicamenta, as logicians
preferred to call them. The first category is substance; the other categories are
ways in which something can belong to a substance. Aristotle studied quality,
quantity, and relation in his Categories, and more briefly he discussed even
place, time, position, habit (having), passion, and action. With some variants,
medieval praedicamenta treatises give the same list of 10 members.

As Buridan says, “this treatise is found in many summulae, but in many it
is not.” Indeed, it is not obvious why logicians need to discuss a question that
seems purely metaphysical. But there was a motive for those who included
this treatise in their summulae—an assumption of the parallelism between
predication and being. Except substance, all categories both “are said of things”
and “are in things.” Thus, a classification of ways of being in a substance also
produces a classification of questions and answers that can be made concerning
an entity, and this is a logically relevant achievement. Later, nominalists give
up the assumed parallelism and analyze categories simply metalinguistically,
as classes of terms. Ockham, for instance, has a long discussion in which he
wishes to show how terms of other categories are secondary to substance and
quality.

We may note in passing that predicables and categories have a very different
role among the speculative grammarians of the late thirteenth and early
fourteenth centuries. For them, terms are intelligible because they manifest
the same characters and structures as the entities of the world; the “modes of
signifying” belonging to grammatical features of lexical meaning and inflection
are functions that reflect categorial features of objects. Such an approach leads
to a special view of metalinguistic issues. Hence it is also natural that these
authors, the modists, concentrated on rather abstract lexical contents and
were not very interested in the semantic properties of concrete occurrences of
terms in particular sentences.
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3.4. Significance

The main body of the theory of terms consisted of proprietates terminorum.
The tireless analysis of these “properties of terms” displays the intense interest
in philosophical semantics that was characteristic of later medieval philosophy.
This is a field that seems to be a medieval invention. In Aristotle and other
ancient sources, there were only scattered remarks on semantic questions, and
it can hardly be said that they attempted to establish any self-conscious theory
of semantics. On the other hand, after scholastic philosophy these problems
were often considered futile, and explicit philosophical semantics was largely
rejected. But the medieval theory has had a striking revival in the latter half
of the twentieth century, when philosophical semantics has again grown into
a complex discipline, often struggling with questions that bear an obvious
resemblance to medieval themes.

Undoubtedly the two most important properties of terms are signification
and supposition. They have often been compared to present-day “meaning” and
“reference,” but this comparison must not be taken literally. For one thing, the
emphasis was on the words and signs: Unlike many accounts of meaning and
reference, the medieval doctrine viewed signification and supposition mainly as
something that the words do or as something that is done by means of words.

Let us start with signification. Logicians were aware of the ambiguity of
this word. Usually, instead of interpreting signification as a signified entity of
some sort, they started from “acts of signifying” and assumed that terms had a
property of being significant. (In this respect, terms differed from other words
which had no signification by themselves.) A word signifies, or has signification,
because of its “institution,” or according to another common account, because
of its “use” in language. In short, signification is the role of the term in language.
The same idea acquires a new slant with the introduction of mental terms. It
then becomes standard to claim that spoken words have their significations
because of linguistic conventions, whereas the mental terms are natural signs
that have their significations necessarily, without any stipulation. Signification
is generally connected to mental acts of understanding: A linguistic term
signifies that of which it makes a person (a speaker or a hearer) think, a mental
term is itself an act of thinking of something, a representation. (To quote
John Aurifaber: “signifying is an accident of the intellect, but a word is the
thing by means of which the intellect signifies.”) The thing thus signified has
“intentional being.”

Even before the mentalistic turn, it was usual to find the essence of words
in signification. Thus Thomas Aquinas said that “signification is like the form
of a word”—the matter was the phonological shape, the form was its signifying
capacity. Later, it was said that mental concepts have their significations
“formally,” and spoken and written words essentially function as instruments
of this signification.

Signification is the defining property of all terms; thus it is natural that
it can be defined no further. Late medieval philosophers seem to agree that
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signification is a basic notion that can only be explained by illustration. For
them, it was obvious that a term signifies something, but there was a great,
partly metaphysical controversy about what this something is.

Boethius had already said that words signify concepts, that is, corresponding
mental entities. This gave an impulse for the view that words signify concepts
immediately and objects indirectly. (Such a “semiotic triangle” had been
discussed earlier by Greek Aristotelian commentators.) This opinion became
prevalent among the Thomists. Aquinas himself had pointed out that a term
signifies a general nature that is abstracted from individual entities. The
later Thomists emphasized that the concepts were signs, too: Thus the words
do signify objects “principally” (most important), although they do it only
“indirectly” (through the concepts).

A contrary position was championed by Bacon, and it won general support
at the end of the thirteenth century. It started from the obvious fact that
terms are used in propositions, and the propositions are about objects and not
concepts. Thus all terms must signify objects. However, nonexistent objects
cause problems which compel logicians to make reservations concerning that
general principle. What is signified is, for instance, the object “regardless of its
being or not being” (Kilwardby), or the object “secundum quod the intellect
perceives it by itself” (Duns Scotus). Moreover, spoken words and mental
terms signify the same objects. According to Ockham, it is a basic fact that
words are “subordinated” to the corresponding mental terms in such a way
that they signify the same things. He apparently did not think that this use of
language could be further explained. Buridan was not satisfied with this kind
of answer and again interpreted the subordination as a type of signification:
Words also signify concepts, in some sense. Later discussion became rather
complex when different positions were combined and refined.

Admitting then that terms signify something extramental, it is still not
clear what this significatum is for general terms. The question is inevitably
connected to the theory of universals. The realist answer is that the term
signifies something general; “man” signifies a universal, a species, a property,
or a common nature of “man in general.” The nominalist answer is that the
term signifies all relevant individuals; “man” signifies each man. Both answers
cause trouble, which shows the uneasy union of signification and denotation.
For it was assumed, after all, that a term signifies what it is true of, and this
characterization would better suit denotation.

Syncategorematic words have no signification in the strict sense. However,
most logicians were not as rigorous as Ockham, who said that they do not
signify at all. Even Buridan was willing to admit that they did not signify
things but ways of thinking. And both realists and nominalists agreed that
syncategorematic words could “consignify,” that is, participate in forming
significant wholes.

There is even another sense of the word “consignification.” In addition
to its basic signification, a word can have some consignification that further
determines its content. Especially thirteenth-century authors often use this
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approach to explain the role of features like case endings and—the most
discussed example—tenses. The idea is that the actual occurrences of words
get richer contents than bare lexical words.

3.5. Supposition
Denotation was first discussed by means of appellation, a notion borrowed
from the “appellative nouns” of grammar. Appellation is the relation between
a general term and the things actually belonging under it at the moment of
utterance. Often this notion was applied only to the predicates of propositions,
but at least from William of Sherwood onward it had unrestricted use.

The “property of terms” that caused the most extensive study was suppo-
sition. The word derives from grammatical contexts. According to Priscian,
a word has a supposition when it is placed as the subject of a proposition.
This meaning was usual in the twelfth century. On the other hand, grammar
had also formed the idea that a word supposits because it refers to an individ-
ual. Gradually this became the central aspect, and the supposition of terms
was their way to denote individuals. As the supposition theory expanded,
logicians had to seek for suppositions even for other terms than the subjects
of propositions—for predicates and parts of complex terms. The question of
supposition began to concern the denotation of terms quite generally, and at
the same time appellation lost much of its importance, turning into a special
case of supposition.

Supposition theory was a challenging subject especially because the sup-
position of terms depends on their position in a proposition. Each word that
is not equivocal always has the same signification, but its supposition varies
in different propositions. As Ockham said, “supposition is a property of a
term, but only when it is in a proposition.” This compelled the logicians to
develop classifications for the several kinds of supposition. As many scholars
have pointed out, precisely this propositional approach was characteristic of
the theory of supposition. It must, however, be noted that Peter of Spain
admitted even a “natural supposition” (suppositio naturalis) that belongs to a
term immediately because of its own signification, and this idea was preserved
by many Parisian logicians.

Thirteenth-century terminist textbooks already include a detailed and
clearly developed doctrine of supposition. In Paris during the second half of
the century, this tradition had to give way to the modistic influence, but it
survived largely undisputed in Oxford. Subsequently, the ideology of mental
terms made it again generally accepted in the beginning of the fourteenth
century. After this it became part of the permanent apparatus of late medieval
logic.

“To supposit” is obviously a technical term; it means something like “to
stand for,” and this indeed was an alternative expression. Early terminists
like Sherwood thought that supposition belongs only to substantives that are
posited as subjects (i.e., subposited under predicates), whereas the denotative
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function of verbs and adjectives is copulation. Soon, however, it became the
rule to merge these cases and connect supposition to every categorematic
term. The definition of this general supposition is not evident. Perhaps it is
clearest simply to quote concise definitions from two authors: “When a term
stands for something in a proposition in such a way that we use the term for
the thing and the term (or its nominative case, if it is in an oblique case) is
truly predicated of the thing (or a pronoun referring to the thing), the term
supposits for that thing” (Ockham). “All and only those terms supposit which,
when something is pointed out by the pronoun ‘this’ or several things by the
pronoun ‘these’, can truly be affirmed of that pronoun” (Buridan).

We shall try to sketch an overview of the divisions of supposition. First of
all, in some cases the supposition is “improper” because the word is used in a
nonliteral or metaphoric way; let us concentrate on “proper supposition” only.
The definition of its various types displays both semantic and syntactic factors.
It seems that the suppositum of a word can be of three fundamentally different
semantic kinds, and the supposition is accordingly called either material,
simple, or personal.

supposition

material simple personal

A term has material supposition (suppositio materialis) when it stands for
itself. It must be kept in mind that people in the Middle Ages did not use
quotation marks, and material supposition is an alternative way to cope with
some problems of use and mention. Sherwood notes that material supposition
can be of two types: The word supposits itself either as a sheer utterance or as
something significant. His examples are “man” in “Man is monosyllabic” and
“Man is a noun.”

The supposition is simple (simplex) when a word stands for a concept. The
classical elementary example is “Man is a species.” To realists, the supposi-
tum then should be equated with some extramental conceptual significatum.
“If ‘man is a species’ is true, the term ‘man’ supposits its significatum. . . .
The word ‘man’ does not primarily signify anything singular; thus it sig-
nifies primarily something general, and this is a species” (Walter Burley).
According to nominalists, the simple suppositum is a mental entity, such as
an intention.

In the most common case, the word supposits some things that it signifies.
For historical reasons, this was called by the surprising name of personal
supposition (suppositio personalis). Because both simple and personal supposi-
tion are related to the meaning, unlike material supposition, they were often
together called formal supposition. On the other hand, nominalists liked to
reduce concepts to mental words, so in a sense Buridan and Peter of Ailly are



Late Medieval Logic 35

more straightforward than Ockham when they do not admit simple supposition
as an independent class, counting it as material.

The main task is the classification of personal supposition, and here syntactic
matters interfere. Let us start by providing the next diagram, representing the
early state of the classification, and then proceed to explanations of its titles.

personal supposition

discrete common

determinate confused

merelyconfused confusedanddistributive

This scheme was in fact given by William of Sherwood, except that he makes
the difference between common and discrete supposition in another context.

Discrete supposition (suppositio discreta) belongs to discrete terms: that
is, to proper names and demonstrative expressions, like “this man” or “this.”
Then the suppositum is the unique object that is signified. All other terms
have suppositio personalis communis.

This common supposition is further divided into determinate and confused
kinds. The supposition is determinate (determinata) when it allows instantia-
tion, as we might say. But medieval logicians had no such notion. Early authors
thought that a determinately suppositing term stands for one determinate
object. Ockham improved on this, saying instead that determinate supposition
supports descent to singulars, that is, to sentences that are got by substituting
singular terms in place of a general term. Thus, in “A man is running” the
term “man” supposits determinately because we can legitimately infer that
“This man is running or that man is running or. . . ,” and each member of this
disjunction in its turn allows ascent back to the original sentence.

The supposition is merely confused (confusa tantum) if the proposition does
not allow instantiation but is instead implied by its particular instances. As
Ockham puts it, “in the proposition ‘Every man is an animal’, the word ‘animal’
has merely confused supposition; for one cannot descend to the particulars
under ‘animal’ by way of a disjunctive proposition. The following is not a
good inference: every man is an animal, therefore, every man is this animal
or every man is that animal or every man is. . .” But it is also worth noticing
that “Every man is this animal or that animal or that. . .” does indeed follow.

Finally, the word has confused and distributive supposition (confusa distribu-
tiva) if it allows descent to all singulars but does not support any ascent. Here
the reference concerns “distributively” each and every one of the individuals.
For example, in “Every man is an animal” the term “man” has confused
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distributive supposition. It is correct to infer “This man is an animal and this
man is an animal and. . .”; or as we write nowadays, “The man a is an animal
and the man b is an animal and. . .” On the other hand, none of these singular
propositions implies the original sentence.

For confused supposition—and especially for the descent to singulars—it
is important to decide what the adequate class of individuals ought to be.
There was some debate on this point about the correct formulation until it
was agreed that the terms had to be duly ampliated, in other words, extended
from the basic case of all individuals presently belonging under the concept,
such as all actual men, to include all past and future men as well, and in later
logic even all possible instances (all possible men). So terms could be examined
either with their actual supposition or with an extended supposition.

It is not obvious what the motive behind supposition theory really was.
Early authors possibly just wanted to capture various kinds of referring. But
when Ockham and his followers started to build a more complex theory,
with rules of descent and ascent, they probably did pursue something else.
Thus, the supposition theory has been compared to the modern framework of
quantification theory, and clearly it has something to do with the problems
of multiple quantification and scope—problems that had no explicit place in
Aristotle’s logic. Also, it can be seen as an attempt to warrant certain inference
types, like those of descent and ascent. The interpretation here is still a matter
of controversy.

4. Proposition
The core of the medieval theory of judgment centers around the standard
definition of proposition (propositio), deriving from the late ancient period
through Boethius. The definition runs as follows:

A proposition is an expression that signifies something true or false.
Propositio est oratio verum falsumve significans.

This definition accords with the classical theory of definition. It consists of
the generic part (expression) and the distinguishing characteristic (signifying
something true or false). For our purposes, however, it seems more useful
to divide it into three parts and look at the concepts of truth and falsity
separately from the problem of what it is that the proposition exactly signifies.

4.1. Propositions Are Expressions
As we have already seen, medieval authors understood logic as a discipline
whose subject matter is linguistic discourse. It is well in line with this general
approach that they also thought of the propositions studied in logic as sentences
actually uttered in some language, typically either spoken or written. As we
saw in section 2, a central issue in the determination of the subject matter
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of logic was whether (and in what sense) we could distinguish a special class
of mental propositions. Thus, thoughts can be propositional only in so far as
they have linguistic structure. A proposition, as the medievals thought of it, is
something that is put forward as a sentence, and thus it has actual existence
in time and typically also in space. As we will soon see in more detail, it was
not the case that medieval logicians would have failed to make a distinction
between the actual utterance and that which it expresses. Rather, they simply
thought of propositional truth as an issue that comes up in connection with
claims actually put forward, not as a property of abstract entities.

From the viewpoint of twentieth-century logicians, this feature of medieval
conceptual practice has some implications which are worth pointing out,
although they are ultimately superficial. According to medieval parlance, a
proposition has to exist (i.e., has to be actually put forward in some language)
to have a truth value, and it has its truth value in respect to some specific
instant and context. Thus, a proposition like “there are no negative propositions”
cannot be true, since it falsifies itself, though it is clear that the case could
be as it claims. Also, the same proposition can have different truth values
in different situations. The truth value of “Socrates is seated” varies when
Socrates either stands up or sits down. Furthermore, the truth of “this is a
donkey” varies depending on what the demonstrative pronoun refers to. Indeed,
all logical properties that a proposition has presuppose that it exists; thus
medieval logicians often pointed out that their study applies to propositions,
not eternally, but on all occasions in which they are put forward.

4.2. Propositions Carry Truth Values
Not all significative expressions are propositions. Boethius’s textbook distin-
guishes between “perfect” and “imperfect” expressions with the idea that an
imperfect expression does not make complete sense but the hearer expects
something more. More important, Boethius continues by listing questions,
imperatives, requests, and addresses in addition to indicative sentences that
make an assertion and count as propositions. This listing of the kinds of
expressions is based on grammatical categories, and similar strategies were
also followed in subsequent discussions. It may be of some interest to note
that Buridan, for example, takes it to be worth an argument to reject Peter
of Spain’s claim that sentences in the subjunctive mood (like “if you were to
come to me, I would give you a horse”) do not count as propositions.

It seems that medieval logicians disagreed on whether a proposition that is
just mentioned without being asserted carries a truth value. The distinction
between apprehensive and judicative uses of a propositional complex was rather
standard. Ockham, for example, argues that it concerns propositions so that
even an apprehended proposition has a truth value, although no stance is
taken to it in the apprehension. Judgments, as he sees it, take stances on truth
values, but propositions have them by themselves. Buridan, for his part, seems
to rely on similar considerations to show that the sentential complex at issue
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is not a proposition. He seems to have thought that sentences are able to carry
truth values through being asserted. We will return to this issue in connection
with molecular propositions.

For the most part, medieval logicians accepted the laws of noncontradiction
and the excluded middle. Thus, every proposition has one and only one truth
value. But neither of the two principles remained unchallenged. Aristotle’s
famous sea battle in De interpretatione chapter 9 was widely discussed and
within that debate it was also suggested that contingent propositions about
the future perhaps do not yet have a truth value. This did not become
the standard view. Similarly, in the widespread discussions concerning limit-
decision problems and particularly the instant of change, it was suggested
that perhaps contradictories are both true at the instant of change. Instead
of accepting this, the standard line was to provide elaborate analyses of
limit decision relying on mathematical considerations concerning infinitesimal
magnitudes.

As is well known, in the more philosophical discussions concerning the nature
of truth medieval logicians often put forward the principle of correspondence:
Truth is adaequatio rei et intellectus. This definition was not, however, much
used in the specific context of logic. There the term “truth” was mostly used
with the more limited meaning of propositional truth, and it proved difficult to
exemplify from the real world anything that corresponded to a propositional
complex. Thus, truth could hardly be explained as a relation between a real
thing and a proposition. In the Aristotelian approach, things are referred to
by using simple terms, and no simple expression—a mere term—can have a
truth value. Truth rather arises from “composition” or “division” of terms in a
predication, and depends on how this composition or division accords with how
things really are. In his Syncategoreumata, Peter of Spain gives an elaborate
suggestion that there is some kind of real composition, typically explicable
with reference to the way in which everything in the world is composed of
matter and form. According to Peter’s suggestion, the truth of a sentence
depends on whether this “real composition” is expressed adequately.

The standard Aristotelian dictum, “it is because the actual thing exists
or does not that the statement is called true or false” (Cat. 12; 14b21–22),
was not always understood in this manner. A typical way of explicating the
claim that a proposition is true was to say that it “signifies as it is” (significat
sicut est) or something to the same effect. By such formulas logicians tried to
avoid committing themselves to positing any real entity with which the true
proposition would have direct correspondence. Instead, the expression often
worked in a way analogous to what has lately been called “disquotational”:
allowing transformation of the claim “p is true” into the simple claim “p.”

Ockham’s Summa logicae (I, 43) contains an interesting discussion of in
what sense truth is predicated of a proposition. In his opinion, it is not a real
quality of the proposition. This can be proved by the fact that a proposition
may change from truth to falsity by fully external change. For example, when
something ceases to move, the truth value of the proposition “this thing
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is moving” changes without the proposition itself changing. According to
Ockham’s explanation, “true” is a connotative term signifying that things are
as the proposition signifies. However, this remark leaves open the issue of what
it is for things to be as the proposition signifies.

4.3. Are There Any Propositional Significates?
Stoic logic, and in its wake important early medieval authors like Boethius
and Peter Abelard, made a distinction between a declarative sentence and its
dictum, or that which “is said.” Thus, the dictum expresses, or it simply is,
the content of the proposition without being itself a proposition. For example,
the proposition “Socrates is seated” (Socrates sedet) says or puts forward
the dictum “that Socrates is seated,” which in Latin is typically expressed
as an accusative plus infinitive construction (Socratem sedere). Over the
centuries, many logicians discussed the status of the dictum. Also, the related
distinction between a proposition (as an expression) and its total significate
(in distinction from the separate significates of its constituents) became a topic
of an interesting dispute toward the second quarter of the fourteenth century.

In his early work, Commentary on the Sentences, Ockham puts forward
a theory according to which belief always concerns a proposition formulated
in mental language. That is, when a person assents to something, he has to
formulate a mental proposition expressing that which he assents to. He then
reflexively apprehends the proposition as a whole and assents to it. It seems
that Ockham’s motivation for this theory was the view that there is no way to
grasp propositional content apart from formulating a proposition in mental
language. Thus, if objects of beliefs are true or false, they must be formulated
in mental language.

Several contemporaries of Ockham did not straightforwardly accept the
idea that the object of belief must always be an actually formulated proposi-
tion. Even Ockham himself shows some hesitation toward this theory in his
Quodlibetal questions, which he composed later. It seemed to many authors
that when one believes, for example, that God exists or that a man is running,
the object of belief is somehow out in the world and not merely a proposition
in the mind. The idea is that people do not always believe in sentences, but at
least sometimes it should rather be said that they believe things to exist in a
certain way. This consideration made medieval logicians search for something
like propositional content outside the mind and a number of different theories
of how it could be found emerged.

In Walter Chatton’s theory, the object of the assent has to be some ex-
tramental thing. If you believe that a man is running, the object of your
belief is the man at issue. Thus, the significate of the proposition “a man is
running” is the man. Chatton recognized that his theory has the problematic
consequence that the simple term “a man” and the propositional complex “a
man is running” signify the same thing. As Chatton saw it, the difference in
these two expressions is not in what they signify but in how they signify it.
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The terminology he used in this connection refers back to modist grammatical
theories.

It seems that both Ockham and a younger contemporary, Adam Wodeham,
reacted against Chatton’s theory. In his Quodlibetal disputations, Ockham
makes a further distinction concerning propositional assent, in effect allowing
it to be the case that you give assent without reflexively considering a mental
proposition. In such a case, you simply form the proposition and give your
assent in an unreflective way as connected to rather than directed at the
mental proposition. As Ockham curiously points out, this kind of assent is not
at issue in scientific knowledge, only in beliefs of ordinary life. According to
Ockham’s obscure remarks, nothing is the object of this kind of assent.

Wodeham seems to have continued from this basis in his theorizing. He
wanted, though, to allow that even the nonreflective kind of assent is about
something, and the significate of the proposition appeared to be a suitable
candidate for an object. However, its metaphysical status seemed quite unclear
to the medieval mind. According to Wodeham, the significates of propositions
need to be categorically different from the significates of the terms. As he
put it, propositions do, of course, signify the things signified by their terms,
but no thing or combination of things is the adequate total significate of the
propositional complex. The adequate significates of propositions are such that
they can only be signified by propositions; even further, they do not belong to
any of the Aristotelian categories nor can they be called things.

Wodeham’s theory became known as a theory endorsing “complex signifi-
ables” (complexa significabilia). Such entities were rejected by most subsequent
logicians, including major figures like John Buridan, but accepted by some,
most famously by Gregory of Rimini—in subsequent discussion, the theory
became known as his theory. In the third quarter of the fourteenth century,
discussion of what propositions signify was abundant. Is it something like a
mode of being? Or just a mental act of composition? Do propositions in fact
signify anything more than just the things denoted by the terms, or perhaps
even just the thing denoted by the subject?

The fourteenth-century discussion concerning complex signifiables seems to
have made it clear to late medieval logicians that their logic was based on a
metaphysical view of the world as consisting of things and not of states of affairs.
The constituents of the world could be referred to by terms, but to make claims
about the world, a different kind of mental act was needed. Paradigmatically,
one had to construct a complex expression asserting a composition of multiple
entities.

4.4. Predication
In Aristotelian logic, the ground for all judgments is laid by the predicative
structure, where two terms are either joined or disjoined as the subject and
the predicate. After Boethius, it remained customary in the Middle Ages to
treat affirmative predication and negative predication as two different kinds
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of statement, and also to take negation simply as “destroying the force of
the affirmation.” Thus, it is not necessary here to treat negative predication
distinctly from the basic affirmative case.

The affirmative predication consists, as already Boethius recognized, not
only of the two terms but also of the copula. Thus, when Aristotle remarks
that a predication can be constructed either with a verb (e.g., “a man runs,”
homo currit) or with a participle (e.g., “a man is running,” homo currens est),
this was normally interpreted as meaning that the latter form is to be taken
as primary. In the latter, the copula “is” was said to be added as a third part
(tertium adiacens). In Latin, the copula was of course the standard verb “to
be” (esse), which was also used in the simple existential claim “a man exists”
(homo est). This use of est as secundum adiacens had to be explained since
it appeared to lack either the copula or the predicate. As Boethius saw it,
the verb serves here a double role. This solution was accepted in the Middle
Ages, and thus there was no need to see it as an altogether different kind
of statement. Buridan even argued against ordinary linguistic practice that
logically one should prefer the formulation “a man is a being” (homo est
ens).

Given that the copula joins the two terms into a predicative proposition and
gives the sentence its assertive character, it still remains unclear exactly how it
joins the terms together. It seems that this was one of the most fundamental
points of disagreement among medieval logicians. For modern scholars it has
proved rather difficult to find a satisfactory description of how the simple
predication was understood in the Middle Ages.

One crucial nontrivial issue seemed clear, though. Throughout the Middle
Ages, it was commonly assumed that in the absence of specific contrary
reasons, the verb “to be” even as the copula retains its signification of being.
Thus, all affirmative predications carry some kind of existential force, while
negative predications do not. In an affirmation, something is affirmed to exist;
a negation contains no such affirmation of existence. But beyond this simple
issue, interpretations of the nature of predication seem to diverge widely.

Most of the twentieth century discussions of the exact content of the different
medieval theories of predication have been based on the Fregean distinction
between the different senses of “to be.” Scholars have distinguished between
inherence theories and identity theories of predication, despite the evident
threat of anachronism in such a strategy. For want of a better strategy, we also
have to rely on that distinction here. But instead of trying to classify authors
into these two classes, let us simply look at the motivations behind these two
rather different ways of accounting for what happens in a predication.

The idea of the inherence theory is that the subject and the predicate
have crucially different functions in the predication. While the function of
the subject is to signify or pick out that which is spoken of, the function of
the predicate is to express what is being claimed of that thing. The idea is,
then, that the Aristotelian form signified by the predicate inheres in the thing
signified by the subject. Peter of Spain seems to defend this kind of theory
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of predication when he tries to show that the copula signifies that relation of
inherence obtaining between matter and form, or between a subject and its
accident. Aquinas seems to follow this account.

Scholars have disagreed about Abelard’s theory, and it indeed seems that
his rich discussion of the topic provided grounds for several kinds of different
subsequent theories. On the one hand, he seems to lay the basis for the
inherence theory. On the other, he defends the idea that to look at the exact
truth conditions of a predication like “a man is white” (homo albus est), it
should be analyzed into a fuller form “that which is a man is that which
is white” (idem quod est homo est id quod album est; Logica ingredientibus
60.13). With such a formulation he seems to have in mind the idea that for
the affirmative predication to be true, the subject and the predicate must
refer to the same things. This is commonly called the identity theory of
predication.

Abelard’s “that which is” (quod est) formulation remained part of the actual
practice of logical writing for several centuries. It can be found commonly
from logical texts throughout the Middle Ages, although it was not always
offered as an explanation of the truth conditions of predication in general. The
formulation has the special feature that it appears to give the subject and
the predicate of a predication a similar reading. Both are to be understood as
referring to some thing, and then the assertion put forward in the proposition
would be the identity of these two things. This seems to amount to the identity
theory of predication in Fregean terms.

In the fourteenth century, both Ockham and Buridan seem to have quite
straightforwardly defended the idea that the Aristotelian syllogistic is based
on identity predications. As they put it, the simple predication “A is B” is
true if and only if A and B supposit for the same thing. For the most part,
truth conditions of different kinds of propositions can be derived from this
principle.

Somewhat interestingly, Ockham nevertheless recognizes the need of basic
propositions expressing relations of inherence. For Ockham, the predicate
“white” is a so-called connotative term, and therefore a somewhat special
case. According to his analysis, the predication “Socrates is white” (Sortes est
albus) should be analyzed into “Socrates exists and whiteness is in Socrates”
(Sortes est et Sorti inest albedo). In his metaphysical picture, Ockham allows
both substances and qualities to be real things, and if one is allowed to use
only so-called absolute terms that supposit in a sentence only those things
which they signify, the relation of inherence (inesse) is not expressible with an
identity predication. Qualities inhere in substances, but they are not identical
with substances. The whiteness at issue in the claim “Socrates is white” is not
Socrates, it is a quality inhering in Socrates. Socrates is not whiteness even if
he is white.

In his Summa logicae, Ockham has some special chapters on propositions
involving terms in oblique cases (in cases other than the nominative). The
just-mentioned proposition “whiteness is in Socrates” is a paradigm case of
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such a proposition (in Latin, the subject has to be in the dative case Sorti; in
English, the effect of the case is represented with the preposition “in”). Fur-
thermore, all propositions involving the terms that Ockham calls “connotative”
require in their logical analysis that oblique cases are used. The main claim
of the short chapters of Summa logicae addressing propositions containing
such terms is that their truth conditions cannot be given by the simple rule of
thumb that the subject and the predicate must supposit for the same thing
in an affirmative sentence. Consequently, the rules for syllogisms formulated
with such propositions are also abnormal. In effect, Ockham excludes proposi-
tions with oblique terms from the ordinary syllogistic system, thus leaving a
surprising gap in his logical system.

In his logic, Buridan proceeds differently. For the purposes of the syllogistic
system, he requires that all propositions should be analyzed into a form where
truth conditions can be given through variations of the rule that in affirmative
sentences the subject and the predicate supposit for the same thing. This
allows him to apply the standard syllogistic system to all propositions. The
solution is at the price of greater semantic complexity. Buridan has to allow
so-called connotative terms (including, e.g., many quality terms like “white”)
as logically simple terms despite their semantic complexity.

Both Ockham and Buridan apparently thought that identity predication
is the logically privileged kind of predication. Nevertheless, they also both
accepted the Aristotelian substance-accident ontology to such an extent that
they had to find ways of expressing the special relation of inherence. While
Ockham allowed exceptions to the syllogistic through irreducible propositions
expressing inherence, Buridan opted for a syllogistic system with obviously
complex terms expressing inherential structures.

4.5. Negations
As the medieval logicians saw it, the simple predication “A is B” contains
altogether four different places where a negation can be posited:

1. It is not the case that A is B.

2. A is not B.

3. Not-A is B.

4. A is not-B.

It is of course clear that 1 is closest to the negation used in twentieth-century
logic. In it, the negation is taken to deny the whole proposition. According to
Boethius’s commonly accepted formulation, the force (vis) of the predication
is in the copula, and hence denying the copula denies the whole proposition.
Thus, the negation in 2 has the same effect as in 1. (As Buridan notes, for
quantifiers and other modifiers, the location of the negation may still make a
difference.)
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2 is the standard negation of medieval logic. It is the direct contradictory of
the corresponding affirmative predication. In particular, it is noteworthy that
this negation does not carry any existential presuppositions. Thus, “a chimera
is not an animal” is true simply because no chimeras exist.

3 and 4 are affirmative statements containing an infinite term, as terms
of the type “not-A” were called. In these cases, the negation is connected
directly to a term and not to a proposition. An infinite term was taken to
refer to those things to which the term itself does not refer. Thus, not-man
refers to anything that is not a man. Because these negations do not make the
proposition negative, 3 and 4 carry existential content: Some B must exist for
3 to be true, and some A for 4 to be true.

Although the syntactic idea of attaching a negation to a term was universally
accepted in the Middle Ages, logicians seem to have disagreed about whether
the term-negation should be taken to be essentially the same negation as the
propositional one but in a different use. In his Syncategoreumata, Peter of
Spain seems to reject this idea. He presents the two negations as genuinely
different in themselves. His discussion is connected to a theory where even
simple names and verbs signify in a composite sense. Thus, the idea is that
“man,” for example, means a composition of a substance with a quality, a
substance having the quality of being human. Thus, the infinite term “not-man”
signifies a substance that has not entered into a composition with the quality
of being human. Ockham, for his part, preferred to reduce negating a term
to ordinary propositional negation, claiming that the meaning of “not-man”
can be explained as “something which is not a man.” Buridan allows infinite
terms a significant role in his syllogistic system, and thus seems to go back to
thinking that the negation involved in them is fundamentally distinct from
that which he calls “negating negation”—that is, the propositional negation
that has power over the copula.

Given that negations can be put in many places even in a simple predication,
medieval logicians gained skill in handling combinations of different negations.
The idea that two negations cancel each other (provided that they are of the
same type and scope) was also well known.

4.6. Quantifiers
Aristotelian predications typically have so-called quantity. Medieval logic com-
monly distinguished between universal (“every A is B”), particular (“some A
is B”) and indefinite propositions (“A is B”). As Boethius already pointed
out, the indefinite predication that lacks any quantifier is equivalent to the
particular one. Some logicians did specify certain uses that violate this rule
of thumb, but such exceptions are rare. In addition to quantified and indefi-
nite predications, singular predications were also discussed (e.g., “Socrates is
running”). They had a subject term that was a proper name or some suitable
demonstrative pronoun.
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Basic quantified predications were given vowel symbols as mnemonic labels
from the first two vowels of the Latin verbs “affirm” (affirmo) and “deny”
(nego). Thus, the universal affirmative was shortened as AaB, where A is
the subject and B the predicate. Similarly, the particular affirmative was
AiB, the universal negative AeB and the particular negative AoB. These four
predications were further organized into the so-called square of opposition to
show their interrelations.

AeBAaB

AiB AoB

The upper two, the universal affirmative and the universal negative, were
called contraries; they cannot be true simultaneously, but could both turn
out to be false. Similarly, the particular affirmative and particular negative
were subcontraries; they cannot be false simultaneously, but both could turn
out true. The relation between the universal and the particular was called
subalternation on both sides; the particular follows from the universal but not
vice versa. The propositions in the opposite corners were called contradictories,
since one of them had to be true and the other false.

In the Middle Ages, a substantial amount of ink was used discussing whether
a universal affirmative could be true when only one thing of the relevant kind
exists. The paradigm example was “every phoenix exists,” and many logicians
rejected it with the requirement that there must be at least three individuals
to justify the use of “every.” Toward the end of the thirteenth century this
discussion seems to disappear, apparently in favor of the view that one referent
is enough; the existential presupposition was never dropped, however.

Another issue of detail that was also widely discussed later was the case of
universal predications of natural sciences, which capture some invariable that
does not appear to be dependent on the actual existence of the individuals
at issue. A suitable example is “every eclipse of the moon is caused by the
shadow of the Earth.” According to a strict interpretation of the existential
presupposition, such predications prove false most of the time—which seems
somewhat inconvenient. Two fundamentally different suggestions for a better
reading of the predication were put forward. Ockham seems to favor the idea
that what really is at issue here is the conditional proposition “if the moon
is eclipsed, the eclipse is caused by the shadow of the Earth.” This solution
draws on the traditionally recognized idea that the conditional is implied
by the universal affirmation. However, Buridan opted for another solution.
As he reads the universal affirmation at issue, its verb should be read in a
nontemporal sense. In such a reading, past and future eclipses also provide
instances satisfying the diluted existential presupposition.
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4.7. Complex Terms

Medieval logicians allowed that not all terms of a predication are simple. A
predication can, of course, always be divided into the subject and the predicate
together with the copula and the appropriate quantitative, qualitative, and
modal modifiers. But the two terms may possibly be further analyzable (e.g.,
“a just man is talking,” where the subject “just man” consists of two parts),
and indeed this was a topic that attracted much attention during the Middle
Ages. Toward the middle of the fourteenth century, discussion on this topic
resulted in a detailed theory on the interaction between different kinds of
combinations of categorematic and syncategorematic elements that can be
found in a predication. To tackle with issues of scope an elaborate system of
word order rules was introduced for the technical Latin used by logicians.

It seems that thirteenth-century logicians did not take it to be a serious
problem that complex predications do not behave in ways that suit the needs of
syllogistics. Following Aristotle’s remark (Analytica priora I, 36; 48b41–49a5),
syllogisms with oblique terms in the various cases were usually discussed
separately, and thus it seems that the thirteenth-century logicians probably
thought that more complicated predications do not necessarily fit into the
ordinary syllogism. As we already noted, Ockham makes this slight inconve-
nience clear in his Summa logicae. It seems that Ockham fully understood
that the traditional syllogistic logic does not always work if actually used
linguistic structures are given full logical analyses. Also, he explicitly allows
that there is no general way of giving the truth conditions of the various
kinds of complex predications; in particular, he points out that even as simple
a construction as the genitive case makes the standard truth conditions of
identity predications inapplicable. “The donkey is Socrates’s” is an affirmative
predication. However, its truth requires, but it is not sufficient for it, that the
subject and predicate supposit for different things (“donkey” for a domestic
animal owned by a person, and “Socrates” for the owner of the animal). More
generally, Ockham thought that mere identity predications are not sufficient
to explain the expressive power of the actually used language. A richer variety
of propositions had to be accounted for, but in fact they found no place in
syllogistic logic. Thus, syllogistic logic was not a complete system covering all
valid inferences.

After Ockham, Buridan took another approach. As he saw it, all categorical
propositions can be reformulated as straightforward Aristotelian predications
fitting the needs of the ordinary syllogism and having the rule of identity or
nonidentity of supposition as the criterion of truth. For this purpose, he had
to modify the traditional systems of combining different categorematic and
syncategorematic elements so that they appear as geared toward building up
terms whose suppositions can be decided. Perhaps most important, he saw
that he could not assume that standard Aristotelian predications would be
found as the end results of logicolinguistic analysis. Rather, he understood the
building blocks of the syllogistic system—identity predications—to be more
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or less artificial constructions built from complex terms. For example, for the
purposes of syllogistic logic the sentence “the donkey is Socrates’s” must be
read as “the donkey is Socrates’s thing,” although the predicate “Socrates’s
thing” clearly is not a simple term of the ideal mental language.

Buridan did not assume that all mental or spoken propositions would be
identity predications. Rather, he assumed that for the purposes of syllogis-
tic logic, any proposition could be transformed into an equivalent identity
predication. By such means, syllogistic logic could serve as a complete system
containing all inferences.

Buridan’s strategy involved, therefore, a massive expansion of the syllogistic
system toward incorporating increasingly complex terms. Whereas logicians up
to Ockham had accepted that a wide variety of propositions are nonstandard
from the viewpoint of syllogistic logic, Buridan builds rules on how the content
of these nonstandard propositions can be expressed by standard structures
involving very complex terms. Buridan provides elaborate rules concerning
complex terms. The idea is to show how nouns and verbs interact with different
syncategorematic expressions and produce terms that fit into standard Aris-
totelian predications. In Buridan’s view, all propositions can be transformed so
that the truth conditions can be expressed through the criteria of an identity
predication. In affirmative sentences, the terms must supposit for the same
thing, while in negative sentences, they must not supposit for the same thing.

To see the full strength of Buridan’s new system, let us consider a some-
what more complicated example. Buridan analyzes “Each man’s donkey runs”
(cuiuslibet hominis asinus currit) in a new way. Traditionally, this Aristotelian
sentence was understood as a universal affirmation consisting of the subject
“man” in the genitive case, and a complex predicate. This analysis makes the
subject supposit for men, and the predicate for running donkeys so that the
assertion cannot be read as an identity predication. Thus, standard syllogistics
are not applicable to a proposition like this. Most logicians up to and includ-
ing Ockham seem to have been satisfied with the implied limitations of the
syllogistic system. Buridan, however, analyzes the proposition as an indefinite
affirmation. It has a complex subject “each man’s donkey,” which includes two
simple categorematic terms (“man,” “donkey”), a marker for the genitive case
(the genitive ending “’s”), and a quantifier (the universal sign “each”). The
quantifier does not make the proposition universal, because it has only a part
of the subject in its scope and must therefore be understood as internal to the
subject term. As a whole, the subject supposits for sets of donkeys such that
each man owns at least one of the donkeys in the set. The predicate of the
proposition is a simple term, “running.” It supposits for sets of running things.
Construed in this way, the predication can be evaluated with the standard
criteria of truth, and standard syllogistics can be applied to it.

It seems clear that Buridan took seriously the programmatic idea that the
Aristotelian syllogistic system should provide a universal logical tool which
did not allow major exceptions to behave in nonstandard ways. But instead of
analyzing complex propositions into combinations of predications with simple
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terms, Buridan provides elaborate rules concerning the ways in which complex
terms are built.

4.8. Hypothetical Propositions
In the Middle Ages, not only conditionals but also conjunctions and dis-
junctions were called hypothetical (hypothetica) propositions. Otherwise the
treatment of conditionals and disjunctions causes no surprises to a modern
reader familiar with basic propositional logic. Walter Burley, for example,
gives the following account. Conjunctions are propositions consisting of two
further propositions that are joined with the conjunction “and” or something
equivalent. Their truth conditions require that the propositions thus joined
are true. Negating a conjunction makes reference to another type of hypo-
thetical, namely disjunction, because denial of a conjunction requires only
that one or the other of the conjuncts is denied. Disjunction, for its part,
is defined in the inclusive manner: Its truth conditions require that one of
the parts is or both of them are true. Denial of a disjunction produces a
conjunction, and as Burley notes, denial of a disjunction of contradictories
(e.g., “Socrates runs or Socrates does not run”) produces a conjunction which
includes contradictories.

Certain interesting issues are raised in more detailed discussions of conjunc-
tive and disjunctive propositions. One such is the nature and exact content of
conjunctive and disjunctive terms used in propositions like “every man runs
or walks.” Are they reducible to conjunctive and disjunctive propositions and
why not exactly? How ought they be accounted for in inferential connections?
Another, more philosophical issue was the question of whether the parts of
conjunctions and disjunctions are strictly speaking propositions. As Buridan
notes, the “force of the proposition” (vis propositionis) in a disjunction is in
the connective, and thus not in either of the disjuncts. Hence, it is only the
whole and not the parts that carry truth value in the composition. When
someone utters a disjunctive proposition consisting of contradictories, he does
not, according to Buridan, say anything false, although one of the parts would
be false if uttered as a proposition. Thus, hypothetical propositions do not,
strictly speaking, consist of categorical propositions but of linguistic structures
exactly like categorical propositions.

It seems that medieval logicians treated conjunctions and disjunctions
in a straightforwardly truth-functional manner. It seems equally clear that
their treatment of conditionals differs from the twentieth-century theory of
material implication. Indeed, in the Middle Ages theory of conditionals was
mainly developed in connection with a general theory of inference, under the
label “consequences.” Conditionals were taken to express claims concerning
relationships of inferential type.

Medieval logicians also distinguished further types of hypothetical propo-
sitions. In Buridan’s discussion (1.7), altogether six kinds of hypothetical
propositions are accounted for, including conditional, conjunctive, disjunctive,
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causal (“because the sun shines above the Earth, it is daytime”), temporal
(“Socrates runs when Plato disputes”), and local ones (“Socrates runs to
where Plato disputes”). Buridan even vaguely suggests that perhaps other
Aristotelian categories may also give rise to hypothetical propositions in a way
similar to temporal and local hypotheticals. It is clear that this approach to
hypothetical propositions relies on other ways of combining propositions than
just the truth-functional ones. The connective may express something more
than just a truth function.

4.9. Modal Operators
Logical issues connected to possibility and necessity, which in the twentieth
century have been studied as alethic modal logic, were a central research topic
in late medieval logic. These modal terms were usually discussed together with
other modifiers operating in similar syntactic roles. For example, the twentieth-
century fields of study known as deontic logic (dealing with permissibility and
obligation) and epistemic logic (dealing with concepts of knowledge and belief)
have their counterparts in the Middle Ages, where these issues were discussed
together with possibility and necessity.

Most medieval logicians discussed altogether four modal operators crucial
to modern alethic modal logic: possibility, impossibility, contingency, and
necessity. These were defined in relation to each other so that the necessary
was usually taken to be possible but not contingent, whereas the impossible
was taken to be neither possible nor contingent. Like the square of opposition
of simple predications, modal predications were often organized into a square
of modal opposition following Aristotle’s presentation in De interpretatione
(ch. 13). It is particularly noteworthy that following Aristotle’s model, the
square of modal opposition typically contained just the modal operators, not
complete sentences. In a somewhat schematized way, the basic square can be
illustrated as follows:

N¬
¬M

N
¬M¬

¬N¬
M

¬N
M¬

In this square, the relations of contrariety, subcontrariety, subalternation, and
contradiction were said to behave as they would in the basic square of simple
predications.

Following Aristotle, medieval logicians made a distinction between two
ways of understanding a modal predication to make sense of examples like the
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possibility that someone sitting walks. Understood de dicto, there is no such
possibility. The sentence “someone sitting walks” is impossible. But understood
de re, there is such a possibility, since the person who is sitting may be able
to walk. Thus, if the modal predicate “can walk” is understood de re, or as
concerning the person who is actually sitting now, the sentence might be
true. All subsequent major logicians discussed this distinction in some form
or other.

In the sections concerning modal propositions in Ockham’s Summa logicae,
it is clear that the de dicto reading is given logical priority. Using another
traditional terminology, Ockham prefers to call it the composite sense (sensu
composito) and does not oppose it to a de re reading but to the roughly similar
divided sense (sensu diviso). Ockham apparently thinks that modality is a
property of propositions rather than terms, and aims at reducing readings
sensu diviso to sensu composito through analyzing modal propositions in sensu
diviso into propositions sensu composito.

There are three main models by which modern scholars have been able to
account for the way in which medieval logicians understood what it means to
say that something is possible: the statistical model, the potency model, and
the consistency model. During the medieval period, the modal concepts used
by particular logicians typically ought not to be explained through reference to
a single model. Rather, these three different strands of thought have influenced
to varying degrees the modal thinking of different medieval logicians.

The basic intuition explained by the statistical model is that all and only
those things seem to be possible which sometimes occur. If something never
happens, it means that it can’t happen. The potency model, for its part,
explains the intuition that whether something is possible depends on whether
it can be done. For something to be possible it is required that some agent has
the potency to realize it, though it is not required that the thing is actually
realized. However, because normally there are no generic potencies that remain
eternally unrealized (why should we say that humans can laugh if no one ever
did?), this model becomes clearly distinct from the statistical model only when
God’s omnipotence is understood to reach wider than just actual reality. God
could have created things or even kinds of things which he never did, and
these things remain therefore eternally unrealized possibilities.

It seems that throughout the Middle Ages, God’s omnipotence was thought
to be limited only by the law of noncontradiction. Contradictions are not
real things, and therefore God’s power is not limited, although we can say
that he cannot realize contradictions. This consideration seems to have been
one of the reasons why logicians in the thirteenth century increasingly used
the criterion of consistency to judge claims about possibility. But it seems
that the development of syntactic logical techniques also made it natural to
demarcate a class of propositions that are impossible in the traditional sense
but nevertheless seem to involve no contradiction (e.g., that man is irrational,
or that man is not an animal). Especially the traditional technique of laying
down a false or even impossible thesis for an obligational disputation (see the
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following) seems to have encouraged consideration of consistent propositions
or sets of propositions that are in some sense impossible. Some authors, like
Boethius of Dacia, even use the special expression compossibilitas to refer
to this kind of concept of consistency as distinct from possibility. As is well
known, from Duns Scotus onward, several logicians made this kind of concept
of consistency crucial for possibility in general.

The medieval discussion can be characterized as aiming at finding a way
to account for these rather distinct intuitions of what it means to say that
something is possible. A certain shift in emphasis is visible. Whereas earlier
authors pay more attention to the statistical idea at the expense of con-
sistency, later authors tend to neglect or argue against intuitions captured
in the statistical model while emphasizing consistency as the criterion of
possibility.

5. Classical Forms of Inference
5.1. Syllogisms

We must next turn to the “theory of inference.” Ignoring probable inferences for
now, we can say that this part of logic tries to describe how some propositions
necessarily follow from others, from their premises. The propositions of a
certain sequence have such properties that the last one must follow necessarily
from its predecessors. An important type of inference is the syllogism—the
inference on which Aristotle concentrated in his Prior Analytics.

The syllogism was the best-known and paradigmatic type of inference
throughout the Middle Ages. In the thirteenth century, when logicians studied
demonstrative inference, they were almost exclusively concerned with syllo-
gistics; but afterward, when a more general inference theory developed, the
policies of various authors differed widely. Thus Ockham still devotes the
main part of his inference theory to a detailed analysis of syllogistics, and
so does Buridan, whereas Burley regards it as a well-known special case of
the more interesting subject of inference in general. The syllogism is probably
the most famous item of “traditional” logic, but actually it has a not very
dominant place in the works of medieval logicians. (For instance, in the Logica
magna of Paul of Venice it is the subject of only one of 38 treatises.) However,
it is systematically and historically so important that we must discuss it in
relatively more detail.

All authors start by presenting or elaborating the highly condensed defini-
tions in the beginning of the Prior Analytics. The often-quoted characterization
in An. Pr. 24b19–20 says: “A syllogism is a discourse (oratio) in which, certain
things having been supposed, something different results of necessity because
these things are so.” In a broad sense, any formally valid inference could be
called a syllogism. But in the stricter sense, a syllogism has precisely two
“things supposed,” two premises. There has been quite a lot of discussion on
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whether Aristotelian syllogisms are better understood as conditionals (“if p
and q then r”) or as deductive inferences (“p, q; therefore r”). The latter
interpretation is perhaps more popular nowadays, and apparently it is also
the correct way to see medieval syllogistics, at least in its classical stage.
(Obviously the two things have a systematic correspondence, the relation that
we nowadays call the deduction theorem, and many medieval authors were
fully aware of it.) This means that syllogisms are like natural deductions of
present-day logic.

Though medieval syllogistics followed Aristotle closely, there were some
formal differences. Thus Aristotle—for special reasons—had formulated his
syllogistic propositions as “Y belongs to X,” “mortal belongs to man.” This
manner was never adopted in Latin; the medieval logicians wrote just “X is
Y ,” “man is mortal.”

Aristotle himself had brought the theory of nonmodal syllogistics to such
perfection that there was little room left for initiative or disagreement. However,
medieval texts produced a more systematic form for the theory, obviously
aiming at didactic clarity.

A syllogism consists of two premises and one conclusion; the first premise is
called major, and the second premise minor. Each proposition has two terms,
a subject and a predicate, connected by a copula. But the two premises have
a term in common, the so-called medium, and the terms of the conclusion are
identical with the two other terms of the premises. Syllogisms can then be
classified according to their configuration Subj–Pred into four different figures
as follows:

I II III IV

major M–B B–M M–B B–M
minor A–M A–M M–A M–A

Further, each syllogistic proposition belongs to its type a, e, i, or o because
of its quality and quantity: They are affirmative or negative, universal or
particular. If we proceed by defining that the conclusion must always have the
structure A–B, then it is obvious that each figure includes 43 = 64 alternative
combinations, and the total number is 256. But this is not exactly the classical
method, so let us have an overview of the syllogism as it was usually presented.

Medieval logicians have a full and standard apparatus for syllogistics as
early as the first terminist phase. They list the same valid syllogisms, usually
in the same order, and also call them by the same names. The textbooks of
William of Sherwood and Peter of Spain supply these names, which stem from
some unknown earlier source and even the famous mnemonic verse composed
on them. The names have three syllables, one for each sentence, containing
the logical vowels a, e, i, and o. (In the following list of syllogisms, we mention
these names that have recurred in all later logic.) The valid syllogisms were
known as moods.
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The first figure includes the four famous syllogisms from which Aristotle
starts:

every M is B, every A is M , therefore every A is B (Barbara)

no M is B, every A is M , therefore no A is B (Celarent)
every M is B, some A is M , therefore some A is B (Darii)
no M is B, some A is M , therefore some A is not B (Ferio)

The second figure has four moods:

no B is M , every A is M , therefore no A is B (Cesare)

every B is M , no A is M , therefore no A is B (Camestres)

no B is M , some A is M , therefore some A is not B (Festino)

every B is M , some A is not M , therefore some A is not B (Baroco)

Furthermore, the third figure contains six moods:

every M is B, every M is A, therefore some A is B (Darapti)
no M is B, every M is A, therefore some A is not B (Felapton)

some M is B, every M is A, therefore some A is B (Disamis)

every M is B, some M is A, therefore some A is B (Datisi)
some M is not B, every M is A, therefore some A is not B (Bocardo)

no M is B, some M is A, therefore some A is not B (Ferison)

After the Renaissance, logicians continue by giving the five moods of the fourth
figure: Bramantip, Camenes, Dimaris, Fesapo, and Fresison. That, however,
is not the orthodox Aristotelian way. Aristotle knew inferences like these but
did not include a fourth figure in his theory. Instead, he wanted to place these
syllogisms into the first figure. Following his remarks, Theophrastus developed
a clear account of the matter, and it was well known in the Middle Ages
through Boethius. In Theophrastus’s account, the major term need not be the
predicate in the conclusion, which can also have the inverted order B–A. This
gives us the five so-called indirect moods of the first figure:

every M is B, every A is M , therefore some B is A (Baralipton)

no M is B, every A is M , therefore no B is A (Celantes)

every M is B, some A is M , therefore some B is A (Dabitis)

every M is B, no A is M , therefore some B is not A (Fapesmo)

some M is B, no A is M , therefore some B is not A (Frisesomorum)

This method can replace the fourth figure, though it does introduce a certain
unsatisfactory asymmetry.
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The problem of the missing figure has caused much scholarly debate that we
cannot enter into here. Medieval logicians were quite aware of the problem since
they had seen at least Averroes’s comments on the fourth figure. Arguments
were often given to refute “objections” questioning the sufficiency of three
figures. Apparently medieval authors were unanimous in thinking that the
fourth figure could be eliminated with the indirect moods of the first figure.
They either said that there were only three figures, or more precisely, like
Albert of Saxony, that the fourth is superfluous. It is noteworthy that they
did not regard the order of premises as essential.

Thus there are 19 valid syllogistic moods. A small addition was obtained
by allowing the five “subaltern” moods, which yield a particular conclusion
though a universal one would be valid too. For example, Barbari instead of
Barbara leads to “some A is B.” This step would not be accepted in modern
logic where universal implications have no existential import, and it indicates
clearly that medieval syllogistics assumed that every term really had existential
reference.

Aristotle had only implicit allusions to singular propositions in syllogisms,
and it was a good achievement that medieval logicians constructed a full and
systematic theory of singular syllogisms. Ockham was the most active worker
here. He emphasizes that the singularity of terms makes no difference for
the validity of inference. This amounts to a considerable reinterpretation of
the whole notion of a propositional term. Moreover, he gives explicit cases of
singular syllogisms in each figure, for example, the third figure “expository
syllogisms” like “x is B, x is A, therefore some A is B.” (For nominalists
like him, the question had special epistemological relevance because of the
basic status of truths about individuals.) Some later Ockhamists even drew
a dichotomy across the whole syllogistics between expository syllogisms and
those with general mediums.

5.2. Theory of Syllogistics
Syllogistics, undoubtedly, is just a small portion of logical inferences, but
systematically it is extremely important. The unique thing in classical syl-
logistics is that it was a formal theory. Its results are not separate truths
achieved by trial and error; instead, they are derived in a deductive manner.
This had largely been achieved already in the Prior Analytics and contin-
ued by ancient commentators. Medieval logicians were very interested in this
project.

The most important tool here is conversion. It is a completely general
method that pertains to all propositions of the S–P form, but it finds good
use in syllogistic theory. Briefly, in a conversion the subject and the predicate
change places, and conversion rules tell when such a transposition is legitimate.
The following set of (nonmodal) conversion rules was universally accepted.
First, in simple conversion AeB converts with BeA, and AiB converts with
BiA. In other words,
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some A is B if and only if some B is A, and

no A is B if and only if no B is A.

Second, in conversion per accidens AaB implies BiA, and AeB implies BoA
(this negative one is the only rule that was not in Aristotle):

if every A is B then some B is A, and

if no A is B, then some B is not A.

These are only per accidens, because they change the quantity and do not hold
in the opposite direction. Third, ever since Boethius even contraposition was
taken as a type of conversion. It preserves the quality and quantity but “changes
the finite terms into infinite ones.” For example, “if every A is B then every non-
B is non-A.” Fourteenth-century logicians noticed that contraposition need not
be valid when any of the terms is empty—an existential assumption is required.

With conversions, some syllogistic moods can be derived from others. The
idea is that if certain syllogisms are selected as basic, others can be derived
from them by a clever use of fixed methods. Aristotelians called this process
“reduction,” present-day logicians would call it proof. Conversion was the most
important method of reduction. The other method was reductio ad impossibile:
A mood is valid because the negation of the conclusion leads to the negation of
a premise. With these methods, all syllogistic moods could be reduced to the
direct moods of the first figure—in fact even further, to Barbara and Celarent.
This was basic stuff in all textbooks, and the consonants in the names of
moods refer to the methods of reduction. (S: convert simply; P: convert per
accidens; M: transpose the premises; C: reduce ad impossibile.)

These privileged syllogisms are cases of dici de omni et nullo, in which
the conclusions can be seen as immediate corollaries of simple affirmation or
negation. As Buridan explains, “dici de omni applies when nothing is taken
under the subject of which the predicate is not predicated, as in ‘Every man
runs’. Dici de nullo applies when nothing is taken under the subject of which
the predicate is not denied.” So direct first figure syllogisms are immediately
self-evident, and medieval logicians, like Aristotle, called them “perfect.” Others
are imperfect in the sense that their validity needs to be shown.

The growth of syllogistic theory naturally leads to the philosophical question
of its foundations. Such a problem can arise from two perspectives: One may
wonder about the status of syllogistics in the totality of logic, or one may ask
if particular syllogistic inferences depend on some other principles.

a. The question about the general status of syllogistics became current
when the theory of consequence developed in the beginning of the fourteenth
century (see section 6). Aristotle had started from syllogisms and proceeded to
a brief discussion of other inferences; now logicians took the opposite direction.
In the thirteenth century, some logicians’ attitude seems to be that all strict
demonstrative logic is syllogistical, but the more people were concerned with
logical research, the clearer it became that other inferences are valid, too; and
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this was then explicated by means of the concept of consequence. However, the
relation between syllogistics and consequences is not very clear. Syllogistics
is a part of consequence theory, in the sense that one particular type of
consequences are “syllogistic consequences.” (This is especially clearly said
by Buridan, whereas Ockham prefers to keep the titles unconnected.) And
syllogisms hold because they are good or solid consequences, in our words,
logically valid ones. But does syllogistics depend somehow on other parts
of the theory? It seems that medieval logicians did not think so. They were
aware of the importance of propositional logic—after all, the Stoic heritage had
survived—but they did not work in the present-day fashion and build first a
propositional calculus, then a predicate logic on it. Burley is an interesting case
here: He really starts from the simple consequences of propositional logic. But
he had no followers in this respect, and contrary to what has been suggested,
even he does not apparently aim at any stratification of logics here.

b. More concretely, one might ask if the validity of a particular syllogistic
mood is based on some principles, or if a syllogism involves the use of other
logical laws. This problem does not appear in terminist manuals, but it is
discussed in the 1240s by Robert Kilwardby. He insists that the necessity of
dici de omni et nullo is of such a self-evident nature that it cannot be regarded
as a genuine inference step. Many logicians agreed with him. Kilwardby even
asks if syllogisms presuppose separate inferences of conversion, and argues that
it is not so. Suppose that no B is A; just add “every A is A” as the second
premise, and you get the converted sentence, “no A is B,” by Cesare. Similarly
in other cases, we see that conversion reduces to syllogism. This idea was not
generally accepted, but conversion was occasionally considered so immediate a
transformation that it could not be called an inference at all.

Soon, however, an alternative view was articulated. About 1270, Peter of
Auvergne refers to loci, the governed steps of argumentation theory, and says
that “every syllogism holds because of a locus from a more extensive whole to
its part.” Simon of Faversham, Radulphus Brito, and others then developed
this thought that a syllogism must involve a “principle of consequence.” The
conclusion is somehow included in the premises. But the remarks are brief and
obscure. In any case, they anticipate the fourteenth-century view of logically
necessary consequence relation that is not peculiar to syllogisms.

5.3. Modal Syllogisms
Aristotle devotes a large part of his Prior Analytics to modal syllogisms. But
unlike nonmodal syllogistics, this area remains in a very unsatisfactory state.
The modalities he there studies are necessity, impossibility, and contingency.
He wishes to produce a complete set of syllogisms in which some propositions
have such modalities; further, he tries to systematize these syllogisms like
the nonmodal ones. Here he needs conversion, reductio, and a third method,
ekthesis, based on defining new predicates. Medieval logicians replaced ekthesis
with a more elegant method of expository syllogisms.
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The main problem is that Aristotle’s theory looks incoherent. His set of
accepted syllogisms might be the outcome if all modal propositions were read
de re only, as concerning the modal properties of individuals. But then the
conversion rules do not hold: Obviously “every A is something necessarily B”
does not convert to “some B is something necessarily A.” Moreover, his choice
of valid syllogisms contains some oddities.

Ancient commentators struggled with these puzzles, and medieval Aris-
totelians could not avoid them. Peter of Spain’s Summulae does not really
discuss modal logic, but Kilwardby, Lambert, and Albert the Great try to save
Aristotle’s doctrine. They resort to a very strong interpretation of necessity,
proposed by Averroes, which concerns only necessities which hold per se be-
cause of essences. Even this technique demands some arbitrary decisions, and
in any case it amounts to a severe restriction of modal syllogistics.

A similar approach seems to have continued through the thirteenth century.
The first known work that introduces new methods is the commentary by
Richard of Campsall, written about 1308. Campsall’s own theory is conservative,
since he wants to maintain the Aristotelian syllogisms and conversions by means
of a strict and somewhat confused de re reading. But the novelty is that he
makes a systematic distinction between divided and composite readings. It is
connected to the idea, initiated by Duns Scotus, of simultaneous alternative
states of affairs.

This new semantics of modal notions made possible a new and different
approach to modal logic. From this point of view, modal logic was seen to
be much wider than the part that Aristotle had developed, and the relations
of modes could be systematized in a new way. The basic notions were now
necessity and possibility, which could be understood as realization in all and
some alternatives respectively. The first exact presentation of the resulting
syllogistics was the very thorough account in Ockham’s Summa logicae. In
Paris, the orthodox Aristotelian model survived much longer, but Buridan’s
Tractatus de consequentiis (1335) provides a modern theory, which is almost as
full as Ockham’s. A third and more concise classical text is in Pseudo-Scotus’s
commentary on Prior Analytics (c. 1340).

The new modal logic gave plenty of room for the notion of contingency, and
it caused some disagreement, but for simplicity we bypass this and concentrate
on the syllogistics of possibility and necessity. The composite and divided
readings of them were strictly distinguished. The composite readings are easier,
and accordingly they were less discussed. They were indeed de dicto in the
sense that strictly speaking they only make a singular nonmodal claim about
a dictum; for example, “it is necessary that some A is B” is interpreted as
“the dictum ‘some A is B’ is necessary.” The syllogistic for such propositions
follows from the general consequence theory. Ockham and Buridan agree that
in every mood, if both premises are prefixed with necessity N, the conclusion
is necessary too. On the other hand, a syllogism MMM, with all the three
propositions modalized as possible, does not hold because the premises need
not be compatible. Ockham also remarks on NMM and MNM.
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Much more problematic were divided premises, that is, propositions with
genuinely modalized copulas. The main device for dealing with them was am-
pliation (see section 3.5), which extends the subject term to refer to supposita
that occur in alternative nonactual states of affairs; thus “every A is possibly B”
will be read “everything which is or possibly is A is possibly B.” But ampliation
may be blocked by adding quod est A, “what (actually) is” A. Now it is striking
that ampliation was understood in two different ways. Ockham assumed that
ampliation is good for possibilities (and contingencies)—but he did not accept
it for necessities. In other words, only actual things could be said to have
necessary properties. The reasons for this are not clear; perhaps he thought
that necessities always involve some existence postulate. Buridan, in his turn,
said clearly that all modalities amplify the subject in the same way, and this
became the common view, that is, if the subject of a modality is not explicitly
restricted to what is, it is freely amplified. (We must therefore be cautious if
we wish to use present-day possible world apparatus here.) Buridan drew an
octagonal diagram of the propositions “Every/Some A is necessarily/possibly
B/not B” and analyzed all the 56 logical relations between them. This made
the map of modalities much clearer.

Combinations of syllogistic moods, modalities, and restrictions produce a
huge number of cases, and logicians could not mention every case explicitly,
although they did pursue a full theory of them. They also comment on cases
where some propositions are nonmodal. We can only sketch some outlines now.
In the direct first figure, everybody accepted MMM syllogisms as valid. Buridan
and Pseudo-Scotus accept NNN, MNM, and NMN. The seemingly surprising
NMN here shows the effect of ampliation. (For instance, every M is necessarily
B, some A is possibly M , therefore some A is necessarily B.) Ockham accepts
NNN only when restricted to actuals; for Buridan’s school this is another valid
syllogism, like several other moods resulting from a restriction of subjects of N
or M. Buridan also accepts, for example, _NM with an assertoric major. In the
second figure, Buridan mentions NNN, NMN, and MNM (and Pseudo-Scotus
mistakenly adds MMM). These again have restricted versions (in the style of:
if every actual B is necessarily M and every actual A is possibly not M , then
no A is B). But Ockham allows no valid syllogisms here. In the third figure,
all accept MMM. Buridan and Pseudo-Scotus accept NNN, NMN, and MNM,
while Ockham accepts only restricted versions of these. Some of them, not
precisely the same ones, are in Buridan.

Ockham’s theory looks somewhat unfinished: His view of ampliation causes
trouble, and he derives a great number of results by discussing individual
examples one by one. Buridan, on the other hand, uses a very elegant deductive
method with, for example, cleverly formulated conversion rules. His theory is
the summit of medieval modal logic. His pupils Albert of Saxony and Marsilius
of Inghen continued to give comprehensive accounts of modal syllogistics, with
some usually unsuccessful innovations, but after them modal syllogisms seem
to have fallen out of fashion.
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5.4. Topics and Methodology

An important part of medieval logic was topics. The dialectics of the old trivium
mostly belonged to it. The ultimate source was Aristotle’s Topics, but a second
and simpler authority that replaced it for a long time was Boethius’s De
differentiis topicis. The main subject in this inquiry was loci, locus being Latin
for Aristotle’s topos (literally “place,” here something like “consideration”).
Aristotle does not define his topos, whereas Boethius gives two meanings for
locus. It can be a “maxim,” a self-evident sentence that needs no further
proof, but it can also be a logically relevant feature that distinguishes two
sides. Confusingly, the distinction can be between sentences, like affirmative
and negative, antecedent and consequent, or between concepts, like genus
and species, part and whole. For example, the distinction between genus and
species supports the maxim: What belongs to the genus belongs to the species.

Boethius’s double notion of loci long guided medieval topics. On the other
hand, Aristotle emphasized an aspect which was not so prominent in Boethius:
Topics concerns dialectical argumentation, the finding, testing, and examining
of plausible theses. Hence it is not restricted to methods of demonstrative
scientific proof of necessary results.

Treatises as early as the eleventh century discuss topics, and this interest
culminates with the Aristotelian revival of the thirteenth century. Thus, Peter
of Spain gives a detailed list of various loci which follows Boethius closely. An
important idea in such lists is that loci are supposed to guarantee the validity
of an inference or argument that was not immediately valid because of its
form. For instance, Peter’s inference “The housebuilder is good, therefore the
house is good” is surely not formally valid—and not even quantified—but it
is “confirmed” by the locus of cause and effect: “That whose efficient cause is
good, is itself also good.”

We see that the result is still not conclusively proved, but the addition
connects the argument to syllogistics. This need of support is characteristic of
“enthymematic” arguments, demonstrative or not. Nowadays we are accustomed
to think that they are valid because of some suppressed deductive premises,
but medieval authors did not always see the matter so. Often they thought
that the support came from a rule and not from an implicit premise. The
terminists were inclined to think that all valid arguments are reducible to
syllogisms; topics gives metalogical directions for finding suitable middle terms
for the reduction.

After the early terminists, topics was still constantly discussed. After all, the
Topics was a big book in the Organon and belonged to the obligatory courses,
at least in part. But the heyday of topics was over when logica moderna was
developed. It was no longer a really inspiring field, although it undoubtedly
had some importance: Topics apparently influenced the growth of consequence
theory (see section 6.1), and the doctrine of loci was also relevant in discussions
concerning the foundation of syllogisms.
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When the consequentia theory developed, both syllogisms and nonsyllogistic
inferences could be seen as cases of the same general patterns. As a result,
topics lost an important function. The arguments that were formerly studied
in topics were, in the fourteenth century, normally included in consequences.
Also, it is significant that topics was no longer connected to enthymemes but
to dialectical arguments, that is, its special character was seen as epistemic.
Usually, the leading logicians no longer treated topics as a separate subject
at all—Ockham, for instance, studied topical arguments only as a relatively
uninteresting special case. On the other hand, Buridan still painstakingly
devoted a whole treatise to topics. Later the interest in topics diminished even
more; Paul of Venice did not speak of it. However, commentaries on Aristotle’s
Topics were written throughout the fourteenth and fifteenth centuries, but no
new ideas were presented.

The Aristotelian theory of science was highly abstract; while it had little
contact to concrete problems, it did have a close connection to logic. The
basic source for medieval discussion was Posterior Analytics, though direct
commentaries on this difficult work were not very common. In the Aristotelian
picture, developed for example by Aquinas, an ideal science consists of a
system of demonstrative syllogisms. Their premises must be true, necessary,
and certain. Premises can be derived by other syllogisms, but ultimately they
rest on evident necessities. As Kilwardby says, “the demonstrator considers
his middle term as necessary and essential, and as not possibly otherwise than
it is; and so he acquires knowledge, which is certain cognition that cannot
change.” Science is thus a system of syllogisms about causes and essences; it
can use logical principles, but logic itself is obviously not a science. Much of
this grandiose view later had to be given up, when first Scotus problematized
the notion of necessity and then Ockham problematized the notion of evidence.

6. New Approaches to Inferences
During the thirteenth century, four new domains of logical research broadly
falling into the scope of propositional logic emerged: consequences, obligations,
insolubles, and sophisms. In overall treatments of logic like Ockham’s Summa
logicae and Buridan’s Summulae dialectica, these new branches of logic were
discussed in the place traditionally occupied by treatments of dialectical topics
in the sense in which they referred to what Aristotle discusses in his Topics. This
is not to say that the traditional theory of dialectical topics, for which Cicero
and Boethius had provided the classical texts, had disappeared altogether. Nor
can we say that these new areas of logic had replaced the tradition of dialectical
topics. Rather, the purposes aimed at by research in these new areas were seen
to be approximately similar to those traditionally aimed at by the theory of
dialectical topics, and consequently the new fields were taken to complement
traditional discussions. In modern terms, we can say that the point of gravity
was moving from the theory of argumentation toward formal logic.
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Let us start with consequences, considering four different issues pertaining
to this crucial area of logic. Late medieval discussion of consequences aimed at
giving clear and specific determinations of (1) what is a consequence, (2) the
definition of the validity of a consequence, (3) how they should be classified,
and (4) rules concerning valid consequences.

6.1. What Is a Consequence?
In general, late medieval treatments of consequences understood them as
inferences. That is, they were not called “true” (vera) or “false” (falsa),
but rather were said to be “good” (bona), or simply “to be valid” (valeo)
or “to hold” (teneo), or in the opposite case “to fail” (fallo). Despite an
acknowledged close connection to conditional propositions, consequences were
usually discussed separately as belonging to a different place in the overall
structure of logic. Ockham, for example, discusses conditionals within his
theory of propositions, and turns to consequences as a theory of nonsyllogistic
inference in the beginning of III, 3 in Summa logicae: “After treating syllogism
in general and demonstrative syllogism, we now have to turn to the arguments
and consequences that do not apply the syllogistic form.”

The genre of logical writings on theory of consequences seems to have arisen
in the thirteenth century from recognition of the fact that a general theory
of inferential validity can be formulated in addition to, or as an extension
of, the traditional syllogistic system. As such, medieval logicians had been
aware of the idea at least since Abelard’s work, and Boethius had already
composed a special treatise on what he called “Hypothetical syllogisms,” that
is, on propositional logic. Nevertheless, Walter Burley’s De puritate logicae
seems to have been the first overall presentation of logic to discuss the theory
of inference systematically starting from general issues of consequences and
moving toward more particular issues after that, allowing syllogistic only the
minor position of a special case.

That most medieval logicians saw consequences as inferences and not as
propositions is reflected in the fact that they aimed at formulating general
rules (regulae) of valid inferences; traditional dialectical topics were also seen to
belong to this set in addition to a number of more formal ones. The outstanding
exception in this picture is John Buridan and his Tractatus de consequentiis.
He explicitly defines consequences as hypothetical propositions consisting
of two parts, the antecedent and the consequent, joined by a connective
like “therefore” (ergo). Thus, Buridan’s consequences amount to conditional
propositions with specific content. He treats consequences as pieces of discourse
that assert the validity of an inference from the antecedent to the consequent:
“One follows from the other” (una sequatur ad aliam). Accordingly, Buridan
does not discuss or lay down metalinguistic rules (regulae) of consequences
in this treatise, but instead asserts “conclusions” (conclusiones) concerning
what can be truly said about the kinds of sentences following from each
other.
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It seems clear that all prominent medieval logicians saw the distinction
between the acceptability of performing an inferential step and the assertion
that a valid inferential relation obtains. Whereas most logicians thought
that consequences should be understood as inferences, Buridan made the
opposite decision. For him, a consequence was a proposition, a conditional claim
concerning an inferential relation between the antecedent and the consequent.
He seemed to have had no followers in this opinion, but because of his prominent
position in late medieval logic, his surprising stand has caused a number of
misunderstandings concerning the issue both for medieval authors and for
modern commentators.

6.2. Criteria of Validity
The simplest way to formulate the definition of inferential validity was to
ground it on the idea that it is impossible for the antecedent to be true and
the consequent false. Indeed, it seems that all late medieval definitions of
validity can be seen as variously qualified or modified versions of this principle.
In the first known treatise directly dedicated to consequences, Burley’s De
consequentiis, we find the definition that a consequence is valid if “the opposite
of the consequent is repugnant to the antecedent.” The problem with this
definition is that it seems unclear in which sense we are to take the word
“repugnant,” since it is often used in a way that already contains reference to
inferential connections. Indeed, Burley elsewhere opts for alternative definitions
closer to the modal criterion.

In Buridan, we find the following list of three alternative descriptions
concerning when some proposition “is an antecedent to another” or, in other
words, a consequence is valid:

(a) “that is antecedent to something else which cannot be true while the
other is not true” “illa alia non existente vera”;

(b) “that proposition is antecedent to another proposition which cannot be
true while the other is not true when they are formed simultaneously”
“illa alia non existente vera simul formatis”;

(c) “that proposition is antecedent to another which relates to the other so
that it is impossible that howsoever it signifies, so is the case, unless
howsoever the other signifies, so is the case, when they are formed
simultaneously” “sic habet ad illam quod impossibile est qualiterqumque
ipsa significat sic esse quin qualiterqumque illa alia significat sic sit ipsis
simul propositis.”

Buridan finds each of these three descriptions problematic, but accepts the last,
if it is understood in a suitably loose manner. The problem with the first defini-
tion is related to the standard medieval requirement that a proposition must be
actually formulated to be true. This makes it clear that almost no consequence
would be valid according to the first criterion, since the consequent need not be
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formulated when the antecedent is. The second aims at correcting this problem
through the simple addition “when they are formed simultaneously,” but falls
prey to it as well. A consequence like “no proposition is negative, therefore
no donkey runs” should be invalid, but turns out to be valid on criterion (b)
as well as on (a), because the antecedent is never true when it is actually put
forward. Thus, it cannot be true without the consequent being true even if
they were simultaneously formed. With criterion (c), Buridan takes another
strategy. He recognizes that the consequential relation should not be seen to
obtain with the sentences themselves, not even between potentially formulated
ones, but rather between their contents. However, Buridan did not believe
that such sentential contents would exist (see the section about propositional
significates, complexa significabilia), and therefore the formulation of the cri-
terion (c) makes problematic ontological commitments. Apparently he could
not find a formulation that would avoid them, and thus we are left without a
satisfactory description of inferential validity.

It seems, nevertheless, that Buridan’s strategy of transporting criteria of
validity from the actual sentences to their significations or contents became a
generally accepted one. In some interesting sense, which still puzzles modern
scholars, Buridan’s further discussions on the topic take a “mentalistic” turn in
the conception of logical validity. He considered that logical validity depended
on the mind in a more crucial sense than many of his predecessors. Some
formulations by his followers made this mentalistic turn even more obvious in
ways that we shall see in the next section.

6.3. Classifications of Valid Consequences
The most traditional medieval distinction among kinds of valid consequences
was the distinction between those valid “as of now” (ut nunc) and those valid
“simply” (simpliciter). Validity ut nunc was taken to mean something like
validity given the way things now are: From “every animal is running,” it
follows ut nunc that Socrates is running, at the time in which Socrates exists
as an animal. After his death, the consequence ceases to be valid. Simple
validity, on the other hand, meant validity in all circumstances. In this sense,
from “every animal is running,” it follows that “every human is running.” It
is noteworthy that validity ut nunc also contains some kind of necessity, and
thus it cannot be compared to twentieth-century material implication.

Late medieval logicians put their main interest in two other, philosophically
more interesting distinctions. Somewhat confusingly the concepts “form” and
“matter” were used in both distinctions, so that when we come to Paul of Venice,
a consequence may be, for example, “formally formal” or “materially formal,”
since he combines the two distinctions into one systematic presentation. In
both distinctions the issue was to separate a class of consequences that were
valid in a privileged manner: not only valid, but “formally valid.”

In one sense, formal validity meant a substitutional kind of validity, where
a consequence is formally valid, if it “is valid for all terms” (tenet in omnibus
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terminis), and only materially valid if its validity is based on the special
content of some of the terms used in the inference. In this sense, the paradigm
examples of formally valid inferences were syllogisms in the Aristotelian figures,
but also examples like modus ponens could be put forward. In the other sense,
an inference was called formally valid only if the consequent was “formally
included” (includit formaliter) in the antecedent or in the “understanding”
(intellectus) of the antecedent; this kind of formal validity was often called
“natural” or “essential” validity. It seems that the roots of both distinctions
can be traced back to the early Middle Ages. At least Kilwardby gives ground
for both distinctions. Nevertheless, the two distinctions seem to have had
a somewhat different history. Furthermore, the concept of material validity
remained in most treatments rather obscure. It seems, however, that especially
as related to the latter definition of formal validity based on inclusion, material
validity was often understood as having to do with certain properties of the
propositions used. The paradigm cases of materially valid inferences followed
the rules “from the impossible anything follows” and “the necessary follows
from anything.”

Let us first look at the latter kind of formal validity, the one based on
the idea that the antecedent must “formally include” the consequent. The
concept of “formal inclusion” seems to have been developed by late thirteenth-
century theologians, such as Henry of Ghent, Godfrey of Fontaines, and Duns
Scotus. In many texts the topic comes up in a discussion concerning the role
of the third person in the divine Trinity, employing the special technique of
obligations (see following). These discussions resulted in elaborated theories
of what it means to say that a concept is included in another concept, or
that an assertion conceptually includes and thus entails another claim. The
primary examples studied by medieval logicians included inferences like “a
human exists, therefore, an animal exists,” and the explanation of their “formal”
validity was based on the necessary conceptual or essential relation between
the species “human” and the genus “animal.” The concept “human” was said
to “formally include” the concept “animal,” and thus the inferences based on
this relation were said to be “formally valid.” In twentieth-century terms, we
would rather describe them as analytically valid inferences.

William Ockham was aware of this discussion and aimed at bringing the
results into the systematic context of logical theory. In the classification of
Summa logicae, a consequence is formally valid if it is valid by general rules of
a specific kind. They must concern the syntactic features of the propositions
(forma propositionis) involved in the consequence. Also, the rules must be
self-evident (per se nota). This part of the definition is in effect identical
with, or at least comes very close to, the substitutional type of definition of
formal validity. But on the same page Ockham also admits as formally valid
consequences that are valid by something he calls an “intrinsic middle.” His
example is “Socrates does not run, therefore a man does not run,” which is
valid by the “intrinsic middle,” “Socrates is a man.” It seems that Ockham
wanted to present this type of formal validity to allow also inferences based
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on something like conceptual inclusion within this group, the inclusion being
expressible as an intrinsic middle.

Some 10 years later, Ockham’s student Adam Wodeham explicitly distin-
guished between two different ways of understanding the concept of formal
validity. One of them uses only the substitutional criterion, while the other
accepts as formally valid all consequences based on truths known in themselves
(per se nota). Insofar as Wodeham’s per se nota refers to all analytic truths
and not only conceptual inclusion, the definition is wider than that derived
from the traditional slogan “formally includes,” but it is clearly on the same
track.

Material validity is defined by Ockham with reference to something he
calls “general conditions of the propositions,” and he gives the ex impossibile
quodlibet rule as an example. In Ockham’s case this is strange, since he clearly
knew that from a contradiction it is possible to derive anything with rules
which he allows to be formal. Do we, thus, have inferences that are both
material and formal?

In his definition of formal validity, Buridan presents only the substitutional
principle, without mentioning the idea of conceptual inclusion. His examples of
inferences which are valid but not formally so, however, show that he was aware
of the criterion but did not want to use it. He straightforwardly claims that
those inferences, which are valid so that all substitutions of the categorematic
terms with other terms are also valid, are formally valid. Among formally valid
inferences, Buridan explicitly counts inferences from contradictions, though
of course not from weaker impossibilities like from “a man is not an animal.”
These he classifies as material.

It seems that in the latter half of the fourteenth century, Buridan had
few followers in his classification principles. Only Albert of Saxony seems to
have accepted the substitution principle as the sole criterion of formal validity.
The majority of logicians seem to have wanted to develop an idea which is
closer to what was later in the twentieth century called analytic validity. The
criterion of formal validity was, therefore, formal or conceptual inclusion of
the conclusion in the premises. As an interesting special case, Paul of Venice
presents a system that uses both concepts of formal validity, thus producing a
very elaborate system.

6.4. Rules of Consequences
Usually medieval discussions of the theory of consequences also included a
selection of rules warranting valid inferences. Instead of anything close to a
complete listing of such rules, we must here satisfy ourselves with a look at
the types of such rules presented in the medieval discussions.

We have already encountered two such rules: “from the impossible anything
follows” and “the necessary follows from anything.” These rules were practically
never completely rejected in the later Middle Ages. However, their applicability
in specific contexts was often limited, and as they were typically classified as
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materially valid, they were understood as belonging to a somehow inferior
kind.

Medieval authors knew the main rules of so-called classical propositional
logic. For example, detachment is put by Burley as concisely as possible with
a term variable: “If A is, B is; but A is; therefore B is.” Transitivity rule is
presented by Burley as the consequence “from start to finish” (a primo ad
ultimum). He also discusses other examples of basic propositional logic of the
kind, but when we turn to the later fourteenth century, the selection of rules
of this type leaves nothing to be hoped for.

One type of rules of consequences that seems to have interested medieval
authors quite widely is based on epistemic operators. These were often discussed
by direct comparison with modal rules; if something is necessary, it is the
case, and if something is known, it is the case. More interesting (and more
disputable) examples of relevant inference schemes are more complicated. The
rule “if the antecedent is known, the consequent is also known” was often held
to be valid only on the further condition that the consequence itself is known.

The first rule of consequences in Ockham’s Summa logicae is that “there
is a legitimate consequence from the superior distributed term to the inferior
distributed term. For example, ‘Every animal is running; hence every man
is running’.” All medieval logicians accepted this example as valid, though
they often formulated the rule differently, and the explanation of the kind
of validity varied. Buridan, who relied on the substitution principle, thought
that the consequence is valid in a standard syllogistic mood with the help of
a suppressed premise. But almost all other logicians thought that something
like the rule given by Ockham suffices for showing the validity. The reference
to the relation between a superior and an inferior term given in the rule was
understood in terms of the criterion on conceptual containment. It seems that
in twentieth-century terms, the rules of this type could be characterized as
regulating analytic validity.

These types of rules already bring us close to Aristotle’s program in the
dialectical topics presented in the Topics. This work was indeed much used
in compilations of the listing of the rules for consequences. Also, in many
works the lists contain rules that have more of the character of the theory of
argumentation than of formal logic. The rules for consequences are indeed one
of the places where the differences between modern and medieval conceptions
of logic are most clearly visible.

6.5. Obligations
The genre of late medieval logical literature that has perhaps been the most
surprising for modern commentators carries the title obligations (obligationes).
The duties or obligations at issue in the treatises carrying this title were of a
rather special kind. The basic idea was based on the Socratic question/answer
game as described and regulated by Aristotle in the Topics. In the specific
medieval variant of the game the opponent put forward propositions that had



Late Medieval Logic 67

to be granted, denied, doubted, or distinguished by the respondent. In giving
his answers, the respondent was expected to pay recognition to the truth,
but especially to some special obligation given to him in the beginning of the
exchange by the opponent. This duty was understood to override the general
duty of following the truth, but not the general logical duty of respecting
arguments and avoiding contradictions.

Here we cannot go into details concerning the different variants of the system,
although a number of interesting logical issues arose through the study of the
particular kinds of possible duties. The main type of an obligational disputation,
as medieval authors knew it, was based on a positum, a sentence put forward
by the opponent in the beginning as something that the respondent has to
grant. This sentence was typically false, and often even impossible in some
way not directly implying a contradiction (conceptually impossible, naturally
impossible, etc.). Then the opponent put forward further propositions, and in
answering them the respondent had to pay attention to inferential relations
between the positum and these later proposita. Altogether four main alternative
sets of exact rules of how the inferential connections ought to be recognized
were developed in the Middle Ages.

According to one late thirteenth-century system, described by the Parisian
logician Boethius of Dacia in his commentary on Aristotle’s Topics, the respon-
dent must grant everything that the opponent puts forward after the positum,
with the sole exception of propositions that are inconsistent (incompossibile)
with the positum or the set of posita, if there are several. Boethius divides
propositions into “relevant” and “irrelevant” ones with the criterion of an
inferential connection to the positum. Those inconsistent with the positum are
called repugnant (repugnans), and those following from it are called sequent
(sequens). The repugnant ones must be denied and the sequent ones must be
granted. Others are irrelevant, and Boethius claims that the respondent must
grant them, since this implies nothing for the positum.

In his discussion, Boethius relied on an already traditional terminology,
but not all of the earlier authors would have agreed with his rules. The
early fourteenth-century discussion took place mainly in England, and there a
different set of rules came to be accepted as the traditional system. According
to these rules, the respondent should of course grant the positum and anything
following from it. Similarly, he should deny repugnant propositions. But he
should grant true irrelevant propositions and deny false ones. After having
granted or denied such propositions, he should take them into account in the
reasoning. He should grant anything that follows from the positum together
with propositions that have been granted earlier or whose negations have been
denied. Thus, the respondent must keep the whole set of his answers consistent,
but otherwise follow the truth.

Duns Scotus claimed that in an obligational disputation based on a false
positum one need not deny the present instant, but one can understand the
counterfactual possibility at issue in respect to the present instant. (Unlike
many of his predecessors, Scotus denied the principle “what is, is necessary,
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when it is.”) After Scotus, it became customary to think of the set of answers
after the disputation as a description of some consistently describable situation.
This brought obligational disputations close to counterfactual reasoning and
thought experiments.

Richard Kilvington suggested in his sophismata an interesting revision of
the rules apparently based on the idea that the disputation ought to describe
the situation that would obtain if the false positum were true. He claimed
that this principle ought to be taken as the rule guiding answers, giving the
respondent a duty to grant what would be true and deny what would be false
if the positum was true.

Kilvington’s suggestion did not gain many followers. Most authors kept to
the traditional rules, probably because Kilvington’s rules seemed too vague.
Formally valid inferential connections were taken to provide a better foundation
for obligational disputations. But another revision was also suggested, and for
some time it gained more followers. Roger Swineshed suggested that all answers
ought to be decidable solely on the basis of the positum without recognition
of any subsequent exchange. Swineshed’s suggestion was that the respondent
ought to grant the positum and anything following from it, and deny anything
repugnant with it. Other propositions were to be taken as irrelevant, and
they were not to be respected in the reasoning. This had the implication that
irrelevant propositions would have to be kept separate from the mainline of
the disputation, as a kind of second column in the bookkeeping. As Swineshed
explicitly recognized, contradictions between the two columns could arise so
that, for example, a conjunction may be denied when one of its conjuncts is
granted as the positum and the other is granted as true and irrelevant.

The main logical topic studied in obligational disputations was logical
coherence. The disputations were in essence structures allowing propositions
to be collected together into a set, with evaluation of the coherence of the set
as the crucial issue at each step. The different rules formulated the alternative
exact structures for such a procedure.

6.6. Insolubles
Early treatises on obligations are often connected with treatises carrying the
title “insolubles” (insolubilia). In these treatises something is laid down in a
way similar to how the obligational positum is laid down, but the crux of the
discussion is that the given propositions appear to describe a possible situation
and yet they entail a contradiction. The case is thus paradoxical. As a common
example from the obligational treatises themselves, we may mention the rule
that the respondent ought not accept “the positum is false” as his positum.
The case is, of course, closely analogous to what is nowadays known as the
Liar Paradox.

It is not clear that obligational disputations were the original context of
the genre of logic that came to be called insolubilia, since the first treatments
of such paradoxes in their own right seem to be equally early and have other
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sources, too. But the way medieval logicians formulated their versions of the
Liar Paradox comes with an obligational terminology and context.

If we turn to the mature treatises of the early fourteenth century, the
paradigmatic insoluble is the proposition “Socrates is saying what is false,”
and the assumed situation is that Socrates utters this and only this proposition.
Then it is shown that if the sentence is true it is false (because if it is true, what
it signifies is the case), and if it is false it is true (because it signifies that it is
false, and that was assumed to be the case). Because these results cannot stand
together—every proposition is true or false but not both—a contradiction
seems to follow from what is clearly possible, for the only assumption seems
to be that Socrates makes a simple understandable claim.

Medieval logicians discussed a wide variety of carefully formulated analogous
paradoxes, and it seems that some of them were formed to counter specific
purported answers to the paradox. For example, if the paradox is claimed to
result from direct self-reference, we may be asked to consider other examples.
For example, medieval logicians considered cases where two or more people
make assertions about the truth or falsity of each other’s claims and thus
produce a paradoxical circle. A paradox reminiscent of the Liar Paradox can
be produced without any proposition referring to itself—the paradox is not
dependent on direct self-reference. It is also interesting to note that some
practical analogs of the paradox were considered. Assume, for instance, like
Buridan, that Plato is guarding a bridge when Socrates wants to cross it. Then
Plato says, “If you utter something false I will throw you into the river, and if
you utter something true I will let you go.” Socrates replies, “You will throw
me into the river.” Now, what should Plato do? Cervantes makes Sancho Panza
face a similar problem when he is the fake governor of an island, and indeed,
Cervantes probably got the paradox from some medieval treatment of logic.

The variety and the history of the different solutions of the insolubles is
too wide and complicated to be even summarized here. Some main alternative
solutions presented in the medieval discussion must suffice for now.

In the early discussions, the so-called nullifiers (cassantes) claimed that the
one who utters a paradoxical sentence “says nothing.” If Socrates says only the
sentence “Socrates says what is false,” he has not really uttered a proposition
at all, and thus no truth value is needed. The problem, of course, is to explain
precisely why the utterance fails to be a proposition. Some authors gave the
reason that a part, like “false,” cannot refer to its whole; but this thesis is too
generalized.

In his Sophistical Refutations, Aristotle mentions the case where somebody
says something that is simultaneously both true and false. This remark occurs
in connection to the fallacy of confusing truth in a certain respect and absolute
truth (secundum quid and simpliciter). Thus applications of this fallacy were
often tried in solving insolubles, but understandably the results were not very
convincing. One related suggestion was that insolubles were to be treated not
as cases of genuine self-reference but instead as cases where a certain shift
of reference (transcasus) takes place. When Socrates says that he is lying, he
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simply cannot mean that very utterance itself, and therefore we must look
for some other utterance in the immediate vicinity. In the assumed case, this
approach makes the insoluble false simply because there is nothing else that
Socrates says.

Fourteenth-century logicians found all these suggestions too simple-minded.
In the early 1320s, Thomas Bradwardine used symbolic letters for propositions
and assumed that every proposition a signifies, in addition to its ordinary
signification, even “a is true.” (Strictly speaking, this was formulated as a
general doctrine only later.) Substituting a = “a is false,” we get “a is false
and a is true,” a contradiction that shows that a is false. A similar strategy is
further refined by William Heytesbury (1335). He puts the issue within the
framework of obligation theory, discussing cases where insolubles are pressed
on the respondent. All insolubles turn out to be false, but he admits that there
is no general solution; what is needed is a careful study of what exactly is
extraordinary in the signification of each relevant sentence.

Some authors, like Swineshed round 1330, argued that an insoluble proposi-
tion “falsifies itself.” This requires a new opinion about truth: For the truth of
a proposition, it does not suffice that it signifies what is the case, but it also
must not falsify itself. This fundamental novelty may have been one reason
why the theory was not generally accepted—and, moreover, its applications
soon lead to obscurities.

Later, Gregory of Rimini and Peter of Ailly tried to utilize the doctrine of
mental language in this context. The complex theory that Peter developed (in
the 1370s) argues that spoken insolubles correspond to two conflicting mental
propositions, whereas a mental proposition cannot ever be insoluble. This idea
became well known but did not gain general acceptance.

To sum up, we may say that the common view was that certain propositions
were called insoluble not because of logical puzzles that could not be solved
but because providing a solution “is difficult,” as many authors remark. It was
generally agreed that insolubles were false. Only a few authors took seriously
the possibility that the paradox might be a genuine one, one that did not
allow any satisfactory solution. But even they did not think of insolubles as
a threat to the system of logic as a whole. Insolubles were not considered to
undermine the foundations of logic but simply to be one interesting branch
of logical studies. One might surmise that this can derive from the idea of
looking at logic as an art dealing with the rational structures embedded in the
mental basis of ordinary language, rather than as a calculating system based
on special foundations.

6.7. Sophismata
Buridan’s Summulae de Dialectica concludes with an almost 200-page section
containing sophisms (sophismata), which are examples construed in a rather
distinct way so that they make the need of logical distinction clearly visible.
Buridan’s work is no exception; different kinds of collections of such sophisms
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are commonly found in medieval logic manuscripts. It seems that they were
used in medieval logic teaching as exercises to show how general logical systems
could be applied in practical contexts. But often they also contain interesting
material that is not discussed in systematic treatises.

Separate collections of sophisms circulated throughout the Middle Ages.
Perhaps the most famous of the early examples of such aids of teaching was
known as the magister abstractionum. Little is known of the person, and
he may not have been a single person. It is possible that we simply have a
collection of examples which circulated among teachers of logic, who would
each add their own examples and drop out others. Later, many authors of
logical textbooks compiled their own collections of sophisms. This is what we
find for example in the case of Buridan.

In early fourteenth-century Oxford, such a textual genre gained new sig-
nificance by assuming a relatively specific independent role not only in the
university curriculum (where undergraduate students in their first years of
university were called “sophists” [sophistae]) but also in logical study. The
collections of sophisms composed by Heytesbury, Kilvington and some other
members of the so-called group of Oxford calculators were an important locus
of logicolinguistic and mathematical study providing important results that
were later used by pioneers of early modern science.

A sophism in this sense of the word consists of (1) the sophisma sentence;
(2) a casus, or a description of an assumed situation against which the sophisma
sentence is evaluated; (3) a proof and a disproof of the sophisma sentence based
on the casus; and (4) a resolution of the sophism telling how the sophisma
sentence ought to be evaluated and how the arguments to the contrary should
be countered.

In the discussion of sophisma 47 in his collection, Kilvington assumes that
the procedure in solving a sophisma must abide with the rules of obligational
disputations. That is, the casus is to be understood as having been posited in
the obligational sense, and thus anything following it would have to be granted
and anything repugnant to it would have to be denied. From this viewpoint, the
proof and disproof can be articulated as obligational disputations. Although an
explicit commitment to using obligational rules such as Kilvington’s is rare in
the collections of sophisms in general, obligational terminology is omnipresent.

In many sophisms, the problematic issue was to show how the sophisma
sentence was to be exactly understood. For this reason, sophismata became
an especially suitable place for determining exact rules of scope and the
interpretation of words serving important logical roles. Indeed, this is the
context where late medieval logicians developed the exactitude in regulating
logical Latin that was ridiculed by such Renaissance humanists as Juan Luis
Vives.

Heytesbury’s Rules for Solving Sophisms (1335) is a good representative of
the genre and can thus be used as an example here. It consists of six chapters.
The first is on a topic we have already mentioned, so-called insolubles. The
second discusses problems of epistemic logic with sophisms based on the words
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“to know” and “to doubt.” The third tackles problems connected to the use of
pronouns and their reference. In the remaining three parts, Heytesbury turns
to problems that may be better characterized as natural philosophy rather than
logical analysis of language. The fourth part considers a traditional topic, the
verbs “to begin” and “to cease,” and thereby issues connected to limit decision
problems and temporal instants. The fifth part, on maxima and minima,
continues on the same tract from a different viewpoint. The sixth and final
part is dedicated to “three categories,” referring to the Aristotelian categories of
place, quantity, and quality. Especially this last part and its discussions of speed
and acceleration proved very fruitful in the early development of modern science
despite the fact that all the cases studied in it are purely imagined and lack any
sense of experiment. For example, instead of real bodies in motion, medieval
logicians considered imagined bodies in motion. In fact, this chapter and others
of its kind show how the medieval secundum imaginationem method, relying
only on logicolinguistic analysis, was able to provide results that have often
been misguidedly attributed to experimental scientists working centuries later.

One of the specific techniques used in solving sophisms deserves treatment
of its own in a history of logic. In early thirteenth-century texts, a sentence
like “Socrates begins to be pale” was analyzed as something like “Socrates
was not pale and Socrates will be pale.” The analysis was accompanied with
a discussion on which of the two conjuncts in the particular kind of change
at issue should be given in the present tense, and how one should formulate
the continuity requirement that Socrates, say, will be pale immediately after
the present instant, even before any given determinate future instant. Such
an analysis became a standard technique used in a large variety of cases
and was called “exposition” (expositio). Without going into the particulars
of the specific verb “to begin,” it is worth pointing out here that the idea in
such an analysis is to break down the sentence containing the problematic
“exponible term” into a conjunction or a disjunction that is equivalent in its
truth conditions. For fourteenth-century logicians, it was a commonly accepted
doctrine that there is a large number of terms that admit, or in the contexts
of a sophism, demand such an analysis. Furthermore, this kind of analysis was
taken to be necessary for practically all philosophically central terms if there
was a need to treat them in a logically exact manner.

7. The End of the Middle Ages
7.1. Later University Logic

Undoubtedly, the main plot of medieval Aristotelian logic lies in the develop-
ment that began from the early terminists and led to the stage of Burley and
Ockham, and then had its academic culmination in the systematic work of
Buridan. But the discipline of logic survived after that, and some new special
features appeared and new developments took place in the late Middle Ages.
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It is probably true to say that logicians were no longer very original during
this time. But here it is necessary to emphasize that logic was a widespread
and multiform discipline; the volume of material is very great, and much of it
is still unexamined.

A gradual change happened in philosophy in general during the fourteenth
century, a change whose background is hard to explain. It has been pointed
out that the whole cultural climate was no longer the same: The fourteenth
century included great political upheavals; the Church had difficulties that
led to the great schism; various protest movements appeared, and so on. All
this contributed to the loss of the previous unity. It is customary to start
the “autumn of the Middle Ages” from 1350, but this demarcation is largely
symbolic; the only concrete thing that can support it is the Black Death, which
killed many philosophers in 1349. After 1350, philosophy was still practiced in
the old style, and logic has hardly ever been as prominent a part in philosophy
as in the latter half of the fourteenth century. However, the overall authority
of philosophy and logic started to diminish.

Let us try to sketch an overview of the historical development. Ockham, a
political dissident, had never made an uncontested breakthrough—in fact, he
was considered an extremist even among nominalists. In logic, however, his
thought had a wide influence. Buridan, then, had more indisputable prestige,
and as regards logic, his influence became dominant in Parisian philosophy
during the 1340s. In this field he had two extremely competent pupils, Albert
of Saxony (d. 1390) and Marsilius of Inghen (d. 1396). After the generation of
Buridan’s students, the position of Paris weakened, although it was still the
most famous university.

England underwent a quite distinctive process. In the beginning of the
fourteenth century the best logicians were English, and even after them there
were original figures in Oxford, like Bradwardine, Heytesbury, and Billingham.
Then, after 1350, logic turned to great technical sophistication but little essen-
tially original appeared in the works of logicians such as Hopton, Lavenham,
Strode, Feribrigge, and Huntman. Soon after 1400, a complete collapse took
place in England, and only some elementary texts were produced during the
fifteenth century.

But English logic was, however, very influential in the late Middle Ages
on the Continent. English works of the fourteenth century were studied and
commented on in Italy. Particularly Ralph Strode’s logic achieved great fame.
Paul of Venice had studied at Oxford, and he transmitted the comprehensive
English tradition to the Italian logicians of the fifteenth century: Paul of
Pergula, Gaetano of Thiene, and others.

Moreover, the fifteenth century is the era of the triumph of the university,
which also involved a geographical expansion of philosophical studies. Hence
we meet a number of new active centers of logic emerging in Central Europe,
in universities like Prague, Cracow, and Erfurt.

A typical feature in fifteenth-century philosophy is a conscious turn toward
old masters. Thus, philosophy formed into competing schools with their own
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clear-cut doctrines; this process was promoted by the commitment of religious
orders to their official authorities and by the allotment of chairs in philosophy.
These Thomist, neo-Albertist, Scotist, and nominalist currents were not very
innovative in logic, though some of their leaders were first-rate logicians (like
the Scotist Tartaretus).

The form of logical works changed gradually. Instead of voluminous com-
mentaries, two other types of work became popular: shorter discussions of
individual subjects, and more general summulae expositions. A far-reaching
step was the innovation of printing, which led to the promotion of textbooks
in particular. (The first printed logical book was the Logica parva by Paul
of Venice, in 1472.) On the whole, we can say that logic was no longer very
creative; there were few original results, and perhaps they were not even
actively pursued. We can feel some signs of the later sentiment that the sci-
ence of logic had already been completed. In statements like this, we must
remember, though, that there has been particularly little historical research
on fifteenth-century logic.

Attention was often concentrated on earlier results; thus there was much
interest in all kinds of special cases and counterexamples, which we cannot
discuss here. Generalizing crudely, we might say that the exponibilia, the
sophismata, and the insolubilia became especially popular themes, whereas the
fundamental questions of terms, propositions, and inferences were less debated.
Modal logic seems to disappear, though it has a surprising revival at the end
of the fifteenth century (with Erfurtians like Trutvetter). At the same time
there is also a revival of philosophical logic in Paris (e.g., Scotsmen around
John Mair).

The strictly formal part of older logic, such as syllogistics, was still taught
everywhere, and occasionally even cultivated in so far as there was an op-
portunity to develop it. A famous example is the innovation of the so-called
pons asinorum. Fifteenth-century authors formulated clearly this virtually
mechanical method for finding a suitable minor premise by means of which a
given conclusion can be syllogistically inferred from a given major.

In less formal matters, we encounter an interesting line by examining the
widely read Speculum puerorum (1350s) by Richard Billingham. He discusses
the probatio, literally “proof” but also meaning “trial,” of propositions and
concludes that it is only possible by a further probatio of its terms. “Immediate”
terms are simple, but others can be submitted to some of the three forms of such
a treatment. First, “exponible” terms can be replaced by several occurrences
of simpler terms in a conjunction of simpler propositions which is equivalent
to the original one. Thus “only a man” is exponible in the proposition “only a
man runs,” and its exposition leads to the equivalent “a man runs and nothing
but a man runs.” “Resoluble” terms are replaceable by simple terms, leading
(not to equivalents but) to truth grounds; thus “a man” is resoluble to “this”
since “a man runs” has a truth ground “this runs and this is a man.” And for
“official” terms, it can be shown that they hold an office together with dicta,
like the modal and attitudinal operators do. By means of the probatio of terms,
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the proposition ought to acquire a logically elementary form, and problems
arising from difficult constructions can then be handled. Finally Billingham
gives some grammatical rules for advancing without error in the probatio.

Similar ideas can be found in a number of later English and Italian authors
who discuss such basically non-Aristotelian themes. The attention turned
to logical grammar. Logic courses often started from logica vetus, continued
with material from the Aristotelian Prior and Posterior Analytics, and then
concentrated on the new themes. This feature can be seen as a mark of a shift
from logic in the strict sense toward conceptual analysis of logically difficult
items: problematic concepts, ambiguous linguistic constructions, and so on.
Accordingly, much attention was awarded to questions of grammatical deep
structure and its accurate expression by means of variants in lexical forms
and word order. The serious nature of these problems can now be appreciated
again, in the light of present-day grammatical theory, but it is of course true
that fifteenth-century authors did not have a sufficient technical apparatus
for mastering their Latin sentences. It is also easy to understand that these
undertakings seemed useless and annoying to many critics.

7.2. Reactions
It is common to speak about “medieval logic,” and one easily thinks of it
as a monolithic totality. Perhaps we have managed to say that the truth is
much more complex. But all the authors we have discussed so far had a solid
Aristotelian background. There were, however, even other tendencies, which
started to grow during the fifteenth century. We might prepare the way for
the novelties by mentioning earlier dissidents.

The Aristotelian methodology in science was rather restrictive, and for a
long time repeated attempts had been made to find a place for something
more innovative. Bacon is perhaps the most famous among these authors: He
showed great curiosity in matters of empirical science and made initiatives in the
philosophy of science. But his logic seems to follow well-known Aristotelian lines.
A much more perplexing case is Raimundus Lullus (Ramón Llull, c. 1235–1316).
Having no academic training, he did not care about logica moderna; instead, he
sought to create an original way of argumentation that would undeniably prove
Christian dogmas to infidels. This so-called Ars magna, to which he gave several
formulations, uses various basically neo-Platonic sources. As basic concepts, he
chooses some central divine attributes and cross-tabulates them with certain
logicometaphysical aspects. This ought to produce, in the way of multiplication
tables, a scheme of interesting manifestations. Lullus also suggested that
concepts should be written on concentric circles and arguments performed
by rotation of the circles. In fact, Lullus never achieved any logical results,
and his program rests heavily on theological premises. But he introduced the
idea of purely combinatorial procedure (with symbolic letters), and this was
something that fascinated many later authors. “Lullists” reappeared during
the fifteenth century, and even Leibniz was interested in Lullus.
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Late medieval university logic acquired a respected opponent when Italian
humanists began to propagate their new ideals. In the middle of the fourteenth
century, Petrarch had violently attacked scholasticism and particularly logic,
making it clear that professional logic was a corrupt and useless discipline
that could not benefit a literary civilization. His leading followers, such as
Bruni and Bracciolini, were more detailed in their criticisms. According to
them, what is sensible in logic is delivered through the studies of language and
dialectics, whereas university logic is mostly incomprehensible sophistry. They
also pointed out, correctly, that medieval logic consisted of additions made by
barbarians to the classical heritage.

The early humanists mainly expressed nothing but their discontent, but
a more substantial alternative logic was developed by the famous philologist
Lorenzo Valla (1407–1457) in his Dialecticae disputationes. He argued that a lot
of the scholastic problems were actually illusory and resulted from obscure and
abstract misinterpretation of questions that were essentially linguistic. Valla
admitted that a small kernel of elementary logic was needed, as ancient Romans
had already admitted, but for him formal validity was not as interesting as the
informal convincing power of arguments. Thus he focused on the dialectical
theory of reasoning and discussion, emphasizing matters of grammar and style.
His work anticipates the revival of topics in a new form.

A similar nonscholastic development was continued by many other authors.
Gradually the humanist influence extended outside Italy to the whole of Europe,
and there grew a conscious effort to form a simple logic free of tradition. In
this process, the new logic also found a place in the academic environment
and much logical literature turned to dialectical issues, new ancient sources
became known, and logic definitely entered the era of printed books. All this
amounts to a basic transformation, and the next part can well start with it.
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Logic and Philosophy of Logic
from Humanism to Kant
Mirella Capozzi and Gino Roncaglia

1. Humanist Criticisms of Scholastic Logic
The first impression of a reader who “crosses the border” between medieval and
Renaissance logic may be that of leaving an explored and organized field for a
relatively unexplored and much less ordered one. This impression is emphasized
by the fact that while in the medieval period we can assume, despite relevant
theoretical differences, some consensus about the nature and purpose of logic,
such an assumption cannot be made with reference to the postmedieval and
Renaissance period: The many “logics” coexisting and challenging each other
were often characterized by deeply divergent assumptions, articulations, and
purposes. As far as logic is concerned, we could almost be tempted to use this
“explosion of entropy” as the very marker of the shift between the medieval
and the Renaissance period.

The development of humanism, with its criticism of the late medieval logical
tradition, is not the only factor contributing to this situation, but surely
is a relevant one. Excessive and artificial subtlety, lack of practical utility,
barbarous use of Latin: These are the main charges that humanist dialecticians
made against scholastic logic. Such charges do not simply point out formal
deficiencies that could be eliminated within a common logical framework, but
call for a change of the logical paradigm itself. The effort to address such
charges had a deep influence on the evolution of logic and resulted in a variety
of solutions, many of which were based on contaminations between selected
but traditional logical theories, on the one hand, and mainly rhetorical or

Though we decided on the general structure of this chapter together, sections 1–4 and 8 are
by Gino Roncaglia, while sections 5–7 and 9–11 are by Mirella Capozzi.
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pedagogical doctrines on the other. But the charges themselves were initially
made outside the field of logic: One of the very first invectives against scholastic
logic came from Francesco Petrarca (1304–1374), hardly to be considered a
logician (Petrarca 1933–42, I, 7).

The central point at issue is the role of language. The late medieval scholastic
tradition used language as a logical tool for argumentation, and favored the
development of what J. Murdoch (1974) aptly called “analytical languages”:
highly specialized collections of terms and rules which—once applied to specific
and definite sets of problems—should help guarantee the formal precision
of reasoning. In this tradition, the use of a simplified and partly artificial
Latin could help the construction of sophisticated formal arguments. The
humanists, on the contrary, privileged the mastery of classical Latin. For them,
language—together with a few simple and “natural” arguments taken from
ancient rhetoric—was a tool for an effective and well-organized social and
pedagogical communication.

Besides the different theoretical standpoints, there is a social and cultural
gap between two different intellectual figures. Scholastic-oriented teachers
are usually university professors who tend to consider logic, philosophy, and
theology as specialized fields. For them, knowledge is reached through a
self-absorbing (and largely self-sufficient) intellectual activity, whose formal
correctness is regulated by logic. Many humanist dialecticians, on the contrary,
do not belong to and do not address themselves to the academic world: They
consider logic a tool to be used whenever language is used with rhetorical
or practical purposes, and regard a broad “classical” culture more important
than a specialized and abstract one (see Jardine 1982, 1988).

One should be careful, however, in assessing the reasons for the privilege
humanists accorded to rhetoric. For the humanists, logic—or rather dialectic, to
use the term that, already present in the Ciceronian tradition and in the Middle
Ages (see Maierù 1993), was preferred by most humanist and Renaissance
authors—has to do with the use of arguments. But to be practically effective,
such arguments have to be natural, aptly chosen, easily stated and grasped,
expressed in good, classical Latin. And they don’t need to be demonstrative
arguments: Probable arguments are also included within the scope of dialectic.

One should also be careful in considering humanism as a monolithic move-
ment aimed at banishing all reminiscence of medieval logic. Humanism is not
chronologically subsequent to scholasticism, and many humanists knew late
scholastic logical texts fairly well, such as those by Paul of Venice. Some even
praised them (Vasoli 1968, 20–23; Perreiah 1982, 3–22; Mack 1993, 14–15).
Nevertheless, formally correct and truth-preserving arguments were considered
as only some of the tools available to a good dialectician. The latter’s aim
is to master the art of using language (ars bene disserendi), the Ciceronian
disserendi diligens ratio, and this requires not only demonstrative skills but also
the ability to persuade, to construct probable arguments, to obtain consensus.

The definition of dialectic provided by Rudolph Agricola (1444–1485)—one
of the many Renaissance variations on Cicero’s own—is representative of this



80 The Development of Modern Logic

point of view. According to it, dialectic is the “ars probabiliter de qualibet re
proposita disserendi” (art of speaking in a probable way about any proposed
subject). The explication of “probabiliter” clarifies the broad scope of the term
(see Mack 1993, 169–173, where “probabiliter” is translated as “convincingly”):
“probable (probabile) in speaking is not only what is actually probable, that
is, as Aristotle states, what is accepted by all, or by the most part, or by the
learned. For us, probable is what can be said about the proposed subject in
an apt and adequate way” (Agricola 1967, 192). This meaning of the concept
is broad enough to include good old-fashioned demonstrative arguments in
the field of dialectic (Risse 1964–70, I, 17–18), but they are no longer the only
kind of arguments a dialectician should take into account.

A first introduction to sources, principles, and precepts of humanist-oriented
logic is provided by the works of the prominent humanist dialectician Lorenzo
Valla (1407–1457), who, significantly, received his cultural training mostly
within the humanist circles of the papal curia. While some of the earlier
humanists were content with a dismissal of scholastic logic—Petrarca’s and
Bruni’s invectives against the barbari britanni being the most often quoted
testimony of this attitude (Garin 1960, 181–195; Vasoli 1974, 142–154)—in
his Repastinatio dialecticae et philosophiae (Valla 1982), Valla added to heavy
criticism of traditional logical doctrines a complete and systematic reassessment
of the nature and purpose of dialectic from a humanistic point of view.

According to Valla, dialectic deals with demonstrative arguments, while
rhetoric deals with every kind of argument—demonstrative as well as plausible
ones. Therefore dialectic is to be considered as a part of rhetoric, and rhetoric
has to provide the widest spectrum of argumentative tools to all branches of
learning. Moreover, dialectic should be simple and disregard all the questions
that, though discussed by logicians with technical logical tools, actually pertain
to Latin grammar. During the Middle Ages the relation between logic and
grammar had been closely investigated by the so-called modist logicians. They
worked at a sophisticated speculative grammar, based on an ontologically
grounded correspondence between ways of being, ways of thinking, and ways of
signifying. Valla’s grammar, on the contrary, is based on the Latin of classical
authors, and therefore on a historically determined consuetudo in the use of
language. Valla thus carries out what has been described as a “deontologization”
of language (Camporeale 1986; Waswo 1999).

Valla devotes the first of the three books of his Repastinatio to the foun-
dations of dialectic and to a discussion of the Aristotelian doctrine of the
categories. Here, too, Valla applies his general rule: simplification through
reference to concrete uses of Latin, rather than to an abstract metaphysical
system. The 10 Aristotelian categories are thus reduced to 3—substance, qual-
ity, and action—and examples are given to show how the remaining categories
can be reduced to quality and action. Similarly, the transcendental terms,
which according to the medieval tradition “transcend” the division among
the 10 categories and are reciprocally convertible, are reduced to the only
term “res.” The reason why Valla prefers the term “res” to the traditional
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“ens” is that “ens” in classical Latin is not a noun but a participle that can be
exposed as “that thing (res) which is.” Therefore the term “res” is the true
fundamental one. This example shows how Valla explains problematic terms
or sentences by offering a reformulation considered more precise and easier
to analyze. The practice of explanation through reformulation was familiar
to medieval logicians under the name of expositio, but Valla uses expositio to
reach linguistic, rather than logical clarification.

Valla’s second book is devoted to proposition and addresses the question
whether all propositions should be reduced to the basic tripartite form: subject–
copula–predicate (“A est B”). This question was the object of a long debate,
continued during the whole period we are dealing with (Roncaglia 1996),
and had usually been investigated under the assumption that it was the
logical structure of the proposition at issue. Valla, on the contrary, perceives
the problem as related to the grammatical structure of the proposition, and
accordingly offers a negative answer, since in the use of Latin the construction
“est + participle” (Plato est legens) is not equivalent to the use of an indicative
form of the verb (Plato legit). The Spanish humanist Juan Luis Vives (1492–
1540) will share the same attitude (see Ashworth 1982, 70).

To support his contention, Valla considers propositions like Luna illuminatur,
which—in Latin—can be transformed into a tripartite form only through a
shift in meaning. A further argument is drawn from the idea that the participle
form of the verb may be seen as somehow derivative with respect to the
indicative form. Therefore—if something is to be reduced at all—it should be
a participle like legens, to be reduced to qui legit (Valla 1982, 180). Logicians
should not superimpose their logical analysis to the “good” use of language,
but should rather learn from it. Language should be studied, described, and
taught, rather than “corrected” from an external point of view.

Valla did not consider the study of modal propositions as pertaining to logic
(hence his complete refusal of modal syllogistic). This refusal—common to
most humanistic-influenced Renaissance philosophy—is once again defended on
linguistic rather than purely logical grounds. Why should we attribute to terms
like “possible” and “necessary” a different status from that of grammatically
similar terms like “easy,” “certain,” “usual,” “useful,” and so on? (Valla 1982,
238; see Mack 1993, 90; Roncaglia 1996, 191–192.)

Valla’s third book, devoted to argumentation, preserves the basic features
of Aristotelian syllogistic, but dismisses the third figure and, as already noted,
modal syllogisms. Owing to his desire to acknowledge not only demonstrative
but also persuasive arguments, Valla pays great attention to hypothetical and
imperfect syllogisms and to such nonsyllogistic forms of argument as exemplum
and enthymemes.

The final section of Valla’s work is devoted to sophistic argumentations.
Medieval discussions of sophisms allowed logicians to construct interesting,
complex, and borderline situations to test the applicability and the effectiveness
of their logical and conceptual tools. Valla is fascinated by the persuasive and
literary strength of “classical” problematic arguments, such as the sorites (a
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speech proceeding through small and apparently unavoidable steps from what
seems an obvious truth to a problematic conclusion) or the dilemma, in which
all the alternatives in a given situation are considered, only to show that each
of them is problematic. Valla does distinguish “good” and “bad” uses of these
kinds of “arguments,” but his criterion is basically that of practical usefulness
in persuasive rhetoric.

Valla’s Repastinatio is also a typical example of the importance humanists
assigned to the “invention” (inventio) of arguments, connected with topics. Re-
naissance dialecticians considered Aristotle’s Topica as a systematic treatment
of practical reasoning, and complemented it with Cicero’s Topica and with
the treatment of topics included in Quintilian’s Institutio oratoria, which—
rediscovered in 1416—had become one of the most popular textbooks on
rhetoric by the end of the century, while Boethius’s De differentiis topicis,
widely used in the Middle Ages (Green-Pedersen 1984), had only few Renais-
sance editions (Mack 1993, 135). Both Cicero’s and Quintilian’s treatment
of topics helped shift the focus from “formal” disputations to rhetorical and
persuasive ones.

The most complete and influential Renaissance study of topics is contained
in Agricola’s De inventione dialectica (Agricola 1967, 1992). Agricola grounds
his conception of topics on his realist conception of universals (Braakhuis
1988). In his opinion, things are connected by relations of agreement and
disagreement, and topics are orderly collections of common marks, which help
us organize and label relations, and find out what can or cannot be said about
a given thing in an appropriate way. While being systematically arranged,
topics, according to Agricola, are not a closed system: The very possibility of
viewing things from different angles and perspectives, of relating them in new
ways, not only enables us to draw or invent arguments but also allows us to
find new common marks.

We have already considered Agricola’s definition of dialectic. In his opinion,
topics are the method of dialectical invention, while the discourse (oratio) is
its context. There are, however, two different kinds of dialectical discourse:
exposition (expositio) and argumentation (argumentatio). The former explains
and clarifies, and is used when the audience doesn’t need to be convinced,
but only enabled to understand what it is said. The latter aims at “winning”
assent, that is, at persuading. Although argumentation is connected with
disputation, necessary arguments are not the only way to win a disputation:
Plausible and even emotionally moving arguments should be considered as
well. Agricola’s concept of argumentation is thus connected with rhetoric, a
connection strengthened by the fact that both use natural language. This
explains why Agricola has no use for the kind of highly formalized, analytical
language used by medieval and late medieval logic.

However negative Valla’s and Agricola’s attitude toward the logical tradi-
tion, it was never as negative as that of Petrus Ramus (Pierre de La Ramée,
1515–1572). According to his biographer Freigius, Ramus’s doctoral disserta-
tion (1536) defended the thesis: “everything that Aristotle said is misleading
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(commentitium).” This does not imply—as many assumed—that Ramus con-
siders all Aristotelian theories to be false: In his opinion, Aristotle is guilty of
having artificially complicated and corrupted the simple and “natural” logic
which Aristotle’s predecessors—notably Plato—had devised before him (Risse
1964–70, I, 123–124). Scholastic logic is obviously seen by Ramus as a further
step in the wrong direction.

Various versions of Ramus’s logic (including the 1555 Dialectique, in French:
Ramus 1996; for a survey of the different editions of his works and of the stages
marking the complex development of Ramus’s dialectic, see Bruyère 1984)
were published between 1543 and 1573. After his conversion to Protestantism
in 1561, his library was burned, and he had to flee from Paris. Ramus died on
August 26, 1572, killed on the third day of the St. Bartholomew’s massacre.
His being one of the Huguenot martyrs undoubtedly boosted the fortune of
his already popular works in Calvinist circles.

Ramus’s concept of dialectic is based on three main principles: Dialectic
should be natural (its foundations being the “eternal characters” which consti-
tute, by God’s decree, the very essence of our reasoning), it should be simple (it
deals with the correct way of reasoning, but disregards metaphysical, semantic,
and grammatical problems as well as unnecessary subtleties), and it should be
systematically organized, mainly by means of dichotomic divisions. Therefore,
Ramus’s books extensively used diagrams, usually in the form of binary trees:
A feature that may be connected—as argued by Ong (1958)—with the new
graphical possibilities offered by printed books, and that will influence a huge
number of sixteenth- and seventeenth-century logic textbooks, not only within
the strict Ramist tradition.

The first and foremost division adopted by Ramus is Cicero’s division
between invention (inventio) and judgment (iudicium or dispositio). They are
the first two sections of logic. A third section, devoted to the practical and
pedagogical exercise of dialectic (exercitatio), is present in the first editions of
Ramus’s logical works but disappears after 1555.

The inventio deals with the ways arguments are to be found. Because
arguments are to be found and classified by means of topics, according to Ramus,
the treatment of topics should precede, rather than follow (like in Aristotle),
that of judgment. Ramus’s table of topics, organized by means of subsequent
dichotomic divisions, is strongly influenced by Agricola and by Johannes Sturm
(1507–1589), who taught dialectic and rhetoric in Paris between 1529 and 1537
and greatly contributed to the popularity of Agricola in France.

Ramus’s treatment of judgment is also unconventional. While in traditional
logic this section presupposes an extensive treatment of proposition, Ramus
deals with this subject in a sketchy way and adds an independent (albeit
short) section on the nature and structure of proposition only in the 1555 and
successive editions of his work. In the last edition Ramus follows Cicero in
using the term axioma to refer to a categorical proposition (having used earlier
the term enuntiatio or enuntiatum), while he always gives the more specific
meaning of major premise of a syllogism to the term propositio.
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Syllogism and its various forms (including induction, example, and en-
thymeme) constitute the core of the “first judgment”: the first of the three
sections in which Ramus divides his treatment of judgment in the earlier edi-
tions of his dialectic. Ramus’s explicit effort is that of simplifying Aristotelian
syllogistic, but during the years between the 1543 edition of the Dialecticae
institutiones and his death, his syllogistic underwent so many changes that it
is impossible to give a faithful account of it in a few pages. Typical of Ramus’s
syllogistic is his use of the terms propositio, assumptio, and complexio to refer
to the major premise, minor premise, and conclusion of a syllogism, and his
tendency to favor a classification of syllogisms according to the quantity of the
premises, considering as primary moods those with two universal premises. In
the earlier editions of his dialectic, Ramus held that all moods with particular
premises should be reduced to universal moods. He admitted some of them
later on, but banned the reductio ad impossibile used to reduce second and
third figure moods to the first figure. But Ramus’s better known innovation in
the field of syllogistic is the so-called Ramist moods: syllogisms in which both
premises are singular, accepted on the ground that individuals could be seen
as (lowest) species. The discussion about Ramist moods will keep logicians
busy for most of the subsequent century.

The second section of Ramus’s treatment of judgment (called “second
judgment” in the earlier editions of his work) deals with the ways to connect
and order arguments by means of general principles. Ramus attributes great
importance to this “theory of method,” which he further develops in the
later editions of his logical works, and which in his opinion shapes the whole
system of science (also offering the conceptual foundation for an extensive use of
dichotomies). According to Ramus, the dialectical method (methodus doctrinae)
goes from what is most general to what is most particular. This is done by
means of divisions that, in turn, are drawn on the base of definitions expressing
the essence of the concepts involved. Division and definition are thus the two
main tools of method. The opposite route, going from particular instances to
more general concepts (methodus prudentiae), might be used when either the
lack of a more general conceptual framework or reasons of practical convenience
force us to dwell on single or partial pieces of information. However, it cannot
guarantee certainty; and is therefore mainly used in rhetorical discourse aiming
at persuasion, rather than in demonstrative reasoning. In Ramus’s opinion,
however, the distinction between methodus doctrinae and methodus prudentiae
does not imply that we have two methods: We have only one method—based
on an ideal “knowledge space” organized by means of definitions and divisions—
that, in given and concrete situations, also allows for tentative and partial
bottom-up routes.

Thus conceived, the dialectical method is governed by three laws, which
constitute the Ramist counterpart of the Aristotelian-Scholastic de omni, per
se and universaliter primum principles. Ramus calls them the laws of truth,
justice and wisdom: in the field of science every statement (i) should be valid
in all its instances; (ii) should express a necessary (essential) connection of
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the concepts involved; (iii) should be based on subject and predicate that are
proper and proportionate (allowing for simple conversion).

Ramus’s logic was very influential in the second half of the sixteenth and
in the first half of the seventeenth century (Feingold, Freedman, and Rother
2001). However, “pure” Ramist scholars—mostly active in the Calvinist areas of
Germany, in Switzerland, in Holland, and in England—were to face an almost
immediate opposition not only in Catholic but also in Lutheran universities,
and saw their influence decrease after the beginning of the seventeenth century.
Much more influential (and more interesting) were the many “eclectic” logicians
who either tried to reconcile Ramus’s and Melanchthon’s logical views (Philippo-
Ramists) or introduced some Ramist themes within more traditional (and even
Aristotelian) contexts.

2. The Evolution of the Scholastic Tradition
and the Influence of Renaissance Aristotelianism

Despite humanist criticisms, the tradition of scholastic logic not only survived
during the sixteenth and seventeenth centuries but evolved in ways that are
much more interesting and articulated than most modern scholars suspected
until a few decades ago. Our knowledge of this evolution is still somehow
fragmentary, but the scholarly work completed in recent years allows some
definite conclusions. We can now say that in this evolution of the late scholastic
logical tradition, six factors were particularly relevant: (i) the work of a group of
Spaniards who studied in Paris at the end of the fifteenth and at the beginning
of the sixteenth century and later taught in Spanish universities, influencing the
development of logic in the Iberian peninsula; (ii) a renewed attention toward
metaphysics, present in the Iberian second scholasticism and most notably in
the works of Francisco Suárez (1548–1617), whose Disputationes Metaphysicae
(Suárez 1965) influenced many authors all across Europe; (iii) the crucial
role of the newly formed (1540) Society of Jesus, whose curriculum of studies
(Ratio Studiorum) was to shape institutional teaching in all of Catholic Europe;
(iv) the complex relations with humanism, and the influence of logicians like
Agricola, whose doctrines, while taking as their starting point a humanist
conception of logic, were nevertheless susceptible of somehow being absorbed or
integrated within a more traditional framework; (v) the “new Aristotelianism”
of authors like Jacopo Zabarella (1533–1589) and Bartholomaeus Keckermann
(1572?–1609); and (vi) the renewed interest in scholastic logic, discernible
in reformed Europe (and most notably in Germany) as a consequence of
the doctrinal and theological conflicts with the catholic field and within the
reformed field itself. In the following pages, we provide some details on this
complex development.

At the end of the fifteenth century and in the first decades of the sixteenth,
the Paris college of Montaigu became a center of logical research in which
the late medieval logical (especially nominalist) tradition survived and to
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some extent flourished. A group of Spanish and Scottish logicians, lead by the
Spaniard Jeronimo Pardo (d. 1505) and by the Scottish John Mair (1467/9–
1550), debated themes such as the nature of supposition and signification, the
distinction between categorematic and syncategorematic terms, the role of
beings of reason (entia rationis), the nature of proposition (further developing
the late medieval discussions on mental propositions), modality, and the theory
of consequences. Somehow connected to this Paris group, or active there at the
beginning of the sixteenth century, were the Spaniards Antonio Núñez Coronel
(d. 1521), Fernando de Encinas (d. 1523), Luis Núñez Coronel (d. 1531), Juan
de Celaya (1490–1558), Gaspar Lax (1487–1560), Juan Dolz (fl. 1510), the
Frenchman Thomas Bricot (d. 1516), the Belgian Pierre Crockaert (Pierre of
Brussels, d. 1514), and the Scot George Lokert (d. 1547).

Particularly interesting is their discussion about the nature of complexe
significabile (propositional complex), a subject already debated by medieval
logicians. The medieval defenders of this theory, associated with the name of
Gregory of Rimini (c. 1300–1358), held that the object of science is not the
proposition itself but what is signified by it (and determines its truth or falsity);
such total and adequate meaning of the proposition is neither a physical nor a
purely mental being and is not reducible to the meaning of its parts. It is rather
similar to a state of affairs, which can be signified only by means of a complex
(the proposition) and is therefore called complexe significabile. The discussion
on the nature (and usefulness) of the complexe significabile was connected to
the discussion on the role of the copula, since the copula was usually considered
as the “formal” component of the proposition, “keeping together” subject and
predicate. The copula was thus considered as a syncategorematic term: a
term that does not possess an autonomous meaning but helps determine the
meaning of the proposition as a whole. The defenders of a “strict” complexe
significabile theory did not need a separate discussion of the mental copula,
because in their opinion the complexe significabile is a unity and cannot be
analyzed in terms of its parts. But many authors—among them John Buridan
(c. 1295–1356)—assigned a much more relevant role to the copula, seen as
the (syncategorematic) mental act that, in connecting subject and predicate,
establishes the proposition. It is this very theory that was discussed by many
of the above-mentioned late fifteenth- and early sixteenth-century Paris-based
logicians (see Ashworth 1978, 1982; Muñoz Delgado 1970; Nuchelmans 1980;
Pérez-Ilzarbe 1999). Pardo’s position in this discussion was the most original.
In his opinion, the copula is not purely syncategorematic: It is subordinate to
a conceptual schema that represents something (i.e., the subject) as related in
a certain way to something else (i.e., the predicate) or to itself (Nuchelmans
1980, 49). In this way the copula, while retaining its formal function, also
signifies something (aliquid), that is, the subject, as considered in a given
way (aliqualiter), namely as modified by the relation with its predicate. The
idea of the copula signifying aliquid aliqualiter, and not simply aliqualiter, and
the special relevance attributed to the subject in determining the meaning of
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the copula and of the proposition as a whole, were discussed, and generally
criticized, by Pardo’s successors. They especially investigated the role of
impossible propositions, as well as propositions with a negative, privative,
or impossible subject, and the problem of whether a quasi-syncategorematic
nature could be attributed to the proposition as a whole.

The Iberian Peninsula was one of the strongholds of Catholicism. Moreover,
as we have seen, it inherited many features (as well as textbooks and Paris-
trained professors) from Parisian late scholasticism. This made the influence
of the humanist movement—albeit discernible—less radical than elsewhere.
Therefore, the Iberian Peninsula was the ideal context in which Catholic
logicians—dwelling on the scholastic (chiefly Thomist) logical and philosophical
tradition—could pursue the work of doctrinal and pedagogical systematization
that was required by the struggle against the reformed field.

The Carmelite universities of Salamanca (Salamanticenses) and Alcalà
(Complutenses) and the Jesuit university of Coimbra (Conimbricenses) each
produced a complete philosophical course, including specific volumes devoted to
logic. Of these the most influential was probably the Coimbra Logic, compiled
by Sebastian Couto (1567–1639) but partially dependent on Pedro da Fonseca
(1528–1599), who had been teacher at that university. Fonseca, the “Portuguese
Aristotle,” published the Institutionum Dialecticarum Libri VIII (Fonseca 1964)
in 1564, a logical treatise built on the model of Peter of Spain and widely
read throughout Europe. Fonseca’s logic interprets the traditional emphasis
on terms by giving a theoretical priority to the conceptual moment over the
judicative one (truth and falsity are in concepts rather than in judgment)
and among concepts, to singulars over abstracts and universals. To reconcile
God’s foreknowledge and human free will, and to handle the problem of future
contingents—a theme of special interest for all Iberian philosophers—Fonseca
developed, independently from Luis de Molina (1535–1600), a theory of the
scientia media, or, as he says, of “conditioned futures,” by which God foreknows
all the consequences of any possible free decision.

Placing Fonseca’s theories within a wider and more systematic treatment,
the Coimbra logic offers a translation and a detailed commentary of Aristo-
tle’s Organon, which, in the form of questions, includes a discussion of most
of the topics debated by sixteenth- and seventeenth-century logicians. The
Conimbricenses reject the idea that beings of reason are the object of logic (in
the scholastic tradition logical concepts such as “genus” and “species” were
considered to be entia rationis, and the Thomist tradition considered them as
the formal object of logic): Dwelling on the idea of logic as ars disserendi, they
prefer to characterize it as a “practical science” dealing with the construction
of correct arguments. Argumentation is, therefore, the first and main object
of logical enquiry. Particularly interesting is the long section devoted to the
nature of signs at the opening of the commentary on Aristotle’s De Interpreta-
tione (see Doyle 2001). The concept of sign is here taken in a broad meaning,
as to include not only spoken, written, and mental “words,” but also iconic
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languages and arithmetical signs. It is to be remarked that the influence of
Coimbra logic was not limited to Europe: Jesuit missionaries used it in Latin
America and even in China.

If the teaching of logic in Coimbra is connected to Fonseca, another impor-
tant figure of Iberian logic and philosophy, Domingo de Soto (1494/5–1560), is
connected to Alcalà and Salamanca, where he taught. Soto made important
contributions to a plurality of fields, so much so that it was said qui scit Sotum,
scit totum (who knows Soto, knows everything). Despite his endorsement of
Thomism—testified by his defense of the theory that the object of logic are
beings of reason—Soto was open to Scotist, nominalist, and even humanist
influences, and his commentary on Aristotle’s logic (Soto 1543) criticizes the
“abstract sophistries” of the late scholastic logical tradition. This, however,
did not prevent him from discussing and adopting many late scholastic logical
theories, including large sections of medieval theories of terms. His Summulae
(Soto 1980) are a commentary on one of the key works of medieval logic,
Peter of Spain’s Tractatus (best known as Summulae Logicales; see previous
chapter), and include an ample discussion of signification, supposition, and
consequences (see d’Ors 1981; Ashworth 1990; Di Liso 2000). Soto adopts an
apparently Ciceronian definition of dialectic, considered as the art of discussing
probabiliter. As remarked by Risse (1964–70, I, 330), however, this should not
be considered a rhetorical attempt to establish apparent plausibility, but rather
as an attempt to establish rational assertibility. Among the interesting points
of the Summulae are the treatment of induction in terms of ascensus (the
passage from a conjunction of singular propositions—or from a proposition
with a copulative term as subject or predicate—to a universal proposition, or
to a proposition with a general term as subject or predicate) and a complex
square of modalities, which takes into account the quantity of the subject.
Soto’s discussion of second intentions offers what has been interpreted as a
sophisticated theory of higher-level predicates (Hickman 1980).

One of Soto’s students in Salamanca was Franciscus Toletus (1533–1596),
who later taught both in Zaragoza and Rome, in the Jesuit Collegium Ro-
manum, and was the first Jesuit to be appointed cardinal. Toletus wrote both
an Introduction and a Commentary on Aristotle’s logic (Toletus 1985). Like
Soto, Toletus adopts some humanist theories—he takes the definition of logic
as ratio disserendi from Boethius and divides it into invention and judgment—
but his logic is actually a synthesis of Aristotelianism and Thomism, deeply
influenced by the late medieval logical tradition. He considers beings of reason
as formal objects of logic—thus partly endorsing the Thomist position—but
maintains that logic’s material object is constituted by our concepts of things
and, ultimately, by things themselves, for logical beings of reason are only
second intentions, based on first-order concepts—thus partly endorsing the
position of Arab commentators of Aristotle (Ashworth 1985b, xli). Of special
interest is his extensive use of physical and geometrical examples within the
discussion of categories, and his long discussion of contingent futures within
the commentary on De Interpretatione.
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The most important Jesuit philosopher working in Spain at the end of
the sixteenth century was Francisco Suárez (1548–1617). His Disputationes
Metaphysicae, first published in 1597 (Suárez 1965), constituted a reference
text and a model for further works both in the Catholic and in the Reformed
fields. According to Suárez, metaphysics offers a general and unified theory of
real being (ens reale) and of its divisions, whereas logic deals with the way of
knowing and explaining such divisions. Though the Disputationes Metaphysicae
is not a logic textbook, it discusses many issues relevant to the philosophy of
logic. Suárez pays great attention to relations, subdivided into real relations
(only conceptually and not really distinct from the things on which they are
grounded, but nevertheless to be considered as a category of beings) and
conceptual relations, which are only a product of the mind and as such do
not have any ontological status. Suárez’s detailed discussion of both kinds of
relations helps to explain the special interest that many scholastic-oriented
logicians devoted to this topic in the seventeenth century.

The last of the Disputationes—disputation LIV—is devoted to a subtle
discussion about beings of reason (entia rationis) and relations of reason.
According to Suárez, beings of reason are not “real” (actual or possible) beings
and do not share a common concept with real beings; their only reality is that
of being object of the understanding (they only have objective existence in the
intellect). Therefore, they are not to be included within the proper and direct
object of metaphysics. They can nevertheless be dealt with within the context
of metaphysical research, given their nature of “shadows of being” (Suárez 1996,
57) and given their usefulness in many disciplines, especially logic and natural
philosophy. Suarez’s opinion on entia rationis is thus different both from that
of those—like the Scotist Francis of Mayronnes (1280?–1327?)—who simply
denied their existence, and from that of those—like many Thomists, including
Cardinal Cajetanus (Tommaso de Vio, 1469–1534)—who thought that there
is a concept common to them and to real beings. Suárez included impossible
objects in the range of entia rationis: His discussion is thus especially relevant
to the history of the logical and ontological status of impossible entities (Doyle
1987–88, 1995). The discussion on the nature of entia rationis was a lively
one in sixteenth-century Spain and was bound to continue in Catholic Europe
during most of the seventeenth century. An interesting example is that of the
Polish Jesuit Martinus Smiglecius (1564–1618). In his opinion, the opposition
between ens reale and ens rationis is not grounded on the fact that the ens
rationis is not a form of being, but on the fact that it is by definition a being
which is not, and cannot possibly be, an ens reale. A being of reason is thus,
according to Smiglecius, one whose essence implies the impossibility of its real
existence. The fact that entia rationis cannot have real existence is, according
to Smiglecius, a logical and not just a physical impossibility. They, however,
can have conceptual (and hence intentional) existence.

In the later Middle Ages, English logicians had been famous for their
subtleties: The logical, physical, and epistemic sophisms discussed by the so-
called calculatores, working at Merton College in Oxford, deeply influenced late
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fourteenth- and early fifteenth-century logic both in Paris and in Italy, and were
exactly the kind of logical subtleties rejected by humanist logicians. During
the fifteenth and in the first decades of the sixteenth century, however, the
English logical tradition declined (see Giard 1985). This did not prevent a slow
penetration of humanist ideas, testified by the 1535 statutes or the university
of Cambridge, recommending the reading of Agricola and Melanchthon as
substitutes for late medieval scholastic texts, and by the Dialectica published in
1545 by the Catholic John Seton (c. 1498–1567). The latter offers a drastically
simplified treatment of traditional topics such as signification, supposition,
categories, syllogism, but liberally uses nonformal arguments and literary
examples, divides dialectic into invention and judgment, adopts Agricola’s
definition of dialectic as well as his classification of topics, and quotes, beside
Cicero and Quintilian, modern humanists like Erasmus and Vives.

In the last decades of the sixteenth century, the debate on Ramism was to
shake both English and continental universities. In England, Ramus found
in William Temple (1555–1627) a learned defender and commentator, who,
despite the strong opposition of his fellow Cambridge teacher and former
master Everard Digby (1550–1592), managed to make of Cambridge, albeit
for a short time, a stronghold of Ramism. The penetration of Ramism in
Oxford was less substantial, and by the beginning of the new century the
anti-Ramist positions were predominant in both universities. The defeat of
Ramism was accompanied by the propagation of Aristotelianism—tempered
by humanist-oriented attention toward classical literary examples rather than
purely logical ones and toward rhetorical practices such as the declamatio—
and by the circulation of the leading logic books published in the continent
(among them Zabarella and Keckermann). The Logicae Artis Compendium
by the Oxford professor Robert Sanderson (1587–1663; Sanderson 1985) is a
good example of this new situation. Sanderson abandons the division of logic
into invention and judgment, favoring a threefold division according to the
three acts of the mind: The first, dealing with simple concepts, is associated
with the treatment of simple terms; the second, dealing with composition and
division, is associated with propositions; and the third, dealing with discourse,
is associated with argumentation and method. Though this threefold division
is present in the medieval and late medieval tradition and is discussed by the
Conimbricenses, Zabarella, and Keckermann, Sanderson and other Oxford
logicians seem to have been among the first to use it as the main division
for logic textbooks (Ashworth 1985b, xli). In his logic, Sanderson includes
medieval topics such as the theory of supposition and consequences, but their
presentation is straightforward and not very elaborated. His discussion of
method is more articulate and gives a foremost role to pedagogical concerns.

We have already mentioned the Padua professor Jacopo Zabarella, who,
advocating a renewed, “pure,” and philologically accurate Aristotelianism,
absorbs both some humanist instances—visible in the pedagogical organization
of his works and in the inclusion of Aristotle’s Rhetoric and Poetic within
a broad treatment of logic, on the ground of their dealing with probable
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arguments, such as rhetorical syllogisms and examples—and some features
of the so-called Paduan Aristotelianism: a distinctive attention to the Arab
interpretations of Aristotle (notably Averroes) and to Galen’s concept of
science. Zabarella wrote commentaries on Aristotle’s logical works as well as
autonomous logic tracts: Among the latter are the De Natura Logicae (in
Zabarella 1966), the De Methodis, and the De Regressu (both in Zabarella
1985). According to Zabarella, logic deals with second intentions, that is, with
the (meta)concepts produced by our intellect in reflecting on the first notions,
those derived from and referring to real things. Because second intentions are
products (and figments) of our intellect, logic is not a science but an instrument,
or, to be more precise, an instrumental intellectual discipline, aimed at devising
conceptual tools for correct reasoning and for discriminating truth and falsity.
Because of its instrumental nature, logic is somehow similar to grammar: Just
as grammar provides the tools needed to write and speak in an appropriate
way, logic provides the tools needed to reason in an appropriate way.

According to Zabarella, order (ordo) and method (methodus) are among
the main tools offered by logic: The first organizes the subject matter of a
discipline and the knowledge we have acquired; the second gives the rules and
procedures to be followed to acquire new knowledge, going from what we know
to what we do not know (on the Renaissance concept of method, see Ong 1958;
Gilbert 1960). In dealing with contemplative sciences, the ordo goes from the
universal to the particular and to the singular (“compositive order”), while in
dealing with practical and productive arts it goes from the desired effects to
the principles that produce them (“resolutive order”).

Although order concerns a discipline as a whole, method always has to do
with the handling of specific problems, of specific “paths” going from what
is known to what is unknown. Those paths are basically syllogistic demonstra-
tions: The method is thus somehow a special case of syllogism. And since a
syllogism can only go from cause to effect (compositive method or demonstratio
propter quid) or from effect to cause (resolutive method or demonstratio quia),
the same will hold for method. The resolutive method is used in the “hunt”
for definitions, and is most needed in natural sciences; the compositive method
is used in mathematics, where we start from already known, general principles
and try to demonstrate all their consequences. Both methods presuppose nec-
essary connections and are therefore only valid within contemplative sciences:
Practical and productive arts, dealing with contingent truths, will have to
content themselves with rhetorical and dialectical arguments, which, being only
probable, are not subject to a rigorous application of method. However, even in
contemplative sciences (especially in natural sciences), our knowledge of effects
and of their causes is often far from clear, and we need a process of refinement,
which Zabarella calls regressus and which involves the use of both compositive
and resolutive methods: (1) We first use the resolutive method to go from a
confused knowledge of the effect to a confused knowledge of its cause; (2) we
then examine and clarify the knowledge of the cause (examen)—an activity
that Zabarella connects to a specific ability of the human mind, interpreted by
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some modern scholars in terms of the construction of a model; and (3) we finally
use the compositive method to go from a clear knowledge of the cause to a clear
knowledge of the effect. This last stage is the highest sort of demonstration
(demonstratio potissima), a notion already present in the Thomist tradition.

3. Logic in Reformed Europe: From Humanism
to “Protestant Scholasticism”

It is unfortunate that most historical accounts of logic devote relatively little
attention to Philipp Melanchthon (1497–1560), “Germany’s teacher” (praecep-
tor Germaniae), prominent reformer and close collaborator of Luther. Actually,
in the overall context of European logic in the mid-sixteenth century, the role
played by Melanchthon is one of the highest significance. From 1520, when at
the age of 23 he published his Compendiaria dialectices ratio (Melanchthon
1520), to 1560—the year of his death—there are records of more than 60 dif-
ferent editions of his logic works. The last version of Melanchthon’s dialectics,
the Erotemata dialectics (Melanchthon 1846), was to be the standard reference
for protestant logic until the beginning of the seventeenth century.

What makes Melanchthon’s logic interesting and explains its influence is
above all the very evolution of his works. In the Compendiaria Dialectices
Ratio, a young, strongly antischolastic Melanchthon offers a simplified and
rhetorically oriented treatment of dialectic, purged of many “superfluous”
scholastic subtleties. Like many humanist dialecticians, here Melanchthon
rejects the third syllogistic figure (which he considers “remote from common
sense”) and the treatment of modality (the scholastic theories on modality are
considered “tricky rather than true”). A few years later, however, Melanchthon’s
opinions on both matters (as well as on many others; see Roncaglia 1998)
radically changed. In the De Dialectica libri IV (Melanchthon 1528) the third
figure is accepted and discussed at length, and Melanchthon bitterly criticizes
Valla for rejecting it, while in the Erotemata (Melanchthon 1846) the discussion
of modal propositions is considered to be “true and perspicuous, useful in the
judgment of many difficult questions.” The evolution of Melanchthon’s logic is
thus marked by a progressive rejection of humanistic-rhetorical models and by
a return to the Aristotelian and scholastic tradition.

Two further aspects of the evolution of Melanchthon’s dialectic deserve
attention: the gradual shift from a bipartite toward a tripartite conception
of the structure of the proposition, and the growing interest in fallacies. In
1520, Melanchthon endorses the theory that every proposition has two main
components: subject and predicate. In 1528, the question is seen from a
grammatical perspective, and noun and verb are considered as being the two
main components of the proposition. The verb, however, is further subdivided:
It may be a proper verb or a construct made up of the substantive verb (the
copula “est”) and a noun. The copula acquires a fully autonomous role in the
Erotemata, where every proposition is seen as having not two but three main
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parts: the subject, the predicate, and an (explicit or implicit) copula, seen
as the formal sign of the connection between subject and predicate. Such a
theory will play an important role in subsequent logic, because the copula
will be considered to be not only the logical “glue” of the proposition but the
actual bearer of its modal and quality modifications (see Nuchelmans 1980,
1983; Roncaglia 1996, 2003).

The discussion of fallacies also testifies Melanchthon’s increasing use of
scholastic doctrines. Absent in 1520, a short section on fallacies appears in
1528, accompanied, however, by the observation that anyone who has fully
understood the precepts supplied for the construction of valid arguments
doesn’t need special rules to avoid paralogisms. But in the following editions
of his dialectics, Melanchthon systematically adds new divisions and new
examples. He distinguishes between fault of matter and fault of consequence,
corresponding to the traditional division of fallacies in dictione and extra
dictionem, and presents the principal fallacies of both sorts. In the Erotemata,
fallacies undergo a still closer scrutiny within a systematic framework clearly
derived from scholasticism.

Many elements indicate that there was one main and primary reason for
this return to scholasticism: the perception that the Reformed field—engaged
in the sharp debate with Catholic theologians, and in the equally sharp debate
among different Reformed confessions—desperately needed effective logical
tools. Rhetoric could be useful in winning popular support, but was much less
effective in winning subtle theological debates. In the complex theological and
political struggle that was under way in Europe, universities were to become
crucially relevant players. Logic was to become a weapon in the theological
struggle, and Melanchthon was probably the first to perceive that clearly.

Melanchton’s works on dialectic, together with the Dialectica by Johannes
Caesarius (1460–1550), another interesting and influential mixture of humanist
and Aristotelian elements, had thus the ultimate effect of paving the way that
was to be followed by Protestant logicians: endorsement of some humanist
doctrine (first and foremost the pivotal role of topics and inventio), and great
attention to the pedagogical organization of their work, but within a context
that retained many tracts of traditional logic; and that—given the relevance
of logic for the theological debate—was to devote a renewed attention even to
some of the once deprecated scholastic subtleties.

It is therefore hardly surprising that the attempt, made by the so-called
Philippo-Ramist logicians, to conjugate Ramus’s drive for simplicity and
for systematic, method-oriented classification, with Melanchthon’s humanist-
influenced but somehow more conservative treatment of logic, was not destined
to have a long success. Given the renewed role of logic in the interconfessional
theological debate, the two paths were bound to diverge and the Ramist
component was to succumb: At the end of the sixteenth century, the anti-
Ramist pamphlet was to become a well-established literary genus in the logic
production of Protestant Germany. A fierce battle against Ramism was led by
Cornelius Martini (1568–1621), among the founders of the so-called Protestant
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Scholastic. Martini endorses Zabarella’s definition of logic as mental habitus
dealing with “second notions,” that is, concepts used to represent and classify,
rather than immediately derived from perception. Martini divides logic into
formal and material, with formal logic seen as dealing with the pure form of
(syllogistic) consequences.

Zabarella’s influence is also apparent in the work of Bartholomaeus Keck-
ermann (ca. 1571–1608). In his Systema logicae (1600, in Keckermann 1614),
the effort to organize logic as a discipline (largely on the basis of topics) is
clear from the very definition of logic, which can be considered as a human
ability—and is then to be regarded as a mental habitus—but can also be
considered as the corpus of doctrines resulting from the use of this ability (ars
externa): that is, as a system. In this perspective, knowledge of the historical
constitution of this doctrinal corpus becomes important: Therefore, it is not by
chance that the short section on the history of logic, present in many sixteenth-
and seventeenth-century treatises, acquires in Keckermann status, accuracy,
and completeness. Keckermann’s interest in the history of logic is also con-
nected with the eclectic tendency of many early seventeenth-century logicians:
Given that in a Zabarella-oriented perspective logic is a human activity (and
is also the systematically arranged, historical product of this activity), it is
natural to try to collect the “logical tools” developed by different logicians in
different times and contexts. This eclectic tendency is usually implicit, and is
not necessarily connected with the endorsement of Zabarella’s positions (some
aspects of which were actually criticized by many systematic-oriented or eclec-
tic logicians), but it is clearly present in the encyclopedism of authors such as
Johann Heinrich Alsted (1588–1638) or Franco Burgersdijk (1590-1636), whose
Institutionum logicarum libri duo (1626) was the standard logic handbook in
the Netherlands, and, like Keckermann, included a large section on the history
of logic (see Bos and Krop 1993). A remarkable feature of this eclecticism is
the tendency to reabsorb, within a context usually marked by Renaissance
Aristotelianism, even some of Ramus’s doctrines, notably the emphasis on the
practical utility of logic and on the need of a well-arranged, easily graspable,
and pedagogically oriented method.

In the first half of the seventeenth century, in reformed Europe, despite
the terrible destruction of the Thirty Years War, the university system was
expanding, and acquiring a political relevance that was bound to transform
any doctrinal difference in the occasion of sharp conflicts (see Wollgast 1988b).
This complex situation enhanced logical research and produced some new
and interesting theories. In discussing the structure of the proposition, the
Berlin-based Johannes Raue (1610–1679) proposed a new theory of the nature
and role of the copula. In his opinion, the standard proposition of the form “S
is P” should be analyzed as “that what is S is that what is P” (id quod est
S est id quod est P), that is, as having three copulas. The role of the main
copula (the middle one, which Raue calls “real copula”) is then differentiated
from that of the auxiliary ones: It can be used only in the present tense, while
time and modal modifications are seen as operating on the auxiliary copulas.
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The pronoun “id” stands for the “third common entity” (tertium commune) in
which subject and predicate are joined, and it has been observed that “Raue
delights a Fregean reader when he emphasizes that ‘S’, the subject, . . . in
his analysis is predicated of the tertium commune just as the predicate ‘P’ ”
(Angelelli 1990, 188). This “newest theory,” of which Raue is very proud, was
criticized by Johannes Scharf (1595–1660): a polemical exchange that was well
known to Leibniz. Leibniz had the highest opinion of another famous logician
of the time, Joachim Jungius (1587–1657). Jungius’s Logica Hamburgensis, one
of the most clear and complete logical works of the seventeenth century, deals
at length with such relevant and “advanced” topics as the theory of relations
and the use of nonsyllogistic consequences (Jungius 1957, 1977). Jungius is
not the only one to deal with such theories, which were considered useful
in theological disputations, but his treatment of them is always clear and
insightful. This is especially true of his investigation of the inversio relationis
(from “David is the father of Solomon” to “Solomon is the son of David”) and
of the consequence a rectis ad obliqua (from “the circle is a figure” to “he who
draws a circle draws a figure”). Jungius’s discussion of the latter—which he
considers a simple consequence (the consequent is inferred from the antecedent
without the need of a middle term)—was the subject of a detailed analysis in
the correspondence between Leibniz and Jungius’s editor Johannes Vagetius
(1633–1691), who tried to offer a formal representation of its structure (see
Mugnai 1992, 58–62 and 152–153).

4. Descartes and His Influence
When I was younger I had studied, among the parts of philosophy,
a little logic, and, among those of mathematics, a little geometrical
analysis and algebra. . . . But, in examining them, I took note that,
as for logic, its syllogisms and the greater part of its other teachings
serve rather to explain to others the things that one knows, or
even, like the art of Lull, to speak without judgment about those of
which one is ignorant, than to learn them. . . . This was the reason
why I thought that it was necessary to seek some other method,
which, comprising the advantages of these three, were free from
their defects. (Descartes 1994, 33–35)

This passage, from René Descartes (1596–1650) Discours de la méthode
(1637), offers a good synthesis of Descartes’s attitude toward traditional logic.
Descartes’s criticism of syllogism does not concern its validity but its power
as a tool for scientific research, and is clearly expressed in his Regulae ad
directionem ingenii: “dialecticians are unable to devise by their rules any
syllogism which has a true conclusion, unless they already have the whole
syllogism, i.e. unless they have already ascertained in advance the very truth
which is deduced in that syllogism” (Descartes 1964–1976, X, 406). The core
of the argument is a classic one, advanced in different forms at least since
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Sextus Empiricus (see Gaukroger 1989, 6–25): Syllogism is a circular form
of reasoning, since it only holds if both its premises are already known to
be true, but if both premises are already known to be true, the conclusion
is already known to be true, too. Therefore, to discover something new, we
cannot depend on syllogism.

Pierre Gassendi (1592–1655) advanced a similar criticism. He observed that
the evidence needed to accept one of the premises of a syllogism is provided
or presupposed by its conclusion. Thus, in the Barbara syllogism “All m are
p, all s are m, therefore all s are p,” the truth of “all m are p” can only be
established by generalization of the fact that all instances of m—including
s—are p: The truth of the conclusion is presupposed by, rather than inferred
from, the truth of the premises.

Descartes discusses a further argument against syllogism: The validity of
a syllogism does not guarantee the truth of its conclusion, which depends
on the truth of the premises. The syllogism alone—while giving us the false
impression of dominating the concepts we are dealing with—cannot establish
it. This argument too is fairly traditional; in the period we are dealing with,
we find a similar one in Francis Bacon (1561–1626):

We reject proofs by syllogism, because it operates in confusion and
lets nature slip out of our hands. For although no one could doubt
that things which agree in a middle term, agree also with each
other (which has a kind of mathematical certainty), nevertheless
there is a kind of underlying fraud here, in that a syllogism consists
of propositions, and propositions consist of words, and words are
counters and signs of notions. And therefore if the very notions
of the mind (which are like the soul of words, and the basis of
every such structure and fabric) are badly or carelessly abstracted
from things, and are vague and not defined with sufficiently clear
outlines, and thus deficient in many ways, everything falls to pieces.
(Bacon 2000, 16)

While in Bacon this argument is used to advocate the need of “true induction”
(progressive generalization accompanied by the use of his “tables of comparative
instances”), in Descartes it is used to advocate the role of intuition. According
to Descartes, the process of knowledge acquisition depends on (1) intellectual
intuition, that is, the intellectual faculty that allows a clear, distinct, immediate,
and indubitable grasp of simple truths; and (2) deduction, that is, the grasp
of a connection or relation between a series of truths. According to Descartes,
deduction is therefore not to be seen as an inferential process governed by logical
rules, but rather as the exercise of an intellectual faculty that is ultimately
based on intuition. The process of mastering a long or complex deduction
is a sort of intellectual exercise, consisting in the recursive application of
intuition over each of its steps. The aim of this process is certainty: The idea
of degrees of certitude or probability is totally alien to Descartes’s intuition-
based conception. And since for Descartes intellectual intuition is a natural
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faculty, there are no abstract rules or inference patterns governing intuition or
deduction: We can only give precepts—like the well-known four regulae given
in the Discours—helping us in the better use of this faculty.

One aspect of Descartes’s concept should be stressed: The combined use of
intuition and deduction allows us to attain knowledge, but does not suffice by
itself to guarantee that the knowledge we attain is true. If a proposition p is
intuitively clear and evident for us, we are entitled to claim that it is true. But
while this claim is justified, its correctness is not grounded on the fact that
p is perceived by us as clear and evident, because a deceptive God could give
us a clear and distinct intuition of something that is not true (i.e., something
that does not correspond to reality; from this point of view, Descartes is now
generally considered as holding a correspondence theory of truth; see Gaukroger
1989, 66). Therefore, the well-known cogito argument is needed to ensure God’s
external guarantee of our knowledge. According to Descartes, we only need (and
we can only achieve) this external guarantee: God’s knowledge is not a model
for our knowledge, and there is no set of eternal truths binding God’s knowledge
and ours in the same way, since eternal truths themselves result from the joint
action (or rather from the unified action) of God’s will and understanding.

Descartes’s resort to intellectual intuition as ultimate foundation of certainty
is somehow at odds with his work in the field of algebra and geometry and
with his discussion on the relevance of analysis. In Descartes’s opinion, analysis
is associated with the discovery of new truths (while synthesis has to do with
presenting them in such a way as to compel assent), and its function is apparent
in mathematics and in analytical geometry, when we use variables (general
magnitudes) instead of particular values. Descartes, however, doesn’t seem
to perceive the possible connection of this method with deductive reasoning:
on the contrary, he seems to associate deduction with the less imaginative,
painstaking word of synthetically computing individual magnitudes.

The influence of scholasticism on Descartes’s philosophy is greater than one
might suspect at first sight (see already Gilson 1913). For instance, hints at a
“facultative” concept of logic (see section 6) were present in authors (among
them Toletus, Fonseca, and the Conimbricenses) he knew. But Descartes’s
concept of deduction differed very much from traditional logic. This did not
prevent some Cartesian-Scholastic logicians to reconcile them. Johann Clauberg
(1622–1665), in his aptly named Logica vetus et nova (Clauberg 1658), defended
Descartes’s methodical rules against the charge of being too general or useless,
attributing them the same kind of rigor and strength of Aristotle’s logical
rules. Johann Christoph Sturm (1635–1703) made a similar attempt.

More articulate was the position of Arnold Geulincx (1624–1669), who pub-
lished a Logica Fundamentis suis restituta (1662), and a logic more geometrico
demonstrata, the Methodus inveniendi argumenta (1663; both in Geulincx
1891–1893). Like most Dutch logicians, Geulincx was deeply influenced by the
eclectic Aristotelianism of Burgersdijk (see section 3). He thus merged late
scholastic, Aristotelian, and Cartesian themes in a logic that, with some hyper-
bole, he labelled “geometric.” Its treatment includes the so-called De Morgan
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rules (well known in medieval scholastic logic, but less frequently dealt with by
Renaissance logicians). He also devised a “logical cube” whose faces represented
all the axioms and argument forms of his logical system.

Descartes’s influence is also evident in the Port Royal Logic, which we will
discuss in the next section. Before dealing with it, however, there are two
authors—somehow difficult to classify by means of traditional historiographic
labels—which are worth mentioning: the French Jesuit Honoré Fabri (1607–
1688) and the Italian Jesuit Gerolamo Saccheri (1667–1733). Neither of them
was an “academic” logician, and they both had wide-ranging interests. Fabri
corresponded with most of the major philosophers and scientists of the time
(including Descartes, Gassendi, and Leibniz); was interested in philosophy,
mathematics, astronomy (he discovered the Andromeda nebula), physics, and
biology; and wrote on calculus and probabilism (his book on this subject was
condemned by the Church). His Philosophia (1646) is influenced by Descartes,
but the section on logic is pretty original: He developed a combinatorial calculus
which allowed him to classify 576 syllogistic moods in all the four figures; he
also used a three-valued logic (based on truth, falsity, and partial falsity) which
he applied to the premises and conclusions of syllogisms, and used disjunctions
to express hypothetical judgments.

Wide-ranging were also the interests of Saccheri, who, besides working
on logic, also wrote on mathematics and geometry. In trying to prove the
parallel lines postulate, in the Euclides ab Omni Naevo Vindicatus (1733)
he hints—against his will—to non-Euclidean geometries. Both in logic and
in geometry he makes use of the consequentia mirabilis (well known to the
mathematicians of the time): If p can be deduced from non-p, then p is true.
In his Logica demonstrativa (published anonymously in 1697)—a treatise on
logic organized “more geometrico”—he applies the consequentia mirabilis to
syllogistic. One of his proofs refers to the rejection of AEE syllogism in the
first figure. Saccheri shows that this very rejection (stated in E-form: “no AEE
syllogism in first figure is valid”) can be the conclusion of a first figure AEE
syllogism with true premises. If such a syllogism is not valid, then it constitutes
a counterexample to the universal validity of AEE syllogisms (which are thus
to be rejected). If it is valid, the truth of its premises implies the truth of
its conclusion. Such an elegant demonstration has been correctly seen as the
mark of an argumentation strategy based on the skillful use of confutations
and dilemmas (see Nuchelmans 1991, 133–137).

5. The Port-Royal Logic
A mixture of ancient and new doctrines characterizes the Logique ou l’Art de
penser published anonymously in 1662 but written by Antoine Arnauld (1612–
1694) and Pierre Nicole (1625–1695). The authors belonged to the Jansenist
movement of Port-Royal, hence the current denomination of their work as
the Port-Royal Logic (Arnauld and Nicole [1683]). According to widespread
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opinion, the authors endorse Descartes’s philosophy. This is in many respects
true, especially as regards the origin of ideas and the account of the scientific
method. Indeed, in the 1664 edition of the book, the authors declare that the
section on the analytic and synthetic method is based on the manuscript of
Descartes’s Regulae ad directionem ingenii. However, the Port-Royal Logic
is not a straightforward Cartesian logic because it relies on many sources.
Apart from the influence of Augustine and Pascal (1623–1662), the authors,
though condemning scholastic subtleties, acknowledge the utility of some
scholastic precepts and are not always adverse to Aristotle. True, they reject
the Aristotelian categories and topics, but describe these doctrines and make
them known to their readers.

The Port-Royal Logic is also different from a humanistic ars disserendi, and
even more from an ars bene disserendi, as Ramus would have it, for it is intended
to be an ars cogitandi, an art for thinking. The authors maintain that, since
“common sense is not so common a quality as people think” (First Discourse
17, trans. 6), people ought to educate themselves to be just, fair, and judicious
in their speech and practical conduct. Such an education should be offered
by logic, but traditional logic pays too much attention to inference, whereas
it should concentrate on judgment because it is in judging that we are liable
to make errors compromising our rational and practical conduct. So, because
judgment is a comparison of ideas, a detailed study of ideas must precede it.

In the Port-Royal Logic, “idea” is an undefined term: “The word “idea”
is one of those that are so clear that they cannot be explained by others,
because none is more clear and simple” (I, i, 40, trans. 25). “Idea,” therefore,
is a primitive term that can only be described negatively. Accordingly, the
authors maintain that ideas are neither visual images nor mere names, and are
not derived from the senses, because, although the senses may give occasion
to forming ideas, it is only our spirit that produces them. Once ideas are
produced, logic investigates their possible relations and the operations one
can perform on them. Such relations and operations are founded on a basic
property of universal or common ideas (as different from singular ideas): the
property to have a comprehension and an extension.

The comprehension of an idea consists of “the attributes that it contains in
itself, and that cannot be removed without destroying the idea. For example,
the comprehension of the idea of a triangle contains extension, shape, three
lines, three angles, and the equality of these three angles to two right angles, etc.”
(I, vi, 59, trans. 39). The fact that the comprehension of “triangle” contains
not only three lines but also the property proved by the theorem that the sum
of its angles is equal to two right angles, gives way to speculations as to what
extent humans dominate the comprehensions of their own ideas (Pariente 1985,
248ff). The extension of an idea “are the subjects to which the idea applies.
These are also called the inferiors of a general term, which is superior with
respect to them” (I, vi, 59, trans. 40). The notion of extension is ambiguous.
The subjects to which an idea applies can be intended either as the class of
individuals of whom that idea can be predicated, or as the ideas in whose
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comprehension that idea is contained. In the latter sense, extension is clearly
defined in terms of comprehension; therefore, comprehension is considered a
primitive notion in comparison with extension. The ambiguity of the notion
of extension, already noticed by some interpreters (Kneale and Kneale 1962,
318–319), is somehow intended, for it serves, as we will see, to define different
properties of the operations that can be performed on ideas, as well as to
solve classical problems of quantification in the doctrine of judgment and
reasoning.

If we subtract an attribute from the comprehension of an idea, by definition
we obtain a different idea, in particular a more abstract one: Given the
idea “man,” whose comprehension certainly contains “animal, rational,” by
subtracting “rational” we destroy the idea “man” and obtain a different and
more abstract idea, which is the residual idea with respect to the original
comprehension of “man.” The operation just described is abstraction that, if
reiterated, produces an ascending hierarchy of increasingly abstract ideas.

The operation of abstraction is the means by which the Port-Royal Logic
introduces an inverse relation between comprehension and extension, often
called the “Port-Royal Law” in subsequent literature. For the authors maintain
that in abstractions “it is clear that the lower degree includes the higher
degree along with some particular determination, just as the I includes that
which thinks, the equilateral triangle includes the triangle, and the triangle
the straight-lined figure. But since the higher degree is less determinate, it can
represent more things” (I, v, 57, trans. 38). This means that the smaller the
comprehension, the larger the extension, and vice versa.

To move from a higher to a lower idea in the hierarchy we have to restrict
the higher one. Restriction can be of two kinds. The first kind of restriction
is obtained by adding a different and determined idea to a given one: If to
the idea A (animal) we add the idea C (rational), so as to have a new idea
composed by the joint comprehensions of A and C, and if we call B (man) the
idea thus composed, then B is a restriction of A and C and is subordinated to
them in the hierarchy of ideas. This restriction cannot be obtained by adding
to an idea some idea it already contains in itself, for the alleged restriction
would be a mere explication of the given idea: If B contains A, then by adding
A to B we obtain B, that is BA = B. The second kind of restriction consists
in adding to a given idea “an indistinct and indeterminate idea of part, as
when I say ‘some triangle.’ In that case, the common term is said to become
particular because it now extends only to a part of the subjects to which it
formerly extended, without, however, the part to which it is narrowed being
determined” (I, vi, 59, trans. 40). The possibility of two kinds of restriction
shows that comprehension and extension do not enjoy the same properties.
While the first restriction modifies the comprehension of the restricted idea
so that we get a different idea having a richer comprehension and a smaller
extension, the second restriction concerns only the extension of the restricted
idea with no modification of its comprehension: It remains the same idea. But
this depends on the fact that the notion of extension of the Port-Royal Logic is,
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as already noticed, ambiguous. In this second case, the extension is obviously
constituted by the individuals to whom the idea applies.

The Port-Royal Logic, also due to Augustine’s influence, is very attentive
to the linguistic expression of ideas. The authors maintain that

if reflections on our thought never concerned anyone but ourselves,
it would be enough to examine them in themselves, unclothed in
words or other signs. But we can make our thoughts known to
others only by associating them to external signs, and since this
habit is so strong that even in solitary thought things are presented
to the mind by means of the words we use in speaking to others,
logic must examine how ideas are joined to words and words to
ideas. (untitled preface 38, trans. 23–24)

This means that thought is prior to language and that a single thought
can underlie different linguistic forms. This view of the relation between
thought and language is one of the guidelines behind the project of a universal
grammar contained in the Grammaire générale et raisonnée, published in 1660
by Arnauld in collaboration with Claude Lancelot (1616–1695) (Arnauld and
Lancelot [1676]). This view, which has received great attention since Noam
Chomsky’s (1966) much-debated claim that it prefigures transformational
generative grammar, is also relevant to logic (see Dominicy 1984).

Given that logic studies the properties of ideas, their mutual relations,
and the operations that can be performed on them, and given that ideas
are designated by words which can be equivocal, the authors establish the
convention that, at least in logic, they will treat only general or universal ideas
(as different from singular ideas) and univocal words (I, vi, 58, trans. 39). Such
are the words associated to ideas by way of a nominal definition, meant as
the imposition of a name to an idea by way of a free, public, and binding
baptismal ceremony, of the kind used in mathematics and whose model is
found in Pascal ([1658 or 1659], 242ff). Nominal definitions make it possible to
use words (particularly substantives) of ordinary language as if they were the
signs of a formal language in which everything is explicit:

The best way to avoid the confusion in words encountered in
ordinary language is to create a new language and new words that
are connected only to the ideas we want them to represent. But in
order to do that it is not necessary to create new sounds, because
we can avail ourselves of those already in use, viewing them as
if they had no meaning. Then we can give them the meaning we
want them to have, designating the idea we want them to express
by other simple words that are not at all equivocal. (I, xii, 86,
trans. 60)

We can not only make abstractions and compositions of ideas but also
compare them and, “finding that some belong together and others do not, we
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unite or separate them. This is called affirming or denying, and in general
judging” (II, iii, 113, trans. 82). Since judging is a comparison of ideas, and since
the activity of making syllogistic inferences can be considered as a comparison
of two ideas through a third one, syllogistic inferences lose much of their
importance, while judging is established as the most important of our logical
activities (Nuchelmans 1983, 70–87). This does not mean that the Port-Royal
Logic neglects syllogisms. On the contrary, it contains an articulate doctrine of
syllogism based on the fundamental principle that, given two propositions as
premises, “one of the two propositions must contain the conclusion, and the
other must show that it contains it” (III, xi, 214, trans. 165). It also contains
a nontrivial treatment of syllogistic moods that was to be implemented by the
young Leibniz in his De Arte Combinatoria (see section 8). Such a treatment is
based on “the law of combinations,” applied to “four terms (such as A.E.I.O.)”
giving 64 possible moods, and on a set of rules that make it possible to select
the well-formed ones, so that, given rules for the valid moods in each figure,
one can dispense with the doctrine of the reduction of other figures to the
first: Each mood of any figure is proved valid by itself (III, iv, 88–89, trans.
143–144). Indeed, though the first edition of the book contained a chapter
on the reduction to the first figure, that chapter is left out of all subsequent
editions. Nevertheless, though the authors seem competent in pointing out a
frequent confusion between the fourth figure and the first figure with transposed
premises (III, viii, 202, trans. 155), they are very traditional in other respects.
For instance, they reduce the consequentiae asyllogisticae, called complex and
composed syllogisms, to the classical categorical moods, thus provoking a
reproach from Vagetius in the preface to the second edition of Jungius’s Logica
Hamburgensis (see section 3).

The Port-Royal Logic attributes great importance to method, corresponding
to the operation of the spirit called “ordering.” Method is divided into two major
sections: The first, devoted to demonstration and science, follows Descartes’s
methodical rules, thus giving an outline of the methods of analysis and synthesis;
the second, devoted to opinion and belief, contains interesting observations
about epistemic modalities and probability, as well as the outlines of Pascal’s
wager on the existence of God. By introducing the question of probability,
the Port-Royal Logic breaks away from one of the major tenets of Descartes’s
philosophy, and opens new perspectives for a probability not limited to games
of chance but extended also to events valuable on the basis of frequencies
(Hacking 1975b).

The Port-Royal Logic was highly successful, as can be gathered from its
numerous editions (Auroux 1993, 87). Its influence, also thanks to Latin,
English, and Spanish translations (Risse 1964–70, II 79), is apparent in most
of the subsequent European logical literature. Obviously some scholars still
preferred the Aristotelian model. For instance, John Wallis (1616–1703), one
of the best mathematicians of the time, though the Port-Royal Logic agreed
with the argument he had already produced in 1638 that in syllogisms singular
propositions must be considered as universal, rejects the Ramist syllogistic
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moods (Wallis 1687) on Aristotle’s authority alone. A direct reaction to the
Port-Royal Logic is presented by Henry Aldrich (1648–1710), whose Artis
Logicae Compendium (Aldrich [1691]), published anonymously, reprinted many
times and still widely used in the Victorian era, preserves scholastic doctrines
and an account of the syllogism which “is the best available” (Ashworth 1974,
237). In some concluding remarks, Aldrich criticizes the fundamental principle
of syllogism of the Port-Royal Logic, which he considers as a disguised version of
the dictum de omni et nullo. Yet the very existence of such a criticism implicitly
proves the fame the Port-Royal Logic had achieved (Howell 1971, 54–56). As
for Port-Royal’s seminal theory of probability, the young Leibniz already
acknowledged its merits in 1667 (Leibniz 1923–, VI, i, 281n), while Jakob
Bernoulli wrote his Ars conjectandi, published posthumously (Bernoulli [1713]),
as a development of that theory and as a complement to the Ars cogitandi,
the Latin version of the Art de penser (Hacking 1975b, 78; Daston 1988, 49).

6. The Emergence of a Logic of Cognitive Faculties
Toward the end of the seventeenth century, many logicians developed an inter-
est in the analysis of cognitive faculties. Descartes moved in that direction when
he focused his attention on the operations of intuition and deduction, but also
the Port-Royal Logic considered the reflection on the nature of the mind as the
means for a better use of reason and for avoiding errors. The study of cognitive
faculties was not simply meant to provide an expositive framework for logical
doctrines. As a matter of fact, dealing with the nature and object of logic and
with the justification of the traditional partitions of logical treaties through a
reference to mental operations had been a well-established practice since Aristo-
tle’s Organon: The operations of simple apprehension, judgment, and reasoning
had been mentioned as mental counterparts to the logical doctrines of concepts,
judgments, and inferences (for a similar approach see Sanderson, section 2). The
novelty of what has been called the “facultative logic” of the late seventeenth
and eighteenth centuries (Buickerood 1985) is that the cognitive operations
involved in the formation and use of ideas become a central concern of logicians.

The most important author working on a logic of cognitive faculties is John
Locke (1632–1704). The Essay concerning Human Understanding (Locke 1690)
is often quoted as a primary example of indifference, if not contempt, for logic.
This is not true if it is intended to describe Locke’s attitude to logic in general,
rather than his attitude toward the doctrine of syllogism. Locke, who had been
provided at Oxford with a sound scholastic logical education (Ashworth 1980),
asks logicians to give up their claim that they teach humans, who are born
rational, how to reason by means of syllogisms (Essay, IV, xvii, 4). Logical
research should rather investigate the way we form, designate, combine and,
in general, use ideas.

This concept of logic attributes fundamental importance to language. If
logic is the study of the faculties that produce and work with ideas, then it
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becomes impossible to ignore that we can work with ideas only in so much as
we connect them to linguistic signs. This very connection of ideas to linguistic
signs, although very useful, is a main source of our errors; therefore logic must
provide a detailed treatment of the use and of the abuse of words. Indeed Locke
compares logic to semiotic: “σημειωτικ	, or the Doctrine of signs, the most
usual whereof being Words, . . . is aptly enough termed also λογικ	, Logick”
(Essay, IV, xxii, 4). Locke does not intend to privilege the study of words
over that of ideas, for he considers both ideas and words as signs, with the
difference that ideas are signs of things and words are signs of ideas (see
Ashworth 1984). Nevertheless it cannot be doubted that the success of Locke’s
philosophy contributed to the extraordinary importance language was to have
for a large section of later philosophy and logic (see Hacking 1975a).

One could say that a logic centered on the study of faculties that produce
ideas includes a good deal of epistemological, psychological, and linguistic
research (see Hatfield 1997). This is true, but one should consider that this is
a consequence of a double effort. On the one hand, Locke wanted to continue
the old battle against the ontological basis of the Aristotelian logical tradition
by eliminating all talk about natural essences. On the other hand, he wanted
to win the new battle against Cartesian innatism (accepted by the Port-Royal
Logic) by investigating the empirical origin of our thought. A study of such
questions and of the correct use of our ideas and their signs could provide
a guide to man’s intellectual conduct in the exercise of judgment, especially
in an age characterized by a strong skeptical movement. But providing men
with a guide in making judgments was seen as the purpose of logic: In this
respect, Locke had many predecessors, notably the authors of the Port-Royal
Logic. It must also be considered that it was still left to logic, once the
observation of cognitive operations was completed and a careful reflection
on them was performed, to establish norms for the correct use of those very
operations.

Defenders of the Aristotelian tradition, such as John Sergeant (1622–1707),
criticized Locke’s approach to logic (see Howell 1971, 61–71). But many more
were Locke’s admirers, and the impact of his views was impressive. Particularly
successful was his refusal of innate ideas (Essay, I, ii), and his emphasis on
probable knowledge, though he was far from considering probability from a
quantitative point of view (see Hacking 1975b, 86–87). What interests us is
that from a very early stage, Locke’s doctrines were included in logic textbooks,
frequently in association with direct or indirect references to the Port-Royal
Logic. This seems strange if one considers that Locke and the Port-Royalists
were so far apart on the question of the origin of ideas. But this important
difference was overlooked by taking into account what Locke and the Port-
Royal Logic had in common: the purpose of logic as the guide for correct
judgment, the idea that logicians should reflect on human understanding,
the importance of the linguistic expression of our thoughts. Moreover, the
Port-Royal Logic, whose intended readers included the students of the petites
écoles of Port-Royal, who had to be prepared for the curricula of European
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universities, was a good source of information about traditional logical topics
(such as syllogisms, fallacies, method) that the Essay lacked and that the
Port-Royalists had treated without deference toward Aristotle.

Perhaps the first of such logic handbooks was the Logica sive ars ratiocinandi
(Le Clerc 1692) written by the Swiss Jean Le Clerc (1657–1736), who adopted
Locke’s doctrine of judgment, his classification of ideas, and his philosophy of
language, and proposed a mixture of Locke’s and Port-Royal Logic’s theses
as concerns the question of probability. A similar approach to logic is to
be found in another Swiss scholar, Jean-Pierre Crousaz (1663–1750), who
published a series of books on logic, the latest of which was Logicae systema
(Crousaz 1724). As it can be expected, a number of British authors published
Locke-oriented logic handbooks, most of which had several editions in Britain
and elsewhere. Isaac Watts (1674–1748), in his Logick (Watts 1725) and in
a popular supplement to it (Watts 1741), followed Crousaz and Le Clerc
in offering a Lockean analysis of human nature (especially perception) with
a preference for judgment and proposition, rather than syllogism. William
Duncan (1717–1760), in his Elements of Logick (Duncan 1748), stated that the
object of logic is the study of the faculties of the human understanding and of
cognitive procedures, and divided logic into four parts according to the model
of the Port-Royal Logic (see Yolton 1986). Francis Hutcheson (1694–1746)
too, in his posthumous Logicae compendium (Hutcheson 1756), considered
logic as the study of cognitive faculties, but also offered a kind of axiomatic
presentation of syllogistic.

The Essay was promptly translated into Latin and French. By 1770, pro-
fessors of Prussian universities were officially asked to follow Locke in their
lectures on metaphysics (von Harnack [1900], I, i, 373). But much before
that date Georg Friedrich Meier (1718–1777), the author of the text adopted
by Kant for his logic courses (see section 11), already used the Essay in his
lectures. The reception of the Essay as a book of logical content was made
easier by the inclusion of Locke’s doctrines in logic handbooks such as those
we have mentioned. But it was left to Locke’s posthumous Of the Conduct of
the Understanding (Locke [1706] 1993), originally intended as an additional
chapter to the fourth edition of the Essay, to enter directly into the field of
logical literature. For in this small book, Locke explicitly declares his views
to be an improvement over the standard logic of his time (Buickerood 1985,
183). Of the Conduct of the Understanding was widely read not only in Locke’s
own country (Howell 1971, 275ff.) but also in Germany. In the second decade
of the eighteenth century, the Thomasian philosopher Johann Jakob Syrbius
(1674–1738) used it as a guide for his lectures, and Wolff referred to it in his
German Logic (Wolff [1713], Preface). Later on Georg David Kypke translated
it into German (Locke [1755]), but at the time of this translation Locke had
already been favorably discussed in the incipient German literature on the
history of logic (Budde 1731).

In France, Locke’s views were well received by authors who also supported
Port-Royal’s doctrines. This is the case of Jean Baptiste d’Argens (1704–1771)
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who, in the section devoted to logic of a philosophical treatise addressed to
ladies, repeated the Lockean argument that all ideas originate from the senses,
at the same time referring to the Port-Royal Logic (d’Argens 1737, Log. §§3, 1)
in very positive terms. Among French scholars, Étienne Bonnot de Condillac
(1714–1780), the influential promoter of a radically empiricist philosophy
usually referred to as “sensationism,” deserves a special mention. In works of
logical content written in the later part of his life—La Logique (Condillac [1780])
and the posthumous La langue des calculs (Condillac [1798])—he developed
a concept of logic that owes much to Locke, although he proudly maintains
that it is similar to no one else’s. Condillac describes logic as consisting of an
analysis of experience by which we study both the origin of ideas and the origin
of our own faculties (Condillac [1780], Preface). For, differently from Locke,
who admitted sensation and reflection as sources of our ideas, Condillac admits
sensation only and maintains that not only ideas, but also all our faculties
originate from the use of the senses. This is possible because our senses are
complemented by our fundamental linguistic capacity: We would not have
complex ideas nor would we be capable of operating with them if we had no
language. Consequently, Condillac maintains that any science is a well-made
language and such is also the art of reasoning, a conviction that made him
reverse the priority order of grammar and logic (Auroux 1993, 93). He adds
that, to build a well-made language, we need a method because language,
despite its role in the acquisition of our cognitive faculties, has also been used
to produce a jargon for false philosophies. The method Condillac recommends
for the construction of a well-made language in any science is analysis, in
particular analysis as it is used in mathematics, that he considers the paradigm
of a well-made science whose language is algebra.

7. Logic and Mathematics
in the Late Seventeenth Century

At the end of the seventeenth century, another image of the discipline began
to emerge. It was borne out of a comparison of logic with mathematics, a
comparison intended to prove the superiority of mathematics over logic.

Some authors ascribed the superiority of mathematics to its axiomatic-
deductive method. This conviction had enjoyed considerable success (see De
Angelis 1964), and was enhanced by an interpretation of Descartes’s rules of
method as recommendations to begin with a few simple and already known
notions (axioms) and then proceed to unknown notions (theorems). Those who
endorsed this interpretation seemed to draw the conclusion that the old logic
centered on syllogism should be replaced by a new logic intended as a method
to find and order truths according to the model of the mos geometricus.

Some authors attributed the superiority of mathematics to the problem-
solving and inventive techniques of algebra. In this perspective, the search
for equations relating unknown to given elements, exemplified in Descartes’s
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Géométrie (1637), was interpreted as the true Cartesian logic and was absorbed
into the tradition that viewed mathematics as a universal science of invention.
In the seventeenth century, algebra was still a new technique, independent of
logic, that many considered a rediscovery, but also an improvement of ancient
mathematical doctrines. A reference to Descartes was somehow inevitable in
this field, too, since Descartes appreciated algebra as an intermediate step
toward his more abstract mathesis universalis. (On the origins of algebraic
thought in the seventeenth century, see Mahoney 1980.)

Naturally enough, some authors suggested that algebra could be a useful
model for logic. This is the case of Ehrenfried Walter von Tschirnhaus (1651–
1708). He left syllogisms and other traditional parts of logical treatises out of
his logic, but, as the title of his major work declares, he held that logic must
provide a Medicina mentis, a remedy against the illness represented by our
errors, and an aid for the healthy art of invention (Tschirnhaus [1695]). In
particular, he claimed that his method of invention would have, in all fields of
knowledge, the same function of algebra in the mathematical sciences. What
he actually did, however, was to give an exposition of the methods of analysis
and synthesis and a comment on Descartes’s rules of method, albeit with a
new attention to empirical sciences for which he envisaged a mixed method of
a priori and a posteriori elements (Wollgast 1988a).

The assessment of the positive role that algebra could have for logic outlived
the idea that logic should imitate, or even be substituted by, the axiomatic-
deductive method. The latter was either reduced to a mere synthetic (top-down)
order of exposition, or was declared inadmissible outside mathematics, either
because of intrinsic differences between mathematics and other sciences (and
philosophy), or because it was held responsible for the degeneration of Carte-
sianism into Spinozism. But also the algebraic model underwent profound
changes. For the algebraic model, followed by many logicians from the late sev-
enteenth century up to almost the end of the eighteenth century, is not the same
as the algebraic model used in problem solving. Algebra is no longer considered
as a methodical paradigm to be followed analogically by logic to restore the
latter’s function as an intellectual guide but as a tool for logic. Many logicians
now try to apply algebraic techniques directly to logical objects, that is, to ideas
and propositions. In other words, they try to build a logical calculus based
on a symbolic representation of logical objects and on rules for manipulating
signs, on the assumption that an adequate symbolism has been used.

From this point of view, doctrines of ideas such as those of the Port-Royal
Logic and of the emergent logic of cognitive faculties, usually considered
extraneous to the development of mathematically oriented logic, instead acted
as stimuli and provided a field of application for the first tentative logical
calculi. On the one hand, as it has been pointed out (Auroux 1993, 94), a
calculus of ideas needs a theory of ideas. On the other hand, scholars who
had welcomed a logic of cognitive faculties professed the highest esteem for
algebra. We have mentioned Condillac’s positive reference to algebra as the
language of mathematics, but decades earlier Nicolas Malebranche (1638–1715)
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had claimed that “algebra is the true logic” (Malebranche [1674] 1962, VI, i,
v). Also Locke, who belittled syllogistic and the axiomatic method, did not
hide his admiration for algebra (Essay, IV, xii, 15). Locke, however, did not
even think of applying the powerful tool of algebra to ideas. Nor did Thomas
Hobbes (1588–1679), although in his De corpore, published in 1655, whose
first part is significantly entitled Computatio sive Logica, he maintained that
reasoning is computation, where computing means adding several things or
subtracting one thing from another in order to know the rest (Hobbes [1839]
1961, I, i, §2). But other scholars were ready to attempt the actual construction
of logical calculi.

We examine some of such attempts, but first consider a declared failure
to establish a parallelism between logical and algebraic reasoning, that is,
the Parallelismus ratiocinii logici et algebraici (Bernoulli [1685] 1969) of the
above-mentioned Jakob Bernoulli (1655–1705). This is an academic dissertation
in which Bernoulli was the Praeses (and therefore the real author) and his
younger brother Johann (1667–1748) was the Respondens, a circumstance that
has often brought to the attribution of the work to the “Bernoulli brothers.”
The parallelism concerns the objects, the signs, and the operations of both
logic and mathematics.

The objects of logic are ideas of things, while the objects of mathematics
are ideas of quantity. Likewise, the signs of ideas of things are words (“man,”
“horse”), while the signs of quantity are letters of the alphabet: a, b, c for
known quantities, and x, y, z for unknown quantities. Bernoulli does not use
literal symbols for ideas of things because, on a par with the Port-Royal Logic,
he assumes that every idea of thing is (at least in logic) univocally designated
by a word, so that every idea of thing has its own sign.

Bernoulli then introduces the operations we perform on both kinds of ideas:
(1) to put together, (2) to take away, (3) to compare.

1. Ideas of quantity are put together by the sign “+”, as in “a+ b.” Ideas of
things are put together by the connective “and”, as in “virtue and erudition.”

2. From an idea of quantity one can take away a smaller quantity, thus
obtaining the difference: Given a and b, where a is greater than b, the taking
away of b from a is denoted by “a− b.” Similarly, from a complex idea of thing,
one can take away one of the less complex ideas it contains, thus obtaining
the difference: From the complex idea “man” one can take away “animal” and
the difference is “rational.”

3. Given two ideas of quantity, if the mind perceives an equality between
them, it unites them by the sign “=”, as in “a = b.” If the mind perceives
an inequality between them, it uses the signs “>” and “<”, as in “a > b,”
“a < b.” Given two ideas of things, the mind can find (1) agreement or identity
between them, and in this case it will affirm one of the other; (2) disagreement
or diversity between them, and in this case it will deny one of the other.
Affirmation and negation take place thanks to an enunciation (enunciatio),
and are expressed by “it is” (est) and “it is not” (non est), as in “man is
animal,” “man is not brute.”
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While there is a parallelism between algebra and logic with respect to the
operations of putting together and taking away, the parallelism breaks down
in the case of comparison. Bernoulli first considers the case of agreement. Two
ideas of quantity agree when a common measure, applied to them the same
number of times, exhausts both, that is, when they are equal. Two ideas of
things agree, so that it is possible to affirm a predicate of a subject, provided
that a third idea, common to both, exhausts at least the predicate: It is possible
to affirm “theft is sin,” provided that some common idea is found in “theft”
(no matter if “theft” contains some other ideas besides) and exhausts “sin.”

It is clear that Bernoulli intends the comparison of ideas of things as the
comparison of their comprehensions. This is confirmed by the fact that “theft
is sin” is an indefinite proposition, that is, a proposition whose subject is not
quantified. Now, Bernoulli explains, in an indefinite proposition the predicate
is found in the nature of the subject, which means that it cannot be taken
away from the idea of the subject in which it is contained without destroying
it, according to the Port-Royal Logic definition of comprehension.

We have seen that for Bernoulli the agreement or identity of subject and
predicate subsists even if it is incomplete, that is, if the third idea common to
both exhausts the predicate without exhausting the subject. Here a problem
arises: While the equality of quantities is mutual (if a = b, then b = a), an
affirmative indefinite proposition expressing an incomplete agreement is not
convertible: “Man is rational” is true, but “Rational is man” is false. Moreover,
what happens if the predicate is not found in the nature of the subject but
is constituted by some accidental attribute? The answer is that it would be
impossible to establish even a partial agreement and, strictly speaking, it
would be impossible to affirm that predicate of the subject. Bernoulli decides
to overcome these problems by quantifying over the subjects, that is, by taking
extensions into account. In this way it becomes possible to form true affirmative
propositions such as “All men are sinners” and “Some men are learned,” that is,
propositions that in the indefinite form (“Man is sinner” and “Man is learned”)
are false. The proposition “All men are sinners” is particularly interesting
because it is a true universal proposition although “sinner” is not found in the
nature of “man” (Jesus is [also] man, but is not sinner). Therefore, Bernoulli
states that the subject of universal and particular propositions are “the species
or the individuals that are contained under that [subject]” (Bernoulli [1685]
1969, §11, trans. 176).

Is it practical to consider which are the essential attributes of the subject
and which are the accidental ones and, in the first case, be allowed to make
indefinite judgments while, in the second case, resort to quantified ones? And
how to overcome the problem of the impossibility of converting true indefinite
propositions, which are exactly those that most resemble algebraic equations?
Bernoulli suggests that one should always quantify all affirmative propositions,
including true indefinite ones. Consequently, one will be allowed to say “Some
men are learned,” which can be converted simpliciter into “Some learned
beings are men,” as well as “All men are sinners” and “All men are rational,”
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which can be both converted per accidens into “Some sinners are men” and
“Some rational beings are men.”

Differences between algebra and logic also appear when a comparison of
ideas shows their disagreement. In algebra, the disagreement of two ideas of
quantity means that between them there is an inequality, a relation designated
by the sign “<” that is perfectly convertible: If a < b, then b > a. In logic, the
disagreement of two ideas of things is expressed by a negative indefinite propo-
sition. But the subject and the predicate of negative indefinite propositions
can be converted only if the disagreement depends on the opposition of the
ideas considered, as in the case of “man is not beast.” This means, as Bernoulli
explained in later essays (see Capozzi 1994), that by converting “Animal is
not a man” one obtains “Man is not animal,” which is false, because man
and animal are not opposite ideas. Also in this case, logic has to resort to
the quantified propositions of old syllogistic, but this means that there are no
real logical equations between the ideas themselves. Not so in algebra, as it
can be proved by the fact that every inequality is perfectly convertible. The
conclusion is that no complete parallelism exists between algebra and logic.
As a substitute, Bernoulli recommends the direct use of algebra in science by
arguing that in science everything can be quantified and all that can be quan-
tified can undergo algebraic treatment. His pioneering mathematical treatment
of probability goes in that direction.

Bernoulli’s case is instructive. It shows that this is not a lethargic period of
logic, as some historians have maintained (Blanché 1996, 169–178), but it also
makes one wonder what made Bernoulli fail where other logicians—at the same
time or a few decades later—made progresses. In our opinion, the main reason
for Bernoulli’s failure was the doctrine of ideas he choose. We have already
pointed out that Bernoulli depends on Port-Royal’s view that every idea of
thing can be univocally designated by a word (at least in logic), and that every
idea of thing is endowed with an indestructible comprehension, conveyed by
the word. In the case of affirmation, this makes Bernoulli consider only the
relation of containment of the predicate in the subject as basic. Consequently,
he is unable to deal with possible predicates that do not disagree with the
content of the subject but are not contained in its comprehension.

To build a calculus it is not enough to have a rudimentary algebra and a
doctrine of ideas. One has to choose a suitable doctrine of ideas.

8. Leibniz
The German logician and philosopher Gottfried Wilhelm Leibniz (1646–1716)
has a foremost role in the history of formal logic. However, it is almost
impossible (and probably misleading) to represent his contributions to logic
as a single and coherent set of theories nicely inserted within a linear path of
development. There are at least three reasons that rule out such a reassuring
view. In the first place, Leibniz contributed ideas—often through scattered and
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incomplete fragments rather than through structured and polished writings—to
a plurality of logically relevant subjects: from the arithmetization of syllogistic
to the theory of relations, from modal logic (and semantic of modal logic) to
logical grammar—and the list could be easily extended. Moreover, relevant
contributions are often found in works, fragments, or letters not explicitly
devoted to the field of logic.

In the second place, most of Leibniz’s writings testify to a work in progress
in the deepest meaning of the expression: Different and sometimes incompatible
strategies are explored in fragments dating back to the same years or even
to the same months, corrections and additions may substantially modify the
import of a passage, promising and detailed analysis remain uncompleted or
are mingled with sketchy hints. Nevertheless, there is a method in Leibniz’s
passionate and uninterrupted research: a deeper unity that is given by a set of
recurring problems and by the wider theoretical framework in which they are
dealt with. Last but not least, it should always be kept in mind that Leibniz’s
works known by his contemporaries and immediate successors constitute a very
limited subset of his actual production. It is only during the twentieth century
that Leibniz’s role in the history of logic came to be fully appreciated, and this
appreciation is connected to at least two different moments: the publication
by Louis Couturat, in 1903, of the Opuscules et fragments inédits de Leibniz
(Leibniz 1966; see also Couturat 1901), many of which were devoted to logic,
and the progress made during the second half of the century in the publication
of the complete and critical edition of Leibniz’s texts (Leibniz 1923–). Almost
three centuries after his death, this edition (the so-called Akademie-Ausgabe)
is, however, still to be completed.

Leibniz’s interest in logic, and the amplitude of his logical background, is
already evident in his youthful Dissertatio de Arte Combinatoria (Leibniz
1923–, VI, i, 163–230). This work is subdivided into 12 problemata (problems),
mainly devoted to the theory of combinations and permutations, accompanied
by a discussion of some of their usus (applications). Of greatest logical relevance
are the combinatorial approach to syllogistic and the discussion of a symbolic
language (characteristica) based on a numerical representation of concepts.

In dealing with syllogistic, Leibniz takes the work done by Hospinianus
(Johannes Wirth, 1515–1575) as his starting point. Like him, Leibniz considers
four different quantities—singular (S) and indefinite (I) propositions are added
to universal (U) and particular (P) ones—and the two traditional qualities
given by affirmative (A) and negative (N) propositions. Given that a syllogism
consists of three propositions (the two premises and the conclusion), we
have 43 possible combinations of the four different quantities and 23 possible
combinations of the two different qualities. The number of possible different
simple moods of the syllogism, valid and invalid, is therefore according to
Leibniz (43 × 23) = 512: the same result obtained by Hospinianus. If we take
into account the four different syllogistic figures (Leibniz includes and explicitly
defends the fourth figure, which was rejected by Hospinianus), we get a total
of (512 × 4) = 2048 “moods in figure.” It is still through a combinatorial
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method, based on the exclusion of the syllogisms conflicting with four classic
rules (nothing follows from pure particulars, no conclusion can be of stronger
quantity than the weaker premise, nothing follows from pure negatives, and
the conclusion follows the quality of the weaker premise) and of eight further
moods conflicting with the rules given for the four syllogistic figures, that
Leibniz gets the number of 88 valid syllogistic moods.

Whereas Hospinianus assimilated singular propositions to particular ones,
Leibniz considers them similar to universal propositions, while indefinite propo-
sitions are connected to particular ones. In this way the number of valid moods
in figure can be reduced to 24 (6 in each of the four figures): the 19 “classical”
ones, plus 5 new ones that are actually the result of applying subalternation
to the conclusions of the 5 “classic” moods with a universal conclusion.

The interest of Leibniz’s treatment of syllogistic in the De Arte Combinatoria
is not to be found in radical innovations concerning the number of moods
of valid syllogisms, but rather in the fact that they are obtained through
the systematic use of a combinatorial calculus, used as a sort of deductive
device. The syllogistic “deduction” of the rules of conversion is also part of this
attempt, based—as in Ramus and in a number of sixteenth- and seventeenth-
century German logicians, including Leibniz’s former teacher Jakob Thomasius
(1622–1684)—on the use of identical propositions. In a later fragment, the
De formis syllogismorum mathematice definiendis (Leibniz 1966, 410–416),
identical propositions are used to obtain a syllogistic demonstration not only
of conversion but also of subalternation.

Since in this demonstration a first figure syllogism is used, Leibniz can
“deduce” all valid moods of the second and third figure using only the first four
moods of the first figure, together with subalternation and the rule according to
which if the conclusion of a valid syllogism is false and one of its premises is true,
the second premise should be false, and its contradictory proposition should
therefore be true (methodus regressus). The valid moods of the fourth figure
can be deduced using conversion (the syllogistic proof of which only required
moods taken from the first three figures). In this way, Leibniz will complete
his construction of syllogistic as a sort of “self-sufficient” deductive system.

The second result of the De Arte Combinatoria worth mentioning is the con-
struction of a symbolic language in which numbers are used to represent simple
or primitive concepts, and their combinations (subdivided in classes according
to the number of primitive concepts involved) are used to represent complex or
derivate concepts. Fractions are used to simplify the representation of complex
concepts, with the numerator indicating the position of the corresponding
term within its class and the denominator indicating the number of the class,
that is, the number of primitive concepts involved. In Leibniz’s opinion, such
a language would offer a solution to the main problems of the logica inventiva
(logic of invention): finding all the possible predicates for a given subject, all
the possible subjects for a given predicate, and all the possible middle terms
existing between a given subject and a given predicate. This would also allow a
mathematical verification of the truth of propositions and of the correctness of
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syllogistic reasoning. As we shall see, this project was to find a more developed
and logically satisfactory form a few years later in 1679.

The idea of constructing a symbolic language in which numbers represent
concepts is not new. Such an idea was already present in a number of attempts
to construct a “universal language,” attempts that were often influenced by the
combinatorial works of Ramon Llull. Leibniz himself makes reference to the
works by Johann Joachim Becher (1635–1682?; Character pro notitia linguarum
universali, 1661) and Athanasius Kircher (1602–1680; Polygraphia nova et
universalis ex combinatoria arte detecta, 1663); similar attempts were made
by Cave Beck (1623–1706?; The Universal Character, 1657) and others, and
are described by Kaspar Schott (1608–1666; Technica Curiosa VII—Mirabilia
graphica, sive nova aut rariora scribendi artificial, 1664). In the same period,
the Spanish Jesuit Sebastian Izquierdo (1601–1681; Pharus Scientiarum, 1659),
aiming at a sort of “mathematization” of the ars lulliana, substituted numerical
combinations for the alphabetical ones used by Llull, and something similar to
a “numerical alphabet”—highly praised by Leibniz—was developed by George
Dalgarno (c. 1626–1687) in his Ars Signorum (1961).

In Leibniz, however, the construction of a numerical characteristica is not
only a handy representational device; it is strictly connected with the idea of the
inherence of the predicate in the subject in every true affirmative proposition
(predicate-in-subject or predicate-in-notion principle). This idea was already
present in the scholastic tradition: In his Commentary on Peter of Spain’s
Tractatus, Simon of Faversham (c. 1240–1306) writes that propositions “are
called complex because they are founded on the inherence of the predicate in the
subject, or else because they are caused by a second operation of the intellect,
namely the composition and division of simples” (Simon of Faversham 1969).
During the Middle Ages, however, the inherence theory of the proposition
was confronted with the idea according to which “in every true affirmative
proposition the predicate and the subject signify in some way the same thing in
reality, and different things in the idea” (Thomas Aquinas 1888–1889, I, xiii, 12).

The predicate-in-notion principle was to become a cornerstone of Leibniz’s
logical work, and Leibniz was to apply it not only to analytical but also
to contingent propositions: “always, in every true affirmative proposition,
necessary or contingent, universal or singular, the concept of the predicate
is included in some way or other in that of the subject” (Leibniz 1973, 63).
In the De Arte Combinatoria, however, Leibniz only deals with propositions
made of general terms, and—as it has been already mentioned—the principle
is mainly used for the discovery of subjects and predicates within the context
of the logica inventiva. Its explicit use as a method for checking the truth of
a proposition given its subject and its predicate is to be found only in the
1679 essays (see Roncaglia 1988), where Leibniz chooses to represent simple or
primitive terms by means of prime numbers.

The advantages of this notation were already stressed in a fragment, dated
February 1678, known as Lingua generalis: “The best way to simplify the
notation is to represent things using multiplied numbers, in such a way that
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the constituting parts of a character are all its possible divisors. . . . Simple
elements may be prime or indivisible numbers” (Leibniz 1923–, VI, iv, 66). Just
as compound (reducible) terms can be traced back—by means of definitions—to
the simple, irreducible terms constituting them, the “characteristic numbers” of
compound terms will be obtainable from the multiplication of the characteristic
numbers of the simple terms constituting them, so that the characteristic
number of a compound term can always be univocally broken down into those
of the simple (relative) terms composing it.

Even at the time of the De Arte Combinatoria, Leibniz was conscious of the
difficulty in finding terms that are really simple, and he had to be satisfied with
simple terms of a relative and provisional nature. This difficulty was gradually
to become, for Leibniz, an actual theoretical impossibility dependent on the
limits of human understanding. While we can cope with abstract systems that
are the result of human stipulation (and in which simple terms are established
by us), only God can handle the much more complex calculus representing the
infinite complexity of the actual world (and, as we shall see, of the infinite
number of possible worlds among which the actual one has been chosen).

To give an example of his notation, Leibniz uses the definition of “homo” as
“animal rationale,” to which the following characteristic numbers are assigned:

animal = 2
rationale = 3
homo = (animal rationale = 2× 3) = 6

To verify the truth of a proposition, one has just to check whether the prime
factors of the characteristic number of the predicate are or not all included
among those of the characteristic number of the subject. The proposition
“Homo est animal” is thus true, since the characteristic number of “animal”
(i.e., 2) is a prime factor of the characteristic number of “homo” (i.e., 6).

A network of relations is thus established between the field of logic and its
numerical “model,” allowing an actual logical “interpretation” to be assigned
to the numbers and arithmetical operations employed:

Number Term
Prime number Simple term
Prime factorization of number Analysis of term
Number expressed in factorial nota-
tion

“Real” definition of term by means of
its component simple terms

Multiplication (calculation of the
least common multiple)

Conceptual composition

Exact divisibility of a by b (where a
and b are the characteristic numbers
of the terms A and B)

Verification of the truth of the propo-
sition “A is B”
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This calculus, however, presents some difficulties if it is used as a device
by which to verify all forms of syllogistic reasoning, as Leibniz intended to do.
While it permits adequate representation of UA and PN propositions, it is
clearly unsuitable—despite Leibniz’s repeated attempts (including the use of
fractions and square roots) to get around the problem—to represent UN and
PA propositions.

The difficulties Leibniz encounters here are connected to the representation
of the incompatibility between terms: Though it is always possible to find the
least common multiple of the characteristic numbers of two terms, it should not
always be possible to construct a term that includes any two given predicates.
Some predicates are simply incompatible. It is then hardly surprising that
without a way to aptly “restrict” the combinations of the terms’s characteristic
numbers (i.e., to restrict conceptual composition), Leibniz finds it “too easy”
to verify PA propositions and “too difficult” to verify UN propositions.

To solve this problem, Leibniz modifies his notation, making it more complex
but much more powerful. Instead of using only one characteristic number for
each term, he uses a pair of numbers—one positive and one negative—with
no common prime factors. The use of “compound” (i.e., with a positive
and a negative component) characteristic numbers allows for the following
correspondences:

“Compound” characteristic number Term

Positive component of characteristic
number

“Affirmative” component of term

Negative component of characteristic
number

“Negative” component of term

Prime factorization of “compound”
characteristic number

Analysis of term

“Compound” characteristic number
expressed in factorial notation, where
no common prime factor is present in
its positive and negative components

“Real” definition of term, demonstrat-
ing its possibility by the absence of
contradictions within its definition

Presence of a common prime factor in
the positive and negative components
of a characteristic number

Logical impossibility of the corre-
sponding term

Now, assuming that a(+) and a(−) represent the positive and negative
components of the compound characteristic number assigned to the term A,
that b(+) and b(−) have the same function with respect to the term B, and
that A and B are possible terms (i.e., that no same primitive factor is present
in either a(+) and a(−) or in b(+) and b(−)), the following rules for the
verification of propositions can be stated:
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Presence in a(+) and in b(−) or in
a(−) and in b(+) of at least one
common prime factor

Incompatibility between A and B:
verification of the proposition “no A
is B” (UN)

Absence in a(+) and in b(−) or in
a(−) and in b(+) of common prime
factors

Compatibility of A and B: verifica-
tion of the proposition “some A is B”
(PA)

Exact divisibility of a(+) by b(+) and
of a(−) by b(−)

Verification of the proposition “every
A is B” (UA)

Non exact divisibility of a(+) by b(+)
and of a(−) by b(−)

Verification of the proposition “some
A is not B” (PN)

This more elaborate attempt is not without flaws, the most relevant being the
problem of representing conceptual negation. Leibniz’s proposal to obtain the
characteristic number of a negative term like “non-A” by simply changing the
sign of the two components of the characteristic number of the corresponding
positive term “A” is ill founded and leads to inconsistencies in the calculus. The
question raised here—the nature of conceptual negation—has always raised
problems for Leibniz (see Lenzen 1986), and is also connected to the more
“philosophical” problem of establishing the nature of incompossibility, a problem
clearly stated in a famous passage of the fragment known as De veritatibus
primis: “This however is still unknown to men: from where incompossibility
originates, or what can make different essences conflict with each other, given
the fact that all the purely positive terms seem to be compatible the one with
the other” (Leibniz 1875–1890, VII, 195).

Nevertheless, Leibniz’s logical essays of April 1679 represent one of the most
interesting and complete attempts of arithmetization of the syllogistic, and
offers a well-developed—albeit not fully satisfactory—account of traditional
logic by means of an intensional calculus. In a sense, they also represent a
turning point in Leibniz’s logical works. The unsolved difficulties in finding a
numerical model for his still mostly combinatorial calculus, and the problems
associated with the representation of negation, probably led him to a twofold
shift in his strategies. On the one hand, despite the interest that notational
systems will have for him during all his life, Leibniz became increasingly aware
that the research of an apt notation should be accompanied by a closer inves-
tigation of the logical laws and principles that should constitute the structure
of the calculus. On the other hand, semantic acquires a deeper role: Leibniz
perceives that the rules governing conceptual composition cannot be reduced
to a sort of “arithmetic of concepts,” and are much more complex. Negation,
modality (with special emphasis on compossibility and incompossibility among
concepts), relations (with special emphasis on identity), complete concepts of
individual substances—much of Leibniz’s logical and philosophical work in the
following years will deal with these subjects.
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The first tendency—a closer investigation of the logical laws and principles to
be used in the calculus—is already clear in the Specimen calculi universalis and
in its Addenda (both probably dating around 1680). Here, Leibniz abandons the
exposition “by examples,” favoring the much more powerful algebraic notation,
which uses letters to represent concepts. The perspective is still intensional,
and the inclusion of the predicate in the subject remains the cornerstone of
the system. According to the Specimen, the general form of a proposition is “a
is b,” and a per se true proposition is of one the three following forms: “ab is
a,” “ab is b,” or “a is a.” A per se valid conclusion is of the form “if a is b and
b is c, then a is c” (principle of syllogism), and according to Leibniz all true
propositions can be derived from (or rewritten as) per se true propositions.
The Specimen also contains the first clear formulation of one of Leibniz’s key
principles, that of substitution salva veritate: “Those are ‘the same’ if one can
be substituted for the other without loss of truth” (Leibniz 1973, 34; for a
discussion of this principle, see Ishiguro 1991, 17–43). Among the principles
used are those according to which in conceptual composition the order of terms
and the repetition of a term are irrelevant (“ab = ba,” and “aa = a”). The
Addenda offer a short discussion of negation, which was not considered in the
Specimen itself, and add some further proofs, including the theorem “if a is
b, and d is c, then ad will be bc.” Leibniz calls it “praeclarum theorema” and
proves it in this way: “a is b, therefore ad is bd (by what precedes); d is c,
therefore bd is bc (again by what precedes), ad is bd, and bd is bc, therefore ad
is bc” (Leibniz 1973, 41).

In the following years Leibniz will often use the signs “+” (or “⊕”) and “−”
to indicate logical composition and logical subtraction, stressing that the rules
governing operations with concepts are different from those of arithmetical
addition and subtraction: Whereas in arithmetic “a+ a = 2a,” in the case of
conceptual composition “a+a = a.” Moreover, Leibniz will carefully distinguish
between conceptual subtraction and logical negation: While in an abstract con-
ceptual calculus it is always possible to “subtract” from the concept of man that
of rationality, seen as one of its intensional components, the result of denying it
(“men non-rational”) is a simple impossibility, given the fact that rationality is
an essential part of the concept of man (Non inelegans specimen demonstrandi
in abstractis, Leibniz 1923–, VI, iv, n. 178). These principles are among the ones
governing the so-called plus-minus calculus that Leibniz developed in a number
of fragments dating around 1687. The basic assumption of the plus-minus
calculus is that “A+B = L” is to be interpreted as “A (or B) is included in L,”
where the relation of inclusion is—as usual—the intensional inclusion between
concepts. “L− A = N” is to be interpreted as conceptual subtraction: N is
the intensional content of the concept L that is not included in the concept A.
If “A+B = L,” the terms A (or B) and L are said to be subalterns; two terms,
neither of which is included in the other, are said to be disparate, and two terms
that have a common component are said to be communicating. It should be
stressed that, here as elsewhere, Leibniz uses “term” to designate not a linguistic
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entity but a concept: His calculus is thus directly an “algebra of concepts.” The
calculus uses “nihil” to represent a term with empty intensional content, and
the rules “A+nihil = A” and “A−A = nihil” are introduced. Leibniz also uses
“nihil” as a way to obtain “privative” concepts: if “E = L−M ,” “L = nihil,”
and M is a nonempty concept, E will be a privative concept. This assumption
has been criticized due to the fact that it introduces inconsistencies in the
calculus (Lenzen 2004), but can be seen as a further indication of the relevance
that Leibniz attributed to the representation of negative or privative concepts
within his logic, and of the difficulties connected with the difference between
conceptual subtraction, arithmetical subtraction, and logical negation.

The plus-minus calculus has recently been the subject of much interpretive
work, also due to the publication of the long-awaited vol. VI, iv of the Akademie
Ausgabe, which offers the first critical and complete edition of the relevant
texts (Leibniz 1923–, VI, iv, vols. 1–3). Among the problems debated (see
Lenzen 2000, 2003, 2004; Schupp 2000) are the possibility of a set-theoretical
representation of the calculus, and the relation between its intensional and
extensional interpretations. As we have seen, Leibniz’s approach is—in most
of his logical writings—clearly intensional. However, Leibniz himself was well
aware of the difference between intensional and extensional approaches, and
considers the one as the reversal of the other:

the method based on concepts is the contrary of that based on
individuals. So, if all men are part of all animals, or if all men
are included in all animals, it is true that the notion of animal is
included in the notion of man. And if there are animals that are
not men, we need to add something to the idea of animal to get
the idea of man. Since when the number of conditions grows, the
number of individuals decreases. (Leibniz 1966, 235)

This thesis may be (and has been) criticized, since the number of actually
existing individuals falling under a given concept is usually contingent: From a
Quinean point of view, “it might just happen that all cyclists are mathemati-
cians, so that the extension of the concept being a cyclist is a subset of the
extension of the concept being a mathematician. But few philosophers would
conclude that the concept being a mathematician is in any sense included
in the concept being a cyclist” (Swoyer 1995, 103). Nevertheless, as Lenzen
(2003) correctly observes, this criticism cannot be applied (or at least not in
such a naive form) to Leibniz’s logic: The (extensional) domain of Leibniz’s
logic is consistently characterized by Leibniz himself as one of possible rather
than of actual individuals. The (possible) contingent coincidence of the sets of
actually existing cyclists and mathematicians would by no means imply, from
a Leibnizian point of view, that the two concepts have the same extension and
therefore should have the same intensional content. In a later fragment, known
as Difficultates quaedam logicae (Leibniz 1875–1890, VII, 211–217), Leibniz
will even use the idea that the domain of his logic is one of possible rather than
of actual individuals to justify the conversion per accidens of UA propositions
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(from “All A are B” to “Some B is A”), thus avoiding the problem of the
existential import of PA propositions.

Despite the fact that they probably precede most of the texts on the plus-
minus calculus, the 1686 Generales Inquisitiones (Leibniz 1982) are generally
considered Leibniz’s most developed and satisfactory attempt of logical calcu-
lus; Leibniz himself considered them a “remarkable progress” over his earlier
works. The main feature of the Generales Inquisitiones is the attempt to offer
a unified framework for a calculus of terms and a calculus of propositions. As
far as terms (or concepts) are concerned, Leibniz distinguishes between integral
terms (terms that can be the subject or the predicate of a proposition: the
categorematic terms of scholasticism) and partial terms (terms like “same” or
“similar,” which are to be used only in conjunction with one or more integral
terms, and specify or modify an integral term or a relation among integral
terms: the syncategorematic terms of scholasticism). The introduction of partial
terms and the discussion of oblique cases clearly testify to the new interest
Leibniz devoted to relations. Being discussed at the term level (and therefore
at the level of concepts), relations and oblique cases are clearly not considered
by Leibniz as mere linguistic accidents. The problem of the possible “reduction”
of partial or relational terms and of relational propositions to nonrelational
ones is therefore not one of simple “surface-structure” reformulation of a spo-
ken or written sentence, but rather one of logical analysis of the proposition
and of its constituent terms. Leibniz was to devote much effort and a large
number of texts and fragments to this analysis, clearly influenced by the late
scholastic discussion on relations and on the connection between the relation
itself and its fundamenta, that is, the concepts or the things among which
the relation is established. Starting with Russell (1900), who attributed to
Leibniz a straightforward and uniform reductionistic approach with respect to
relations, criticizing it, Leibniz’s treatment of relations has been the subject of
much interpretive work. It is now clear that Leibniz offered different accounts
for different kinds of relations and that, while he consistently denied relations
an extramental reality independent from that of the related concepts, he
thought that at least some relations (among those involving different individ-
uals) are not reducible in a straightforward way to simple and nonrelational
monadic predicates. However, this does not imply, according to Leibniz, the
need of propositions which are not in subject-predicate form, but rather the
need (1) to consider within the properties pertaining to a given subject also
those expressing relational accidents, and (2) to recognize the logical role of
reduplicative terms, which can be used in connecting propositions referring
to the different fundamenta of a same relation. Thus, the proposition “Paris
loves Helen” can be reduced, according to Leibniz, to “Paris is a lover, and
eo ipso (for this very reason) Helen is a loved one,” rather than to the simple
and independent propositions “Paris is a lover” and “Helen is a loved one”
(Mugnai 1992). Reduplicative terms like quatenus, eo ipso, and so on, which
were already studied by scholastic and late-scholastic logicians, in this way
acquire a special role within Leibniz’s logic.
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In the Generales Inquisitiones, integral terms are further subdivided into
simple, complex, and derivative. The discussion of simple terms shows a clear
shift when compared to the earlier combinatorial attempts: While general
abstract terms like “ens,” derived from the scholastic tradition and from the
discussion on transcendental terms, are still present, Leibniz adds to the class
of simple terms also terms connected to individuals and perceptions, like “Ego”
(“I”) or the names of colors; a passage that somehow anticipates the discussion
about simple and innate ideas that will be at the core of the much later
Nouveaux Essais (Leibniz 1923–, VI, vi). However, as in the earlier attempts,
the choice of simple terms remains provisional and is strongly influenced by
the limits—both necessary and contingent—of our knowledge. A special case
is that of the privative term non-ens: Like nihil in the plus-minus calculus,
non-ens corresponds here to a term with empty intensional content, and plays
an important role in the axiomatization of the calculus.

Complex terms are obtained by composition from simple terms, while
derivative terms are obtained from partial terms “completed” by integral terms,
that is, from integral terms modified or connected by means of syncategorematic
and relational terms or by the use of oblique cases.

In the Generales Inquisitiones, for the first time, Leibniz includes a discussion
of complex terms referring to individuals (Leibniz 1982, 58–62) in his logical
calculus. According to Leibniz, they are based on complete concepts, that is,
concepts that include all which can be said of that individual. Their complexity,
however, is such that only God can carry out their complete analysis: Men can
only rely on experience to assert the possibility of a given complete concept
(i.e., the absence of contradictions within its intension) and the inclusion of a
given contingent predicate within a given complete concept. Complete concepts
(corresponding to individual substances) are another theoretical cornerstone
of Leibniz’s philosophy, and it is no coincidence that in the very same year in
which he was working at the Generales Inquisitiones Leibniz also wrote the
Discours de métaphysique (Leibniz 1923–, VI, iv B, 1529–1588), the text that
offers for the first time and in a structured way the philosophical framework in
which the theory of complete concepts is to be placed. Much of the interpretive
work done on Leibniz’s philosophy and philosophy of logic in the last three
decades deals in one way or another with the discussion of complete concepts1:
from the possibility of distinguishing within them a “core set” of essential
properties, which could also allow for transworld identification of individuals
across possible worlds (each complete concept, if considered in its integrity, is
bound to a given possible world, and possible worlds themselves are seen by
many interpreters as maximal sets of mutually compossible complete concepts),
to the presence within complete concepts of relational predicates; from the
discussion of Leibniz’s conception of contingency and of individual freedom to
that of preestablished harmony.

Shifting from terms to propositions, Leibniz states in the Generales In-
quisitiones that “ ‘A is B’ is the same as ‘A is coincident with some B’ or
A = BY ” (Leibniz 1973, 56), where B is part of the intensional content of A:
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a formulation close to the ones we have already discussed, which, however, can
be of interest if we consider the role attributed here to “Y ,” seen as a sort of
existential quantifier applied to the predicate. Leibniz offers a wider discus-
sion of predicate quantification in an undated fragment known as Mathesis
Rationis (Leibniz 1966, 193–206; see Lenzen 1990), and in some of his (many)
attempts of graphical representation of the basic notion of conceptual inclusion
and of the four forms of categorical propositions, mainly based on the use of
lines or circles (the fragment known as De formae logicae comprobatione per
linearum ductus probably being the most notable among them; Leibniz 1966,
292–321).

In the Generales Inquisitiones, the connection between the treatment of
propositions and that of terms is, if possible, even stronger than in the preceding
essays, since Leibniz observes that the four traditional forms of categorical
propositions can be rewritten in the following way (Leibniz 1982, 112; his
thesis is clearly indebted to the late-scholastic treatment of the passage from
proposition “tertii adjecti” to propositions “secundi adjecti”):

Some A are B AB est res(PA)
Some A are not B A(non-B) est res(PN)
All A are B A(non-B) non est res(UA)
No A is B AB non est res(UN)

Here—if the proposition is not one about contingent existence—“est res”
is to be interpreted as “is possible” (Leibniz 1982, 110), and possibility is in
turn to be interpreted as absence of contradiction within the intension of the
composed term. A similar conception is to be found in the Primaria Calculi
Logici Fundamenta, dating to August 1690 (Leibniz 1903, 232–273).

This treatment of propositions leads to a term-oriented treatment both of
syllogistic inferences and of hypothetical propositions. According to Leibniz,
just like in a categorical proposition the subject includes the predicate, in a
hypothetical proposition the antecedent includes the consequent. Therefore,
an implication of the form “If p, then q” is to be interpreted as “If (A is B)
then (C is D),” which in turn can be rewritten as “(A is B) is (C is D),”
or “(A includes B) includes (C includes D).” This idea, already present in
a fragment known as Notationes Generales probably written between 1683
and 1685 (Leibniz 1923–, VI, iv, 550–557), will return in many later texts and
leads Leibniz to hold that the forms and modes of hypothetical syllogisms are
the same as those of categorical syllogisms.

Leibniz never devoted a detailed analysis to the logic of propositions, but
in many of his works and fragments refers to propositional rules derived from
the medieval tradition of consequences and from the late-scholastic discussion
on topical rules; clearly, in his opinion, an “algebra of propositions” can only
be grounded on the algebra of concepts.

As already noted, most of the logical texts and many of the most remarkable
achievements of Leibniz’s logic were not known to his contemporaries and
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his immediate successors. Nevertheless, Leibniz’s logic cannot be considered
simply an isolated product of a genial mind: He had a deep knowledge of the
late-scholastic logical tradition, from which he derives not only many topics
he deals with but often also the approaches adopted in dealing with them. He
also had a wide net of relationships—both through letters and by personal
acquaintance—with many of the most prominent figures of the European
learned world (among them Arnauld, Tschirnhaus, Jakob Bernoulli, and, as
we will see, Wolff, to name just some scholars mentioned in this chapter). His
logical and philosophical theses are also the result of those interactions, and
probably some of them circulated even without the support of publication.
Despite the great interest of Leibniz’s logic from a contemporary point of view,
Leibniz was a seventeenth-century logician, not a twentieth-century logician in
disguise.

9. Logic in Germany in the First Half
of the Eighteenth Century

In the period we are considering, German logic deserves special attention.
Since logic was a subject included in most academic curricula, it became a
privileged field of study and a great number of logical texts were published
(see Risse 1965). Many German logicians enter the debate on Cartesianism,
are fully aware of Bacon’s exhortation to work at a logic of empirical sciences,
pay attention to the notion of probability, examine the relationship between
logic and mathematics, and seem open to the suggestions of facultative logic.
If one had to name a single author who takes a stand on all these questions,
one should mention Leibniz. But, as already said, in this period Leibniz’s logic
enters marginally in the official picture of German logic, not only because most
of his strictly logical production was unknown at that time but also because he
did not belong to the academic world. What was known of Leibniz’s philosophy
and logic influenced a number of German logicians of that time, but the logical
scene of the first two generations of the German Enlightenment was dominated
by Christian Thomasius and Christian Wolff.

Christian Thomasius (1655–1728) was the son of Jakob Thomasius, Leibniz’s
teacher. However, he does not share Leibniz’s view of logic, in as much as
he agrees with the humanists in criticizing schoolmen for having instructed
generations of students in the making of useless subtleties. At the same time
he advocates the study of logic. This is less paradoxical than it sounds. While
the Port-Royal Logic recommended a logical instruction because common
sense is not so common as people believe, Thomasius offers a moral and
religious justification. He maintains that because of the original sin, mankind
has darkened its natural light (lumen naturale) and has to achieve a healthy
reason through a process of purification, so as to avoid the errors it usually
makes. This cathartic process is entrusted by Thomasius to logic because logic
can teach how to counteract errors in judgment and their main source, namely,
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prejudice (in particular, the prejudice of authority and the prejudice of self
love). In this way Thomasius agrees with Tschirnhaus and the Port-Royal Logic
that logic is a medicine and its primary aim is the correctness of judgments
(Thomasius [1691b], dedication). From the Port-Royal Logic—translated into
Latin (Arnauld and Nicole 1704) by one of his followers—Thomasius also
borrows arguments for rejecting Aristotelian categories (Thomasius 1702,
VII §25).

Such a concept of logic requires that technicalities should be abolished:
Only an “easy” logic can dispel prejudices and teach how to profit from the
few precepts needed for the rational conduct of common human beings—and
not only learned scholars—in the search of truth and in the practical exercise
of prudence. Thomasius’s precepts consist of two basic rules of method: (1) to
proceed from what is easy and known to what is more difficult and unknown,
(2) to connect remote conclusions to principles only through near (propinquae)
conclusions. In these two rules one can find an echo of Descartes. But Thomasius
is not a Cartesian because he opposes the doctrine of innate ideas, convinced
that in the intellect there is nothing that has not been in the senses (a thesis
he argues for independently of Locke). He also rejects the tradition of the
mos geometricus because he holds it responsible for the degenerate Spinozistic
version of Cartesianism so that, from this point of view, he differs also from
Tschirnhaus. Thomasius is rather an eclectic (Beck [1969], 247–256) who
encourages the study of other philosophers’s ideas, thus promoting studies in
the history of philosophy and also in the history of logic: From 1697 to the first
decades of the eighteenth century it is possible to register a number of essays on
the latter subject (Risse 1964–70 II, 507). Thomasius’s eclecticism can be easily
appreciated if one considers that, on the one hand, he adds precepts derived
from the tradition of humanistic dialectic to his apparently Cartesian rules
of method and, on the other hand, he insists that logic should concentrate
on the problem of certainty in empirical knowledge. Like many others in
this period, Thomasius believes that, although in empirical matters complete
certainty is not attainable, it is still possible to avoid skepticism by working
on the notion of probability. However, Thomasius’s interest for probability
is not to be overestimated, since he inclines to a notion of probability still
strongly connected with Aristotelian dialectic and with the doctrine of topical
syllogism.

Thomasius’s ideas were well received by the incipient age of the Enlight-
enment that looked favorably to a logic meant for ordinary people (and this
favored the proliferation of textbooks) and, from a more theoretical point of
view, approved of his antiskeptic battle regarding empirical knowledge. Never-
theless, Thomasius not only advocated a rigid separation between mathematics
and philosophy, but also opposed any formalism in logic and deplored the
enormous growth of syllogistic, convinced that the first figure is sufficient,
though incapable of guaranteeing the truth of the conclusions (Thomasius
1702, IX, §12; [1691a], XII, §§19–21). Many of his followers agreed on these
matters, with a notable exception. In Halle, where a Thomasian circle was
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flourishing, Andreas Rüdiger tried to reconcile Thomasius’s views on logic and
philosophy with his own research on the nature and scope of logic.

Rüdiger (1673–1731) agrees with Thomasius that, due to the original sin,
mankind no longer participates in God’s archetypal logic and is prey of
prejudices, thus making it necessary to conquer a recta ratio through the study
of logic (Rüdiger 1722, I, i, 1). Rüdiger also agrees with Thomasius that logic
should deal with probability as a response to skepticism, and to this effect
he produces an articulated doctrine of probability that obtained remarkable
diffusion through the first edition of the Philosophisches Lexicon (Walch [1726])
published by Johann Georg Walch (1693–1775). But what seems to interest
Rüdiger most is that logic should be recognized as a legitimate means for
finding truths and should be proved capable of attaining this purpose with a
procedure as different as possible from the procedure of mathematics.

Rüdiger believes that Spinozism rests on two pillars: the doctrine of innate
ideas and the illegitimate application of the mathematical method outside
mathematics. Therefore, he rejects both. He is perfectly aware that mathe-
matics is inventive, but he makes this depend on the fact that mathematical
proofs can resort to sensibility. Rüdiger does not ascribe the sensibility of
mathematical proofs to the use of “visual” aids, such as geometric figures,
but to the demonstrative procedures based on numeration. In his opinion:
(1) mathematics is the science of quantity, (2) all quantities are measurable,
(3) we can measure only in so far as we can numerate, (4) “all numeration
is of individuals, in so much as their terms are perceived by the senses.” His
conclusion is: “Therefore all numeration is sensible: but the entire way of
mathematical reasoning is numeration, then this entire way [of reasoning] is
sensible Q.E.D.” (Rüdiger 1722, II, iv, 1a). The possibility to avail themselves of
this kind of sensible reasoning (ratiocinatio sensualis) enables mathematicians
to refer to sensible data that would escape their attention if they could rely
on intellect alone, whereas sensible data offer them the basis for the discovery
of unknown (mathematical) truths (Rüdiger 1722, II, iv, 3c; see Cassirer 1922,
525–527).

The heuristic capacity of ratiocinatio sensualis rests on Rüdiger’s theory
of truth. According to Rüdiger, the truth of our judgments (which he calls
logical truth) consists in the agreement of our knowledge with our sensation
(“convenientia cognitionis nostrae cum sensione”; Rüdiger 1722, I, i, 12). But
we can trust the agreement of our knowledge with sensation only because there
is a metaphysical truth that consists in the agreement of sensation with its
objects (“convenientia ipsius sensionis cum illo accidente, quod sentitur”). This
means that the metaphysical truth, which makes us trust our logical truth,
presupposes that our senses are not fallible (Rüdiger 1722, I, i, 11). Because
our senses are not fallible (under God’s guarantee), the certainty and inventive
power of mathematics can rest on sensible reasoning.

Outside mathematics, however, and in particular in the field of philosophy,
we work only with ideas and cannot resort to the ratiocinatio sensualis. It
is nevertheless possible to use a logical way of reasoning meant for ideas
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(ratiocinatio idealis) and as inventive as the ratiocinatio sensualis: the syllogism.
By claiming that syllogism is inventive, Rüdiger openly challenges a long series
of scholars, including Thomasius, who had criticized syllogism for being sterile.
He argues that the inventive function of syllogism has not been appreciated
because syllogism has been used for finding the premises of a given conclusion.
This means that syllogism has been used analytically, whereas syllogism can
be inventive if it is used synthetically, as a means for searching an unknown
conclusion beginning from a given premise (Rüdiger 1722, II, vi, 1).

To show how a synthetic syllogistic is possible, Rüdiger assumes that every
proposition (of the four kinds that can enter into syllogisms, A, E, I, O)
expresses a precise relation between the subject and the predicate, a relation
belonging to a set Rüdiger carefully classifies: subordination, opposition, partial
diversity (he considers identical ideas as the same idea; see Rüdiger 1722, I,
xii, 2, 3). On this assumption he maintains that we make a synthetic syllogism
beginning with a premise whose two terms stand in one of the admissible
idea-relations. We then obtain a conclusion by connecting one of the terms of
the premise with any unknown idea that stands in a definite relation (included
in the set of classified idea-relations) with the other term. For instance, given
a universal affirmative proposition “All A are B” (where A is subordinated to
B) as premise, we can connect the predicate B with any idea C of which we
only know the relation it entertains with the subject A. Let such a relation
be that of subordination: We can validly conclude that the unknown idea C,
being subordinated to A is also subordinated to B, so that, since the relation
of subordination can be expressed by a universal affirmative proposition,
we obtain the “new” conclusion “All C are B” (Rüdiger 1722, II, vi, 55 1–
4). This single example makes it clear that Rüdiger’s synthetic syllogistic
is founded on the old technique of the pons asinorum (Thom 1981, 72–75),
traditionally used for finding premises, a technique that Rüdiger could find
in works of the Peripatetic tradition he knew well, pace Thomasius who had
ridiculed it (Thomasius [1691a], XII, §11). Rüdiger simply reverses the pons
asinorum in the search for a conclusion, as it can be appreciated from the
graphical representations he gives of his synthetic syllogisms (reunited in a
single representation by Schepers 1959, 99).

Rüdiger expressed his views on ratiocinatio idealis in a logical environment
in which they must have been unpopular. It is not surprising, therefore, that his
direct followers, who approved of his separation of mathematics from logic, were
no longer interested in his reason for separating them, that is, his passionate
defense of the inventive capacity of syllogism. Adolph Friedrich Hoffmann
(1703–1741) and Christian August Crusius (1715–1775) choose to refer to
Rüdiger as the philosopher who did not simply denounce, like Thomasius, the
ill effects of the application of the mos geometricus to philosophy, but had
argued that mathematics and philosophy should never be mixed because they
have different objects and different methods of reasoning (Tonelli 1959). It
may seem paradoxical, therefore, that Rüdiger’s classification of idea-relations,
supporting his doctrine of syllogism (as well as his doctrine of conversion and
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other nonsyllogistic inferences) and connected to his thesis of the independence
of logical from mathematical reasoning, was to stimulate later logicians to once
again take up projects of an algebraic calculus of ideas. But such projects were
not resumed until the Thomasian school, including its peculiar Rüdigerian
variant, was no longer dominant, due to the emergence of Christian Wolff and
his school.

Wolff (1679–1754) has much in common with the first generation of the
German Enlightenment. Like the Thomasians, he believes that philosophy
should improve human life and give due importance to empirical knowledge.
He also shares some of their religious motivations and their appreciation for
Locke (see section 6). What divides Wolff from Thomasius on logical matters is,
first, a very different evaluation of mathematics and of the tradition of the mos
geometricus: Wolff had received a mathematical education and was professor
of mathematics in Halle. Second, Wolff acknowledges the intellectual influence
exerted on him by Leibniz, with whom he exchanged a correspondence that
ended only with Leibniz’s death. In one of his letters Leibniz had recommended
to Wolff to pay due attention to syllogism: “I absolutely never dared to say
that the syllogism is not a means for finding truths” (Leibniz [1860], 18).

Consequently Wolff, far from contrasting syllogistic and the mathematical
method, makes a double revolution with respect to the Thomasian school.
He (a) assumes mathematical reasoning as an example to be followed in any
research field, (b) claims that the allegedly empty and useless syllogism is
the inner fabric of any reasoning, including the exemplary mathematical one.
In different places—but especially in his logical works, the so-called German
Logic of 1713 and the so-called Latin Logic first published in 1728—Wolff
considers geometrical demonstrations as chains of common syllogisms in the
first figure (Wolff [1713], IV, §§20–25, [1740] §551), and concludes that, where
understanding and reason are concerned, there is a single rational procedure, a
single method, a single logic valid for mathematics and philosophy alike: “both
philosophy and mathematics derive their method from logic” (Wolff [1740],
Preliminary Discourse §139 note).

The importance of syllogism is justified by Wolff by the argument that
syllogism mirrors the natural way of reasoning. But he does not ground logic on
empirical psychology alone (better: on the empirical psychology of a privileged
set of men, the mathematicians, see Engfer 1982, 225). He declares that logic
has a solid foundation also in ontology (Wolff [1740], Preliminary Discourse
§89).

Both pillars of this foundation of logic conspire in favoring syllogism: (1) On-
tology, as it was established in the scholastic tradition, justifies the dictum
de omni et nullo that presides over syllogism in the first figure (Wolff [1740],
§380); (2) empirical psychology ensures that the model of natural inference is
the simplest syllogistic inference, that is, syllogism in the first figure. Wolff’s
foundation of syllogism—and indeed of logic—on ontology and empirical psy-
chology grants an absolute privilege to syllogisms in the first figure. To this
effect, Wolff maintains that figures different from the first (he does not admit
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the fourth figure) are not simply reducible to it but are already syllogisms in
the first figure in disguise: They are cryptic first figure syllogisms (Wolff [1740],
§§382–399; see Capozzi 1982, 109–121). He also maintains that noncategorical
syllogisms, consequentiae immediatae and any other kind of inference are
reducible to syllogisms in the first figure. In this way, Wolff contrasts anti-
syllogistic conceptions, but makes no concessions to Rüdiger: The syllogisms
he refers to are absolutely standard and in no way synthetic. In a letter to
Leibniz, he scorns Rüdiger’s synthetic syllogistic and refers to the idea of a
mathematical ratiocinatio sensualis as to one of the “paradoxa” of Rüdigerian
logic (Leibniz [1860], 117).

Despite his meager syllogistic, Wolff offers a deeply “logicist” philosophy
of logic, for not only does he bring logic and mathematics together, he also
considers logic prior to mathematics. This makes one wonder why he did
not try a mathematical calculus of ideas. This problem is clearly related to
the possibility of a heuristic. Wolff knows that mathematicians use heuristic
devices not reducible to syllogisms. In his German Logic he denies that “the
whole algebraic calculus . . . takes place only according to syllogisms in form”
(Wolff [1713], IV, §24). A similar statement is to be found in his Latin Logic:
“logic [i.e., logic centered on syllogism] has a notable and famous use in the
art of discovery, but nevertheless it does not exhaust it” (Wolff [1740], §563).
Elsewhere he explains that, to discover hidden truths, it is sometimes necessary
to resort to heuristic artifices such as, in the a priori invention, the artifices
of the ars characteristica (see Arndt 1965, 1971). For, he says, this art helps
separate geometric and arithmetic truths from images, so as to obtain truths
from the data by means of a calculus. He grants that such an art is the most
perfect science, but he believes that we only have a few examples of that art
in algebra, yet none outside it (Wolff [1713] IV, §22). The latter statement is
revealing: To Wolff the establishment of a suitable alphabet of thoughts as a
prerequisite of the ars characteristica combinatoria must have appeared too
great an obstacle. We know that this was a problem for Leibniz, and we know
how he dealt with it. But apparently Wolff was convinced that a calculus in
logicis is utopian and considered it a mere desideratum.

As to Leibniz’s interest in a logic of probability to be used when deliberating
about political, military, medical, and juridical matters (Leibniz [1860] 1971,
110), Wolff seems to doubt that a mathematical ars conjectandi could be of
practical use regarding such matters (Leibniz [1860] 1971, 109). Wolff’s doubt
was not so strong as to make him exclude that Leibniz’s wish could ever come
true, but was strong enough to make him exclude that it could come true in
the foreseeable future. Nevertheless, Wolff includes probability in the practical
part of his logic, paying attention to the features of probable propositions,
in particular to the ratio of sufficient and insufficient reasons that make it
possible to consider probability a measurable degree of certainty. In this way,
he definitely abandons not only Thomasius’s obsolete treatment of probability
reminiscent of the old topic but also Rüdiger’s nonmathematical analysis of
probable knowledge.
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Wolff made a great impact on German philosophy, and some of his doctrines
were well received in Europe at large, as can be appreciated from the evident
Wolffian imprint of some entries in the French Encyclopédie (Carboncini 1991,
188ff.), where Locke and Port-Royal Logic had already found much space
(Risse 1964–70, II 528). However, at first Wolff met with harsh criticism, albeit
not for his logical but for his metaphysical views. In 1723, the Halle circle
succeeded in convincing King Friedrich Wilhelm to banish Wolff from the city
because his alleged determinism, inherited from Leibniz, was a peril to religion
(Wundt [1945], 234–244; Beck [1969], 258). Wolff went to Marburg, where
he wrote a series of works in Latin, beginning with the Latin Logic. Wolff’s
Latin works increased the number of his followers, so much so that a second
anti-Wolffian offensive, launched in 1734, ended in a defeat when, in 1740,
Wolff was readmitted to Halle with great honors.

The Wolffian era, as concerns logic, was very positive. Despite literature
that considers him an exponent of the dark ages of logic, it is difficult not to
give him credit for proposing a positive image of the discipline resting not only
on its function as a guide in making judgments and in avoiding errors but also
on the power of its inferences. But above all, it is impossible to ignore that his
revaluation of syllogism differed from Rüdiger’s because he used it to counteract
the idea of a gap between logic and mathematics. This explains why Wolff’s
success promoted a revival of logic that did not simply contribute to the pro-
duction of new logical textbooks—given the importance he accorded to logic in
academic curricula—but spurred logical investigations. It must be stressed that
those who were encouraged by Wolff’s philosophy to engage in logical research
did not usually follow the details of his logic. Independent authors, as well as a
number of Wolffians, referred to old logical literature, including sixteenth- and
seventeenth-century Aristotelian and scholastic treatises, and even to the works
of anti-Wolffians, especially those of Rüdiger, undoubtedly the most distin-
guished of them. In this sense one must agree with Risse that if one excludes the
very first generation of Wolff’s followers, it is difficult to draw precise boundaries
between the Wolffian school and its opponents (Risse 1964–70, II, 615).

An example of the new post-Wolffian logicians is Johann Peter Reusch
(1691–1758). In his fortunate Systema logicum (Reusch [1734]), though in many
respects faithful to Wolff, Reusch admits the influence of Aristotle, Jungius, the
Port-Royal Logic, Johann Christian Lange (1669–1756), and Rüdiger (Reusch
[1734], preface). As to the question of syllogistic, Reusch informs his readers
about traditional doctrines and about the combinatory of syllogistic moods
with a reference to Leibniz’s De Arte Combinatoria (Reusch [1734], §530).
Nevertheless, he also proposes a syllogistic that, he maintains, opens the
gates of the syllogistic moods (modorum cancelli) (Reusch [1734], §543), being
founded on a single rule to which all syllogisms of any figure must conform:
“The entire business of reasoning is done by substitution of ideas in the place of
the subject or of the predicate of the fundamental proposition, that some call
equation of thoughts” (Reusch [1734], §510). In other words, Reusch conceives
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of syllogisms as consisting of a single premise (propositio fundamentalis) and a
conclusion obtained by assuming a new idea and substituting it for either the
subject or the predicate of the propositio fundamentalis by a substitution rule.
Such a substitution rule—which he means as a version of the old dictum de
omni et nullo—is governed by the principle of contradiction and presupposes
a network of relations among ideas.

The description of the admissible idea-relations is so important for Reusch’s
syllogistic, and indeed for his whole logic, that two chapters of his Systema
logicum—De convenientia et diversitate idearum and De subordinatione idea-
rum—are devoted to it. This study is clearly influenced by Rüdiger (Capozzi
1990, lxvi), but Reusch did not refer to Rüdiger as the defender of a synthetic
inventive syllogistic but as the author of a syllogistic based on a definite set
of idea-relations. That this was the outstanding feature of Rüdiger’s logic
was clear to the historian of logic von Eberstein who, though unfavorable
to Rüdigerian philosophy, in 1794 stated that Rüdiger had been the first to
determine “syllogistic figures according to the relations of concepts and not
according to the position of the middle term” (von Eberstein [1794–1799], I,
112–113). No wonder the independent Wolffian Reusch was attracted to this
approach to syllogistic so as to prefer it to Wolff’s idolatry for the first figure
and to Leibniz’s combinatory of moods in the De Arte Combinatoria.

In Reusch, however, there is no hint of a separation between the ratiocinatio
sensualis of mathematics and the nonmathematical ratiocinatio idealis advo-
cated by Rüdiger as an argument in favor of the inventive power of his synthetic
syllogisms. This is true not only of Reusch. After Wolff, logic is acknowledged
as the only argumentative structure used in every field of knowledge, from
mathematics to philosophy. This is why a few logicians felt entitled to take a
further step: If, according to Wolff, there is no longer a gap between logic and
mathematics, nothing prevents one from disregarding Wolff’s restriction of logic
to an outdated syllogistic. These logicians felt entitled to apply mathematical
tools to ideas according to the study of idea-relations made by the adversaries
of Wolffian logic or by independent Wolffians.

10. Logical Calculi in the Eighteenth Century
In Jena, where Reusch was professor of logic and metaphysics since 1738, his
attitude toward logic was not an exception, as can be seen in the logical work
of Joachim Georg Darjes (1714–1791). But the outstanding work written in
this logical context is an essay that Reusch recommended in the 1741 edition
of his Systema logicum to his more specialized readers. This work is the
Specimen Logicae universaliter demonstratae (Segner [1740] 1990) written by
the mathematician and scientist Johann Andreas Segner (1704–1777) with the
explicit aim of treating syllogistic by way of a calculus (per calculum) based
on the example of algebra.
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To this end, Segner builds an axiomatic system consisting of 16 definitions,
3 postulates, and 2 axioms. The definitions introduce ideas, their relations,
their arrangement in a hierarchy of genera and species, and the operations for
forming ideas. Segner defines idea as a mental representation of something. If
the idea is simple, its contents are obscure ideas and the simple idea is confuse
for us; if the idea is composite, its contents are clear ideas and the composite
idea is distinct for us. Consequently, by definition, every idea contains some idea
within itself. In this way, Segner can presuppose the relation of containment
(viewed from an intensional perspective) as the basic relation between two
ideas. But it must be clear that Segner does not identify the content of an idea
with its comprehension in the sense of the Port-Royal Logic. He simply says
that given two ideas A and B, A is contained (or involved) in B if, whenever
B is posited, A is also posited.

The notion of containment is used to define all the relations between two
ideas that are relevant for the construction of a calculus. Segner designates
such relations by special algebraic symbols “−”, “=”, “>”, “<”, “×”, and
defines them as follows:

I. A is opposed to B, if A contains −B and B contains −A.
II. A is identical to B (A = B), if A contains B and B contains A.

III. A is superior to B (A > B), if A does not contain B and B contains A.
IV. A is inferior to B (A < B), if A contains B and B does not contain A.
V. A is coordinated to B (A×B), if A does not contain B and B does not

contain A.

As can be seen from this list, Segner does not have a symbol for the relation
of opposition, but expresses the opposition between A and B by saying that
A contains −B and B contains −A. By the expression −A Segner refers to
the idea that is infinitely opposite to A, and defines A as infinitely opposite to
−A if A contains −−A, and −−A contains A. It must be stressed that Segner
does not intend an idea designated by −A as a “negative” idea opposed to a
“positive” one: If by A we indicate “nontriangle,” by −A we indicate “triangle.”

Ideas that can be put in a hierarchy of subordination, can also be submitted
to the operations of composition and abstraction, whose possibility Segner
guarantees by two special postulates. A further postulate guarantees that if A
is an idea, then −A is an idea. Segner finally states two axioms that express
conditions satisfied by some of the operations:

Axiom I: If A and B are opposite ideas, then there is no idea C such that
C = AB.

Axiom II: If A contains B, then AB = A.

In this simple system (somewhat simplified here) Segner derives a number
of propositions (either problems or theorems) strictly connected to his calculus.
Among the most important are the following:
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1. Given an idea A, by abstracting some of its contents, find an idea B such
that B > A.

2. If, given two ideas A and B, there is an idea AB. different from either A
or B, then A×B.

3. Given a universal idea A and its coordinate idea B, AB < A and AB < B.

4. No infinite idea can be inferior or identical to a finite idea.

5. The defined relations among ideas are exhaustive and reciprocally exclu-
sive: They are not reducible one to the other.

A number of theorems establish how the relation (and therefore the sign)
between two ideas changes if one of them is replaced by its opposite:

6. If A = B, then −A = −B.

7. If A < B, then −A > −B.

8. If A > B, then A×−B.

9. If A×B, then −A×B; if −A×B, then either −A×B or A > B.

Further theorems give an exhaustive list of valid syllogisms:

10. If A = B and C = B, then C = A.

11. If A = B and C > B, then C > A.

12. If A = B and C < B, then C < A.

13. If A = B and C ×B, then C ×A.

14. If A > B and C < B, then C < A.

15. If A > B and C ×B, then either C < A or C ×A.

16. If A > B and C > B, then C is consentient with A (i.e., is not opposite).

Segner also proves a theorem that singles out all invalid syllogisms. Then
he pays attention to some nonsyllogistic inferences and claims that “they
shine of their own light,” whether or not we can give them syllogistic form. In
particular, he proves the following inferences by composition:

17. If A = B and C = D, then AC = BD.

18. If A = B and C < D, then AC < BD.

19. If A < B and C < D, then AC < BD.

Segner then proves the following theorem concerning inferences by abstrac-
tion:

20. If A is consentient with B, if C has been abstracted from A, and if D
has been abstracted from B (so that C > A and D > B), then C is
consentient with D.
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Thanks to a number of further definitions and three further propositions,
Segner applies his system to the verbal expressions of common logic (he also
pays attention to singular ideas and strictly particular propositions whose
subjects bear the prefix “only”):

“All A are B” means either A = B or A < B.

“No A is B” means only A < −B.

“Some A is B” means either A = B or A < B or A > B or A×B.

“Some A is not B” means either A < −B or A×−B.

Segner’s work proves that not all attempts to construct a logical calculus
in an intensional perspective were destined to failure. Segner succeeds where
Bernoulli failed (see section 7) because he never assumes that every idea has a
(Port-Royalist) comprehension made of necessary attributes that cannot be
modified without destroying it. Therefore, given two ideas, he simply considers
three possible cases: Provided that A and B are not opposite, either A contains
B, and then A < B, or A is contained in B, and then A > B, or neither idea
contains the other, and then A×B. Thus Segner, unlike Bernoulli (apparently
unknown to him), is under no obligation to use nouns of ordinary language
as signs of ideas so as to recall their unchangeable comprehension, but uses
literal symbols. When he considers the expressions of idea-relations in verbal
propositions, he is under no obligation to change his intensional perspective
and to consider the extensions of ideas whenever a predicate is not contained
in the comprehension of a subject. We can affirm a predicate B of a subject A
even if they are coordinate ideas, that is, ideas whose relation is, by definition,
a relation at one time of consent and of noncontainment.

Some interpreters have suggested that Segner is similar to Leibniz and
even a “disciple of Leibniz” (Vailati 1899, 88). Actually, Segner and Leibniz
differ at least inasmuch as Segner’s relation of coordination—being a relation
of noncontainment—does not respond to the Leibnizian predicate-in-notion
criterion. But there certainly are striking similarities. In the Specimen calculi
universalis and in its Addenda, Leibniz uses an algebraic notation and an
intensional perspective (see section 8). Moreover, what for Leibniz is a per
se true proposition of one of the forms “ab is a,” “ab is b,” or “a is a,” has a
detailed treatment in Segner. According to Segner, “A is B” is an affirmation
that can rest on one of the following relations between A and B, all of which
produce truths:

AB = A, if A < B (according to Axiom I),

AB < A or AB < B if A×B (no. 3 in the list of Segner’s propositions).

Equally, in his list of valid syllogisms (10–16), Segner includes Leibniz’s
per se valid conclusion (“if a is b and b is c, then a is c”). As to Leibniz’s
principle by which the repetition of a term is irrelevant, Segner also maintains
that “the idea of the subject composed with itself cannot produce a new idea”
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(Segner [1740], 149). Also Leibniz’s praeclarum theorema, “if A is B, and D is
C, then AD will be BC” (see section 8) has an elaborate equivalent in Segner’s
inferences by composition. Other similarities can be found if one compares
Segner’s logic with the Generales Inquisitiones, notably with respect to the
calculus with negative terms (on the problems posed by the use of negative
or infinite predicates instead of negative propositions, and on Segner’s skilful
solution, see Capozzi 1990, clx–clxiv).

Segner did not know these Leibnizian doctrines, but the undeniable similari-
ties we have stressed are not due to a miracle. They have an explanation in the
fact that Segner, like Leibniz, was able to unify a variety of existing doctrines
in a single system, depending on his practice of mathematics and using only
an intensional approach. But that means that Segner’s logical background,
albeit unsupported by knowledge of Leibniz’s relevant texts, was rich enough
to offer him a firm ground on which to build his calculus. In this respect,
the changes that took place in German logic in the first three decades of the
eighteenth century show that Segner is representative of the logic of his time
and not an inexplicable exception. But as in the case of Leibniz, this does
not detract from his merits: It only emphasizes them. Let us consider one of
the most interesting features of his system: the five idea-relations. Segner was
not the first to consider such relations, but depended on Rüdiger and Reusch.
He was well acquainted with Reusch’s logic (the Specimen is dedicated to
him) and he also knew Rüdiger’s idea-relations. In an academic dissertation
of 1734, discussed by one of his students under his guidance, he expressly
quotes Rüdiger’s logical work on such matters (Capozzi 1990, xcix). This
does not make him less original, for it is due to him that such idea-relations
are proved exhaustive and exclusive and are used as part of an adequate
calculus.

In this respect, Segner can be compared to the later mathematician Joseph
Diez Gergonne (1771–1859). In his Essai de dialectique rationelle (Gergonne
1816–17) Gergonne considers five idea-relations using the notion of containment
as basic but giving it an extensional interpretation: “the more general notions
are said to contain the less general ones, which inversely are said to be contained
in the former; from this the notion of relative extension of two ideas originates”
(Gergonne 1816–17, 192). This extensional interpretation of the notion of
containment is used by Gergonne (1816–17, 200) to classify the relations
between two ideas on a par with the circles of Leonhard Euler (1707–1783)
(see later in this section) and to designate each of them by a symbol. Two
ideas A and B, where A is the less general idea and B is the more general
one, can (1) have nothing in common, so that they stand in the relation H;
(2) intersect each other, so that they stand in the relation X; (3) coincide, so
that they stand in the relation I; (4) be such that A is contained in B, so that
they stand in the relation C; (5) be such that that B is contained in A, so
that they stand in the relation C.

Like Segner, Gergonne also gives a correspondence list between the standard
A, E, I, O propositions and the relations of ideas expressed by them:
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Gergonne Propositions Segner

I All A are B A = B
C A < B

H No A is B A < −B
I Some A is B A = B
C A < B

C A > B
X A×B
H Some A is not B A < −B
X A×−B

C

However, Gergonne and Segner differ in that whereas Gergonne states that a
proposition expresses the relation C because A is contained in B, Segner would
say that A contains B. Moreover, whereas Gergonne uses the symbol H for the
opposition of ideas, Segner uses none, since he treats the relation of opposition
as containment of the opposite idea. As a matter of fact he admits that “every
affirmative proposition can be made negative without change of sense, and vice
versa; to this end one has only to replace the attribute by a word which is its
exact negation, as one sees from this example: ‘Lagrange is dead, Lagrange is
not alive’ ” (Gergonne 1816–17, 197 n.). However, he does not change negative
propositions into affirmative ones by replacing the predicate by its opposite
(this makes him forbid the conversion of particular negative propositions, while
in Segner’s logic they are convertible). Apart from such differences, the systems
of Gergonne and Segner are perfectly comparable, which shows that at least
at this level, the perspectives of intension and extension can be translated into
one another. If anything, Segner’s calculus and symbolism would better suit
Ernst Schröder (1841–1902) who acknowledged Gergonne as a forerunner of
his own work (Schröder [1890–1895] 1966, II, 106). Segner treated negative
concepts and used a symbolism more similar to Schröder’s than to that of
Gergonne’s (see Capozzi 1990, clxx–clxxii).

Segner, who was much appreciated as a mathematician, scientist, and
physician, did not meet with the success he deserved for his logical work. His
calculus and symbolism is mentioned in Hoffbauer ([1792] 1969) who does
not follow him completely for he uses the symbol “#” for opposition. More
attention was paid by contemporaries to other interesting attempts to build
calculi of ideas, notably the attempts made by Gottfried Ploucquet and Johann
Heinrich Lambert.

Ploucquet (1716–1790), professor of philosophy at the university of Tübingen,
developed a logical calculus in stages, resorting to different symbolisms. In
his Fundamenta (Ploucquet 1759), he gives a theory of judgment in which he
considers not only the quantity of the subject but also the quantity of the
predicate. Ploucquet feels justified in doing so by the traditional doctrine of



Logic and Philosophy of Logic from Humanism to Kant 135

conversion of propositions. He believes that the conversio simplex of a universal
negative proposition, for example, the conversion of “No man is stone” in “No
stone is man,” depends on the tacit assumption that subject and predicate
have the same universal quantity, whereas the conversio per accidens of a
universal affirmative proposition, for example, the conversion of “All men are
rational” in “Some rational (being) is man,” depends on the tacit assumption
that the subject is quantified universally and the predicate particularly. In this
work we also find two diagrams of universal syllogisms in the first figure, and
a symbolism for the calculus that Ploucquet will modify in later essays.

In 1763, Ploucquet published two essays: Methodus tam demonstrandi directe
omnes syllogismorum species (1763a) and Methodus calculandi in Logicis
(1763b). Both contain his technical results, but in the second and longer of
them Ploucquet explains the meaning of his logical investigations. He begins
by defining “calculus”: “In the most generally accepted sense calculus is the
method to determine unknown things beginning from known things according
to constant rules” (Ploucquet 1763b, 31). Then he discusses the possibility of
an ars calculatoria, capable of application not only to numbers but also to
geometrical quantities, forces, and logical concepts. His conclusion is that there
is no ars combinatoria, or calculus of forms, containing as its parts the calculus
of quantities and the calculus of qualities. In his opinion, every calculus must
be adjusted to some particular object of investigation since “by nature and
according to logical order every calculus comes after the understanding of the
matter to which the calculus is applied. Then, if a universal calculus were to
be imagined, one would suppose (a kind of) knowledge of things that could
not be supposed for any mortal being. He who invents does not begin from a
calculus, but from the consideration of things” (Ploucquet 1763b, 36).

There is no doubt that Ploucquet wants to differentiate his position from that
of Leibniz. According to Ploucquet, Leibniz simply proposes a new version of an
ancient utopian and unattainable project, as his characteristica combinatoria
does not differ from Lull’s art. To support this judgment, Ploucquet quotes the
rather reductive appraisal of Leibniz’s 1666 essay on the combinatoria given by
Leibniz himself in the Acta Eruditorum of 1700 (Ploucquet 1763b, 39–40). In
1714, in a letter to Remond, he also stresses that Leibniz spoke of a mere wish
to find a general speciosa in which all the truths of reason would be reduced
to a kind of calculus. Ploucquet reserves similar criticisms for the Inventum
novum quadrati Logici Universalis of Johann Christian Lange (Lange 1714)
(Ploucquet 1763b, 43).

In Ploucquet’s view, tentative investigations about the possibility of a
universal calculus are to be praised because without them we would be even
more ignorant. Nevertheless, he considers dealing with a plurality of calculi
for each area of knowledge more realistic. Therefore, his efforts are limited to
the construction of a calculus capable of making syllogistic inference intuitive
and immediately clear, so as to avoid errors (Ploucquet 1763b, 46–47). In his
opinion, because a logical calculus pays attention only to the formal structure
of thought, it makes it easier to learn and use logic, so that “even uncultivated
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people and those who do not clearly perceive the strength of the calculus or
of the ratiocination, can be educated, given the premises, to find, without
fear of error, those conclusions to which they would not come by themselves”
(Ploucquet 1763b, 74). Thus, bringing a recurrent motive in the logic of the
first German Enlightenment to unexpected consequences, Ploucquet extends
to uncultivated people Leibniz’s invitation to calculate as a means to put an
end to the disputes of scholars.

As to Ploucquet’s actual logical construction, he assumes that when we
judge, that is, when we compare a subject and a predicate, we understand
(intelligere) either their identity or their diversity (Ploucquet 1763b, 48). In the
first case we have an affirmative judgment and in the second case a negative
judgment. Now, an affirmative judgment as conceived by our mind is not an
understanding of two things but of one thing only: “When I intuit a round
stone and pronounce these words: this stone is round, what I actually think
by this proposition is nothing but one notion, i.e. the notion of round stone”
(Ploucquet 1763b, 52). This conception holds also for syllogism: “All affirmative
syllogisms reduce to a single notion,” and “all negative syllogisms reduce to two
notions, one of which is diverse from the other” (Ploucquet 1763b, 73–74). As
Ploucquet explains in a polemical essay of 1766 against Lambert, this means
that when we think of the shining sun there is no distinction between subject
and predicate but, when we want to communicate our thought to others, our
language requires more signs, and we say “the sun is shining” (Bök [1766], 245).
The same applies to syllogism. It is because of the constitution of our language
that we need a rigorous logical calculus adequate to our spoken propositions
and syllogisms.

In the first of the two essays of 1763, Ploucquet (1763a, 18) declares that
all his previous work devoted to the question of finding the correct conclusion
from given premises can be replaced by a single praeceptum: The two terms of
the conclusion must maintain the same extension they have in the premises.
This praeceptum, once complemented with the traditional rules that veto four
terms and two negative premises in a syllogism, eliminates the traditional
classification of syllogisms according to figures and moods, as well as the need
to reduce all syllogisms to the first figure. By referring to the extension of
both subject and predicate in the conclusion, Ploucquet makes his formerly
implicit choice of quantifying the predicate explicit, a choice highly praised in
the following century by Hamilton (1860–1869, II, 322; Aner 1909, 22ff.).

The following symbolism used by Ploucquet in 1763 is a variant of that
used in 1759 and basically adopted until 1782 (Ploucquet [1782]) (there are
small differences also between the two 1763 essays). Uppercase letters stand for
universal terms; lowercase letters stand for particular terms; juxtaposition of
terms, such as AB or Ab, means affirmation; the sign “>” between two letters
means negation (see Venn [1894], 499). Ploucquet, who takes an extensional
point of view, maintains that in an affirmative proposition the predicate is taken
particularly. He says that this kind of particularity holds “in a comprehensive
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sense [sensu comprehensivo]” (Ploucquet 1763b, 52). Thus “All men are rational”
means “All men are some rational beings,” a proposition that in his symbolism
can be written as “Mr,” where the letters signify the initials of the subject and
the predicate. The particularity “in a comprehensive sense” of the predicate
does not exclude that there could be other individuals apart from those
under consideration. As for negative propositions, they are usually meant as
having a universal predicate, but here too, though this may seem absurd in
common language, they can have a particular predicate, as is the case with
“All men are not some animals,” meaning, for instance, that they are not
irrational animals. In this logical framework, Ploucquet develops a doctrine
of subalternation and conversion that contrary to accepted rules, allows the
conversion of particular negative propositions, for “Some A is not B” correctly
converts into “No B is some A.” As to the syllogistic calculus, all one has
to do is to represent the premises by Ploucquet’s symbolism and check that
the premises are not both negative and that they do not contain four terms.
Under these conditions, one can draw the conclusion by deleting the middle
term and relating the two remaining terms, taking care that they preserve
the same quantity they had in the premises. In this calculus also a syllogism
in the first figure of the form “All M are P , no S are M , then no S are
P ,” which is invalid according to traditional doctrines, becomes acceptable,
for it can be symbolized as follows: Mp, S > M , then S > p (see Menne
1969).

Another author of logical calculi is Johann Heinrich Lambert (1728–1777).
This famous and eclectic scientist contributed to the study of language, meta-
physics and logic, in addition to important research in the fields of optics,
geometry (conic sections, perspective, theory of parallel lines, writing on the
latter subject one of the basic texts in the history of non-Euclidean geometries),
astronomy (comets), physics, technical applications of his theoretical works,
and cosmology.

Lambert’s interest in logic dates back to the fifties when he wrote the
so-called Six essays of an art of the signs in logic [Sechs Versuche einer
Zeichenkunst in der Vernunftlehre], published only after his death (Lambert
[1782–1787], I). It is rather difficult to explain why Lambert decided not to
publish these essays at the time that he wrote them, especially as they contain
the general outline of his calculus, as well as comments on the nature of
definition and on the representation of relations (see Dürr 1945). According
to some interpreters (Barone 1964, 88), this decision depended on the fact
that as Lambert confessed, in these writings he was attracted to the idea
of discovering what “was concealed in the Leibnizian characteristic and in
the ars combinatoria.” While Segner did not enter into these matters and
Ploucquet refused the very idea of a universal calculus, Lambert adopted
Leibniz’s ideal and, given his ignorance of the latter’s relevant texts, wanted
to pursue Leibniz’s end by his own means. Now, a calculus aiming at being
both formal and real presupposes an alphabet of simple elements. Therefore,
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Lambert had to postpone the publication of his early technical results until his
philosophical investigation could establish such an alphabet of simple and first
concepts which, not containing composition in themselves, could not contain
contradictions.

Meanwhile, Lambert wrote the Neues Organon (Lambert [1764]), an impor-
tant and famous book in which, according to the idea of mathesis universalis,
he devoted himself to searching for the basic concepts that could help insert
already acquired knowledge into a rational system and promote new discoveries.
The Neues Organon consists of four parts: Dianoiology, Alethiology, Semeiotics,
and Phenomenology, to which we will refer beginning with Alethiology and
ending with Dianoiology.

Alethiology, the doctrine of truth and error, deals with elementary concepts.
Lambert gives a list of the latter, including conscience, existence, unity, dura-
tion, succession, will, solidity, extension, movement, and force. In Lambert’s
view, connecting simple concepts produces truths that are not subject to
change, and therefore can be considered as “eternal truths.” Eternal truths
provide a foundation for all a priori sciences, in particular arithmetic, geometry,
and chronometry.

Semeiotics studies the relation between sign and meaning, and therefore
introduces both a theory of language and the project of a characteristic.

Phenomenology is the doctrine of appearance. Here Lambert, in discussing
certainty and its relations to truth and error, also considers the degrees of
possible certainty, and the probability of cognitions of which we have no
absolute certainty.

Dianoiology investigates the laws of the understanding. This part of the
Neues Organon contains diagrams representing concept relations in proposi-
tions and syllogisms. Lambert represents a concept—considered in extension,
that is, with respect “to all the individuals in which it appears” (Lambert 1764,
Dian. §174)—as a line that can either be closed or open. He then represents
the relations that two concepts entertain in the four basic propositions of
categorical syllogisms:

All A are B No A is B Some A is B Some A is not B

. . . B b . . . A a B b B b B b
A a . . . A . . . . . . A . . .

In the diagram representing universal affirmative propositions, what counts,
in addition to the length of the lines, is that A is drawn under B. The
diagram representing universal negative propositions is clear. As for particular
affirmative propositions, the diagram shows that we only know some individuals
A that are B, or at least one individual A that is B. Therefore, it remains
indeterminate if also all A are B, or even all B are A. In the case of particular
negative propositions the diagram shows not only that A is indeterminate
but also that A is neither under B nor completely beside it, as in the case of
universal negative propositions. On this basis one cannot only immediately
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make all valid conversions, but also represent all syllogisms, with the advantage
of dispensing with the reduction to the first figure (see Wolters 1980, 129–166).

When the Neues Organon was published diagrams were no novelty, though
Lambert introduced his diagrams before the already mentioned circular dia-
grams by Leonhard Euler (Euler 1768–1772):

All A are B No A is B Some A is B Some A is not B

A

B

A B A B A B

In fact, representations of concepts, propositions, and syllogisms by means of
circles, lines, and other figures had already been devised by Johann Christoph
Sturm (1661), who also introduced circular diagrams representing new syl-
logisms having negative terms; by Johann Christian Lange (1712, 1714); by
Ploucquet (1759); and by Leibniz himself (on the history of diagrams in logic
see Gardner 1983; Bernhard 2001).

From what we have seen of Lambert’s and Ploucquet’s logical work, we
can understand why their contemporaries were intrigued by their different
approaches to the problem of a logical calculus and wanted to assess their
comparative merits. In a public debate in which Lambert and Ploucquet took
part directly—reported in Bök ([1766])—Ploucquet’s Methodus calculandi was
compared with Segner’s logical work, while Lambert’s diagrams in the Neues
Organon underwent severe criticism. On the occasion of this debate Lambert
began a correspondence with Georg Jonathan Holland (1742–1784), a pupil of
Ploucquet. In a letter to Holland, Lambert criticized Ploucquet’s use of the
traditional rule that nothing follows from two negative premises to exclude
nonconclusive syllogism. He also criticized Ploucquet for using letters standing
for the initials of substantives in syllogisms, thus showing his lack of a true
symbolism (Lambert [1782] 1968, 95–96). But in an article of 1765, Lambert,
though claiming that his diagrams in the Neues Organon were an example of
a characteristic, acknowledged that they were only a little thing with respect
to his project of a general logical calculus (Bök [1766], 153).

At last, Lambert’s logical calculus was published in his Disquisitio (Lambert
[1765], dated 1765 but actually printed in 1767). Here he states the aim of
his calculus and lists the requisites any calculus must satisfy. As to his aim,
Lambert says that he wants to find a method for treating qualities similar
to the method used in algebra for treating quantities. Just as in algebra
we employ the ideas of relation, equality, proportion, and so on, so in the
logical calculus we have to employ the ideas of identity, identification, and
analogy. As to the requisites a calculus must satisfy, they are the following.
(1) For every operation we introduce, there must be the inverse operation, in
full analogy with algebra where, when two quantities are added, it is always
possible to obtain either by subtracting it from the total. (2) Given the object,
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the relations and the operations of the logical calculus, an adequate symbolism
must be found. The symbols must be a perfect replacement for the things
they symbolize to be safely used in their place. This means that we need a
characteristic that mirrors things, a real characteristic, in which simple signs
stand for simple things and are capable, once composed, to stand for composed
things, so that it is also possible to proceed inversely from a composite to its
simple elements. (3) Lambert also requires that we have a clear knowledge of
the simple elements and the basic relations of the calculus; we must therefore
know the combinatorial part of the ars characteristica combinatoria. In his
opinion, the simple elements are qualities, that is, the special affections of
things we can consider as their attributes. Qualities are simple elements
because, according to established ontological doctrines, they can be considered
as “absolute” attributes, whereas other attributes, notably quantity, must be
thought only “relatively” (a similar conception occurs in Leibniz’s De Arte
Combinatoria).

Lambert’s calculus in the Disquisitio, as it was the case with his unpublished
essays of the fifties, is intensional, that is, “does not concern individuals but
properties” (letter to Holland 21.4.1765, Lambert [1782] 1968, 37). After trying
the extensional perspective in the Neues Organon, his return to his early
preference for the intension of concepts is undoubtedly due to a conscious
choice. For Lambert wants to find what is “simplest” and “first” in concepts,
but to obtain what is simpler, it is necessary to consider what is more complex,
and in the case of concepts, the more complex concepts are those containing
the simpler ones. Therefore, it is necessary to consider concepts as properties,
as concepts containing other concepts, thus disregarding the class of individuals
to which they extend.

When dealing with judgments and syllogisms, Lambert’s first aim is to
establish the identity of the subject and predicate of judgments. Therefore,
given the judgment “All A are B,” where A and B are not already obviously
identical, Lambert establishes their identity by considering the subject as
containing the predicate plus other properties. Hence the following symbolism
(Lambert [1765], 461–462):

All A are B No A is B Some A is B Some A is not B

A = nB A:p = B:q mA = nB mA:p = B:q

In the universal affirmative, A = nB, n stands for the qualities which can
be found in the subject A but not in the predicate B. In the universal negative,
A:p = B:q, the sign “:” stands for a logical division and expresses which
qualities, p and q, must be subtracted from the subject and the predicate,
because neither belongs both to the subject and the predicate, so as to obtain
A = B. Similarly, in the particular affirmative,mA = nB, and in the particular
negative, mA:p = B:q. On this basis, Lambert obtains a general formula
expressing any kind of judgment: A/p = nB/q (here Lambert substitutes the
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sign of fraction for the sign “:”). From this formula one can easily derive a
formula expressing any kind of syllogism:

mA/p = nB/q
μA/π = νC/ρ

mνC/pρ = μnB/πq
.

To give an example of how this general formula applies to particular syl-
logisms, a syllogism Barbara, whose premises are B = mA and C = B,
has the conclusion C = mA, whereas a syllogism Celarent, whose premises
are B/q = A/p and C = νB, has the conclusion C/q = νA/p (Lambert
[1782–1787], I, 102–103, 107).

Despite the fact that the Disquisitio’s treatment of syllogism is very different
from that of the Neues Organon, it was disappointing for Lambert’s most
competent readers. Holland sent Lambert a letter in which (beside mentioning
his own tentative calculus) he observed that, however good Lambert’s calculus
was, it did not achieve the declared aim to find symbols mirroring reality. What
are A, B, m, n, symbols of? Above all, which are the primitives that they
are supposed to be symbols of? A definite answer, Holland concluded, could
perhaps be expected from a new work Lambert had announced (Lambert [1782]
1968, 259–266). The work Holland referred to, titled Architectonic (Lambert
[1771]), was published a few years later. In this treatise, which promised to
give a theory of what is simple and first in philosophical and mathematical
knowledge, the author collects the results of his philosophical research going
back to the mid-forties. But for all its importance as the summa of Lambert’s
thought, the Architectonic provides no formal treatment, nor gives a new and
complete list of simple elements that could be used as basic elements of a
real characteristic, because it contains the same elements already listed in the
Neues Organon.

The conclusion to be drawn is that Lambert’s project shared Leibniz’s
ambitions and in this respect went far beyond Segner’s and Ploucquet’s calculi,
but perhaps was too ambitious and, though providing interesting details in
the application of algebra to logic, can be said to be unachieved. In a sense,
Lambert admitted as much in a letter (14.3.1771) to Johann Heinrich Tönnies:
“should the universal characteristic belong to the same class as the philosopher’s
stone or the squaring of the circle, it can at least, just as these, induce other
discoveries” (Lambert [1782] 1968, 411).

Ploucquet’s refusal of Leibniz’s project and Lambert’s somber admission to
Tönnies may sound too pessimistic if one considers how much they and other
eighteenth-century logicians—not to mention Leibniz—had progressed since
Bernoulli’s failed parallelism. But especially Lambert’s assessment of universal
characteristic as something similar to the squaring of the circle makes it clear
that these authors believed that the construction of a satisfactory logical
calculus was hindered by a possibly insurmountable obstacle: the overpowering
amount of philosophical analysis to be done in the fields of metaphysics,
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semiotics, and natural language to reach a suitable alphabet of thoughts. As a
matter of fact, unknown to these eighteenth-century logicians, there was an
obstacle, not only on the side of philosophical analysis but also on the side of
mathematics. Nineteenth-century logicians will find out that one had to reflect
also on the nature of mathematics and algebra, especially on their apparently
exclusive link with quantity, before an algebra of logic could come to life.

11. Kant
Interest for logical calculi seems to vanish at the end of the eighteenth century.
We have mentioned some of the reasons behind this phenomenon, but according
to a still widely received opinion this was due to the influence exerted on logic
by Immanuel Kant (1724–1804). This opinion is usually justified by saying
that Kant introduced confusion in logic through his notion of transcendental
logic. As a matter of fact, Kant had a definite concept of logic, related to his
transcendental philosophy but not to be confused with it.

To evaluate Kant’s concept of logic, one must take into account his 40
years-long activity as a logic teacher, using as a textbook Georg Friedrich
Meier’s Auszug aus der Vernunftlehre (Meier 1752b), a short version of the
latter’s Vernunftlehre (Meier 1752a) (on Meier’s logic see Pozzo 2000). We
have several texts related to this teaching activity, which constitute the so-
called Kantian logic-corpus. Apart from the programs of the courses, such
texts are (1) Kant’s handwritten annotations on Meier’s Auszug (the so-called
logical Reflexionen, in Kant 1900, XVI), (2) lecture notes taken by students
(Kant 1900–, XXIV; Kant 1998a, 1998b), and (3) I. Kant’s Logik, a book
published in 1800 by Gottlob Benjamin Jäsche by collecting a selection of
Kant’s annotations on Meier’s Auszug with Kant’s consent (Kant 1900–, IX,
1–150). These texts must be used with care and must always be compared
with Kant’s published production. Nonetheless, they are essential to assess
his views on logic, allowing a deeper insight into the importance of logic for
Kant’s philosophy, and testifying to his knowledge of the discipline he was due
to teach. As it is impossible to give details here of Kant’s treatment of logical
doctrines, we will only discuss his general concept of logic.2

A comparative study of the Kantian logic-corpus shows that Kant’s concept
of logic is the result of a sustained effort of reflection lasting several years.
He began as an almost orthodox Wolffian, founding logic on empirical psy-
chology and ontology (Logik Blomberg, Kant 1900–, XXIV, 28). In his mature
conception, however, he took the opposite view and denied that logic could be
founded on either empirical psychology or ontology.

To this effect Kant argues that a logic founded on empirical psychology
could describe human logical behavior but not prescribe laws to it. In his
opinion, logical rules do not mirror what we actually do when we think, but
are the standard to which our thoughts must conform if they are to have a
logical form: Logic considers “not how we do think, but how we ought to think”
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(I. Kant’s Logik, Kant 1900–, IX, 14). As to the formerly accepted foundation
of logic on ontology, Kant simply suppresses it, to the dismay of many of
his contemporaries and later idealist philosophers. In particular, opposing
Kant, Hegel proposed a new logic identical to metaphysics which, like old
metaphysics, would admit that “thought (with its immanent determinations)
and the true nature of things are one and the same content” (Barone 1964,
202). Thus it is rather surprising that William and Martha Kneale claim that
it was Kant “with his transcendentalism who began the production of the
curious mixture of metaphysics and epistemology which was presented as logic
by Hegel and other Idealists of the nineteenth century” (Kneale and Kneale
1962, 355).

The independence of logic from ontology and empirical psychology raises the
problem of the origin and justification of logic. Kant gives an indirect answer to
the problem of the origin of logic by way of a comparison of logic with grammar.
Logic and grammar—he maintains—are similar in as much as we learn to
think and to speak without previous knowledge of grammatical and logical
rules, and only at a later stage we become conscious of having implicitly used
them. Nonetheless logic and grammar differ because, as soon as we become
aware of grammatical rules, we easily see that they are empirical, contingent,
and subject to variations. On the contrary, once we become conscious of the
logical structure of our thought, we cannot fail to appreciate that without that
structure we could not have been thinking at all. Therefore logic precedes and
regulates any rational thinking and is necessary in the sense that we cannot
consider it contingent and variable. Kant concludes that logic “is abstracted
[abstrahirt] from empirical use, but is not derived [derivirt]” from it (Reflexion
1612, Kant 1900–, XVI, 36) so that it can be considered a scientia scientifica,
whereas grammar is only a scientia empirica (Logik Busolt, Kant 1900–, XXIV,
609). This is important because the logic considered by Kant is not a natural
logic that could be investigated by psychology, but is an “artificial logic.”

This being the origin of logic, its justification can be reduced to the fact
that, according to Kant, logical principles such as the law of contradiction are
accepted without proof: “All rules that are logically provable in general are in
need of a ground [Grund] from which they are derived. Many propositions (e.g.
that of contradiction) cannot be proved at all, neither a priori nor empirically”
(Logik Dohna-Wundlacken, Kant 1900–, XXIV, 694). In other words, logical
rules, “once known, are clear by themselves” (Reflexion 1602, Kant 1900–,
XVI, 32).

This means that logic not only is necessary, scientific, and a priori, but
also is capable of justifying itself. These features make logic one of the means
Kant uses in carrying through his philosophical project of explaining the
possibility of experience according to his Copernican revolution. An important
part of this project consists in showing that it is possible to find all the general
forms of thought—categories—without having to fall back on metaphysics
or experience. Now logic (rather, one of its most important parts, i.e., the
functions of judgment), which Kant has made no longer dependent on empirical
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psychology and ontology, qualifies as the perfect clue to the categories. But since
categories have to be completely enumerated to be employed in a complete list
of principles of the understanding, which define the field of possible experience,
logic has to satisfy a further requisite: It has to be complete. Hence Kant’s
well-known statement that logic “seems to all appearance to be finished and
complete” (Kant 1997, B viii). Kant has been criticized for this statement,
and in our opinion he lacks conclusive arguments to support it. But one must
consider that a proof of the completeness of logic would have been easy if Kant
had preserved the foundation of logic on empirical psychology and ontology,
both ultimately guaranteed by God. It is also fair to point out that Kant
envisages the possibility, for a closed system, of growing “from within,” on a
par with living organisms that grow with no addition of new parts (Kant 1997,
A 832/B 860). Applying this to logic, one could say that some growth in logic
is possible, although within the boundaries of a systematic structure.

The scientific, necessary, and self-justifying nature of logic guarantees that
it has great autonomy and the maximum spectrum of application. Such
prerogatives are counterbalanced by precise limitations: “Nobody can dare to
judge of objects and to assert anything about them merely with logic without
having drawn on antecedently well-founded information about them from
outside logic” (Kant 1997, A 60/B 85). Consequently, logic is the supreme
canon of truth with respect to the formal correctness of thought, but must be
indifferent to its contents. In this way Kant makes his concept of logic more
definite. Logic, having no specific subject matter, is general. Having nothing
to do with human psychology, it is pure. Concerning only the form of thought,
it is merely formal.

The first consequence of this conception is that logic has to be analytic,
although not in the sense that it deals with analytic judgments only. For
logic is not concerned with the analytic/synthetic distinction which is left to
transcendental logic: “The explanation of the possibility of synthetic judgments
is a problem with which general logic has nothing to do, indeed whose name it
need not even know” (Kant 1997, A 154/B 193). Logic is analytic in two senses.
(1) “General logic analyzes the entire formal business of the understanding
and reason into its elements, and presents these as principles of all logical
assessment of our cognition” (Kant 1997, A 60/B 84). (2) Logic is analytic
inasmuch as it has nothing to do with dialectic, both intended as the rhetorical
art of disputation and as the part of logic dealing with probability.

The most evident and better known reason for Kant’s separation of logic
from dialectic is the connection between dialectic and rhetoric. A rhetorical
dialectic is an art for deceiving adversaries in a dispute and for gaining consent
not only disregarding truth but also purporting to produce the semblance
[Schein] or illusion of truth. Kant condemns this kind of “logic” as unworthy of
a philosopher (see I. Kant’s Logik, Kant 1900–, IX, 17). As to the association of
dialectic with probability, it goes back to the distinction made by Aristotelian
logical treatises between analytic, that is, the part of logic dealing with
truth and certainty, and dialectic, that is, the part of logic dealing with
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what is probable, according to Boethius’s translation of the Greek éndoxos
with the Latin probabile. This distinction was adopted by many eighteenth-
century logicians, notably by Meier who divides logic into analytica or “logic
of completely certain erudite cognition,” and dialectica or logica probabilium,
defined as “logic of probable erudite cognition” (Meier 1752b, §6, in Kant
1900–, XVI, 72).

Like many philosophers (including Leibniz), till the early seventies Kant
hoped that a general logic of the uncertain could be found. Such a logic,
although different from the Aristotelian and humanist doctrines of probability
and attentive to the late seventeenth-century results in the field of probability
calculus, was intended to be capable of also dealing with qualitative matters
concerning justice, politics, and so on. Later on, Kant completely changed
his view. He considered probability as a measurable degree of certainty—in
this he agreed with Wolff—which “can be expressed like a fraction, where the
denominator is the number of all possible cases, the numerator is the number
of actual cases” (Logik Pölitz, Kant 1900–, XXIV, 507). This view restricts
probability (Wahrscheinlichkeit, probabilitas) to matters that can be subjected
to a numerical calculus (games of chance and statistically based events such
as mortality indexes), and excludes the possibility of an instrumental art
for weighing, rather than numbering, heterogeneous reasons pro and contra
a given qualitative question. Against this alleged art Kant objects that it
concerns the notion of “verisimilitude” (Scheinbarkeit, verisimilitudo) rather
than probability. In his view, if such an art, under the name of dialectic,
belonged to logic, the latter would no longer be a canon of truth but would
become an instrument for producing an illusion of truth by assigning an alleged
probability—in fact a mere verisimilitude—even to questions that are beyond
possible experience, such as the existence of the soul. Hence Kant’s claim that
only probability restricted to matters that can be subjected to a numerical
calculus is worthy of this name and, because it is contiguous to truth and
certainty, belongs to the analytic part of logic and need not be dealt with
in a special part of logic called dialectic (Kant 1900–, A 293/B 349). Kant’s
position is drastic: Logic and dialectic must part and go separate ways.

The second consequence of Kant’s view that logic is a mere formal canon of
truth is that the content of logic must be limited to the doctrine of elements:
concepts, judgments, and inferences. Therefore, logic must not trespass into
the domains of anthropology and psychology, nor give advice for the use of
logic in the fields of the natural sciences or of practical life. This means that
Kant breaks away from one of the main trends of European logic, which had
tried to give new life to the discipline by stressing its usefulness either as a
guide for judging, or as a kind of methodology for empirical research, or as a
medicine against errors, or as an epistemological exercise. In particular, Kant
breaks away from Locke’s view of logic, despite the fact that he had formerly
praised it, for he maintains that the study of the origin of concepts “does not
belong to logic, but rather to metaphysics” (Logik Dohna-Wundlacken, Kant
1900–, XXIV, 701).
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The fact that Kant separates logic from epistemology does not mean that the
texts of the Kantian logic-corpus do not contain epistemological parts. On the
contrary, these texts make very interesting reading on matters such as opinion,
belief, knowledge, hypotheses, probability, and so on. But these matters are
no longer intended as belonging to pure logic because, to deal with them, one
must take into account the content of knowledge and the human cognitive
constitution, including sensibility, or at least the form of sensibility, as well as
practical aspects of human action, such as the interest we have for accepting
something as true. If Kant had written a logic handbook himself, he probably
would have treated such matters at length, in addition to other interesting
questions, such as the doctrine of logical essence, in a doctrine of method.

The third consequence of Kant’s view of logic is that it is only a canon
for checking the correctness of our thoughts but is incapable of invention.
Kant’s sharp distinction between logic and mathematics contributes to this
view. He agrees with Wolff that there is a single logic to be complied with
by mathematicians and nonmathematicians alike, but logic is insufficient to
explain why mathematics is ampliative. According to Kant, mathematics is
the science that constructs a priori its concepts, that is, exhibits a priori the
intuitions corresponding to them. Thus, mathematics relies also on the form
of sensible intuition, so that it has content and can be inventive with respect
to it. This applies not only to arithmetic and geometry but also to algebra,
which is inventive because it refers (albeit mediately) to a priori intuitions.
Therefore, Kant rejects the view of those who “believe that logic is a heuristic
(art of discovery) that is an organ of new knowledge, with which one makes
new discoveries, thus e.g. algebra is heuristic; but logic cannot be a heuristic,
since it abstracts from any content of knowledge” (Logik Hechsel, Kant 1998b,
279 = ms. 9).

These statements are not borne out of ignorance. Kant knew the outlines
of Leibniz’s ars characteristica combinatoria, on whose utopian nature he com-
mented in an essay of 1755 (Nova dilucidatio, Kant, 1900–, I, 390) in terms that
seem to anticipate analogous statements by Ploucquet and Lambert. Moreover,
his logic-corpus, as well as his works and correspondence, provide evidence that
(1) he was well acquainted with the combinatorial calculus of syllogistic moods;
(2) he used Euler’s (whom he quotes) circular diagrams to designate concepts,
judgments, and syllogisms; (3) he knew the linear diagrams of Lambert, with
whom he corresponded; (4) he probably had some knowledge of Segner’s and
Ploucquet’s works; and (5) he actively promoted the diffusion of Lambert’s
posthumous works containing the latter’s algebraic calculus. But all this did
not shake his conviction that an algebraic symbolism of idea-relations and the
use of letters instead of words are not by themselves a means to invention.

If we consider the development of logic from humanism onward, we see that
one of the basic motivations of logical research in the whole period was the
demand to make logic inventive. The humanist theories of inventio, Bacon’s
studies on induction, Descartes’s theory of problem solving, the ars inveniendi
and a large part of Leibniz’s ars characteristica combinatoria, and so on,
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can be viewed in this perspective. Kant objected that this kind of research,
while claiming to be purely formal, was meant to deal with the content of
knowledge. The condition (and cost) of his objection to an inventive logic
was the separation of logic from mathematics, but in this way he achieved
his aim of separating pure logic from metaphysics and psychology, as well
as from any transcendent foundation. This aspect of Kant’s concept of logic
reappears in the philosophy of logic of some later logicians. Thus, despite
substantial differences, Frege’s concept of logic seems indebted to Kant’s in
several respects, such as the idea that the only logic that really counts is
scientific logic, rather than some natural logic; the contention that a scientific
or artificial logic provides necessary and universal rules; the condemnation of
any intrusion of psychology into logic by the argument that logic is normative
on a par with moral laws; the idea that logic is used for justifying knowledge
rather than for acquiring new knowledge. But even Venn, who claims that
Kant had “a disastrous effect on logical method” (Venn [1894], xxxv) begins
his own system of logic by stating: “Psychological questions need not concern
us here; and still less those which are Metaphysical” (Venn [1894], xxxix).
Perhaps it would have been more difficult for him to make such a statement if
Kant had not already made that very same statement.

Notes
1. Reference to secondary literature devoted to Leibniz’s notion of complete

concept could span over many pages. We will limit ourselves to the seminal papers
by Mondadori (1973) and Fitch (1979), to the discussion included in Mates (1986),
and—for two recent accounts based on different interpretations—to Zalta (2000) and
Lenzen (2003). Mondadori’s and Fitch’s papers are included, together with other
relevant contributions, in Woolhouse (1993).

2. The body of literature on Kant is enormous, and also literature on Kantian logic
is very extensive, ranging from the relation between general and transcendental logic
to the doctrines of concepts, judgments, and inferences, not to mention topics such
as the relations between logic and language and mathematics. We will mention only
Shamoon (1981), Capozzi (1987), Pozzo (1989), Brandt (1991), Reich (1992), Wolff
(1995), Capozzi (2002), and Capozzi (forthcoming) (the latter containing an extensive
bibliography). A precious research tool is provided by an impressive Kantian lexicon,
still in progress, many of whose volumes are devoted to Kant’s logic-corpus (Hinske
1986–).
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The Mathematical Origins of
Nineteenth-Century Algebra of Logic
Volker Peckhaus

1. Introduction
Most nineteenth-century scholars would have agreed to the opinion that
philosophers are responsible for research on logic. On the other hand, the history
of late nineteenth-century logic clearly indicates a very dynamic development
instigated not by philosophers but by mathematicians. A central outcome of
this development was the emergence of what has been called the “new logic,”
“mathematical logic,” “symbolic logic,” or, from 1904 on, “logistics.”1 This
new logic came from Great Britain, and was created by mathematicians in
the second half of the nineteenth century, finally becoming a mathematical
subdiscipline in the early twentieth century.

Charles L. Dodgson, better known under his pen name Lewis Carroll (1832–
1898), published two well-known books on logic, The Game of Logic of 1887
and Symbolic Logic of 1896, of which a fourth edition appeared already in
1897. These books were written “to be of real service to the young, and to
be taken up, in High Schools and in private families, as a valuable addition
of their stock of healthful mental recreations” (Carroll 1896, xiv). They were
meant “to popularize this fascinating subject,” as Carroll wrote in the preface
of the fourth edition of Symbolic Logic (ibid.). But astonishingly enough, in
both books there is no definition of the term “logic.” Given the broad scope
of these books, the title “Symbolic Logic” of the second book should at least
have been explained.

The text is based (but elaborated and enlarged) on my paper “Nineteenth Century Logic
between Philosophy and Mathematics” (Peckhaus 1999).

159
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Maybe the idea of symbolic logic was so widely spread at the end of the
nineteenth century in Great Britain that Carroll regarded a definition as simply
unnecessary. Some further observations support this thesis. They concern a
remarkable interest by the general public in symbolic logic, after the death of
the creator of the algebra of logic, George Boole, in 1864.

Recalling some standard nineteenth-century definitions of logic as, for
example, the art and science of reasoning (Whately) or the doctrine giving
the normative rules of correct reasoning (Herbart), it should not be forgotten
that mathematical or symbolic logic was not set up from nothing. It arose
from the old philosophical collective discipline logic. It is therefore obvious to
assume that there was some relationship between the philosophical and the
mathematical side of the development of logic, but standard presentations of
the history of logic ignore this putative relationship; they sometimes even deny
that there has been any development of philosophical logic at all, and that
philosophical logic could therefore justly be ignored.

Take for instance William and Martha Kneale’s program in their eminent
The Development of Logic. They wrote (1962, iii): “But our primary purpose
has been to record the first appearances of these ideas which seem to us most
important in the logic of our own day,” and these are the ideas leading to
mathematical logic. Another example is J. M. Bocheński’s assessment of “mod-
ern classical logic,” which he dated between the sixteenth and the nineteenth
century. This period was for him noncreative. It can therefore justly be ignored
in a problem history of logic (1956, 14). According to Bocheński, classical logic
was only a decadent form of this science, a dead period in its development
(ibid., 20).

Authors advocating such opinions adhere to the predominant views of
present-day logic, that is, actual systems of mathematical or symbolic logic. As
a consequence, they are not able to give reasons for the final divorce between
philosophical and mathematical logic, because they ignore the seed from which
mathematical logic has emerged. Following Bocheński’s view, Carl B. Boyer
presented for instance the following periodization of the development of logic
(Boyer 1968, 633): “The history of logic may be divided, with some slight degree
of oversimplification, into three stages: (1) Greek logic, (2) scholastic logic,
and (3) mathematical logic.” Note Boyer’s “slight degree of oversimplification”
which enabled him to skip 400 years of logical development and ignore the fact
that Kant’s transcendental logic, Hegel’s metaphysics, and Mill’s inductive
logic were called “logic,” as well.

This restriction of scope had a further consequence: The history of logic is
written as if it had been the nineteenth-century mathematicians’ main motive
for doing logic to create and develop a new scientific discipline as such, namely
mathematical logic, dealing above all with problems arising in this discipline
and solving these problems with the final aim of attaining a coherent theory.
But what, if logic was only a means to an end, a tool for solving nonlogical
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problems? If this is considered, such nonlogical problems have to be taken note
of. One can assume that at least the initial motives of mathematicians working
in logic were going beyond creating a new or further developing the traditional
theory of logic. Under the presupposition that a mathematician is usually not
really interested in devoting his professional work to the development of a
philosophical subdiscipline, one can assume that theses motives have to be
sought in the mathematician’s own subject, namely in foundational, that is,
philosophical problems of mathematics.

Today historians have recognized that the emergence of the new logic was no
isolated process. Its creation and development ran parallel to and was closely
intertwined with the creation and development of modern abstract mathematics
which emancipated itself from the traditional definition as a science which
deals with quantities and geometrical forms and is therefore responsible for
imaginabilia, that is, intuitive objects. The imaginabilia are distinguished from
intelligibilia, that is, logical objects which have their origin in reason alone.
These historians recognized that the history of the development of modern
logic can only be told within the history of the development of mathematics
because the new logic is not conceivable without the new mathematics. In
recent research on the history of logic, this intimate relation between logic and
mathematics, especially its connection to foundational studies in mathematics,
has been taken into consideration. One may mention the present author’s
Logik, Mathesis universalis und allgemeine Wissenschaft (Peckhaus 1997)
dealing with the philosophical and mathematical contexts of the development of
nineteenth-century algebra of logic as at least partially unconscious realizations
of the Leibnizian program of a universal mathematics, José Ferreirós’s history
of set theory in which the deep relations between the history of abstract
mathematics and that of modern logic (Ferreirós 1999) are unfolded, and
the masterpiece of this new direction, The Search for Mathematical Roots,
1870–1940 (2000a) by Ivor Grattan-Guinness, who imbedded the whole bunch
of different directions in logic into the development of foundational interests
within mathematics. William Ewald’s “Source Book in the Foundations of
Mathematics” (Ewald 1996) considers logical influences at least in passing,
whereas the Companion Encyclopedia of the History and Philosophy of the
Mathematical Sciences, edited by Ivor Grattan-Guinness (1994), devotes an
entire part to “Logic, Set Theories and the Foundation of Mathematics” (vol. 1,
pt. 5).

In the following, the complex conditions for the emergence of nineteenth-
century symbolic logic will be discussed. The main scope will be on the
mathematical motives leading to the interest in logic; the philosophical context
will be dealt with only in passing. The main object of study will be the algebra
of logic in its British and German versions. Special emphasis will be laid on
the systems of George Boole (1815–1864) and above all of his German follower
Ernst Schröder (1841–1902).
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2. Boole’s Algebra of Logic
2.1. Philosophical Context

The development of the new logic started in 1847, completely independent of
earlier anticipations, for example, those by the German rationalistic universal
genius Gottfried Wilhelm Leibniz (1646–1716) and his followers (see Peckhaus
1994a, 1997, ch. 5). In that year the British mathematician Boole published
his pamphlet The Mathematical Analysis of Logic (1847).2 Boole mentioned
(1847, 1) that it was the struggle for priority concerning the quantification of
the predicate between the Edinburgh philosopher William Hamilton (1788–
1856) and the London mathematician Augustus De Morgan (1806–1871) that
encouraged this study. Hence, he referred to a startling philosophical discussion
which indicated a vivid interest in formal logic in Great Britain. This interest
was, however, a new interest, just 20 years old. One can even say that neglect of
formal logic could be regarded as a characteristic feature of British philosophy
up to 1826 when Richard Whately (1787–1863) published his Elements of
Logic.3 In his preface Whately added an extensive report on the languishing
research and education in formal logic in England. He complained (1826, xv)
that only very few students of the University of Oxford became good logicians
and that

by far the greater part pass through the University without knowing
any thing of all of it; I do not mean that they have not learned by
rote a string of technical terms; but that they understand absolutely
nothing whatever of the principles of the Science.

Thomas Lindsay, the translator of Friedrich Ueberweg’s important System der
Logik und Geschichte der logischen Lehren (1857, English translation), was
very critical of the scientific qualities of Whately’s book, but he nevertheless
emphasized its outstanding contribution for the renaissance of formal logic in
Great Britain (Lindsay 1871, 557):

Before the appearance of this work, the study of the science had
fallen into universal neglect. It was scarcely taught in the universi-
ties, and there was hardly a text-book of any value whatever to be
put into the hands of the students.

One year after the publication of Whately’s book, George Bentham’s An
Outline of a New System of Logic appeared (1827) which was intended as a
commentary to Whately. Bentham’s book was critically discussed by William
Hamilton in a review article published in the Edinburgh Review (Hamilton
1833). With the help of this review, Hamilton founded his reputation as the
“first logical name in Britain, it may be in the world.”4 Hamilton propagated a
revival of the Aristotelian scholastic formal logic without, however, one-sidedly
preferring the syllogism. His logical conception was focused on a revision of
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the standard forms by quantifying the predicates of judgments.5 He arrived at
eight standard forms (Hamilton 1859–1866, vol. 4, 1866, 287):

1. A “All A is all B” toto-total.

2. A “All A is some B” toto-partial.

3. I “Some A is all B” parti-total.

4. I “Some A is some B” parti-partial.

5. E “Any A is not any B” toto-total.

6. E “Any A is not some B” toto-partial.

7. O “Some A is not any B” parti-total.

8. O “Some A is not some B” parti-partial.

Hamilton’s unconsidered transition from the collective “all” to the distributive
“any” has already been criticized by William and Martha Kneale (1962, 353).
Hamilton used a geometrical symbolism using wedges for illustrating the effects
of this modification.6

The controversy about priority arose when De Morgan, in a lecture “On
the Structure of the Syllogism” (De Morgan 1846) given to the Cambridge
Philosophical Society on 9 November 1846, also proposed the quantification
of the predicates.7 Neither had any priority, of course. The application of
diagrammatic methods in syllogistic reasoning proposed, for example, by the
eighteenth-century mathematicians and philosophers Leonard Euler, Gottfried
Ploucquet, and Johann Heinrich Lambert, presupposed a quantification of
the predicate.8 The German psychologistic logician Friedrich Eduard Beneke
(1798–1854) suggested to quantify the predicate in his books on logic published
in 1839 and 1842, the latter of which he sent to Hamilton (see Peckhaus 1997,
191–193). In the context of this presentation, it is irrelevant to give a final
solution of the priority question. It is, however, important that a dispute of
this extent arose at all. It indicates that there was a new interest in research
on formal logic.

This interest represented only one side of the effects released by Whately’s
book. Another line of research stood in the direct tradition of Humean em-
piricism and the philosophy of inductive sciences: the inductive logic of John
Stuart Mill (1806–1873), Alexander Bain (1818–1903), and others. Boole’s
logic was in clear opposition to inductive logic. It was Boole’s follower William
Stanley Jevons (1835–1882; see Jevons 1877–1878) who made this opposition
explicit.

As mentioned earlier, Boole referred to the controversy between Hamilton
and De Morgan, but this influence should not be overemphasized. In his main
work on the Laws of Thought (1854), Boole went back to the logic of Aristotle
by quoting from the Greek original. This can be interpreted as indicating
that the influence of the contemporary philosophical discussion was not as
important as his own words might suggest. In writing a book on logic he was
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doing philosophy, and it was thus a matter of course that he related his results
to the philosophical discussion of his time. This does not mean, of course, that
his thoughts were mainly influenced by this discussion. In any case, Boole’s
early algebra of logic kept a close connection to traditional logic, in the formal
part of which the theory of syllogism represented its core.9 Traditional logic
not only provided the topics to be dealt with by the “Calculus of Deductive
Reasoning,”10 it also served as a yardstick for evaluating the power and the
reliability of the new logic. Even in the unpublished manuscripts of a sequel of
the Laws of Thought titled “The Philosophy of Logic,” he discussed Aristotelian
logic at length (see Boole 1997, 133–136), criticizing, however, that it is more
a mnemonic art than a science of reasoning.11

2.2. The Mathematical Context in Great Britain
Of greater importance than the philosophical discussion on logic in Great
Britain were mathematical influences. Most of the new logicians can be related
to the so-called Cambridge Network (Cannon 1978, 29–71), that is, a movement
that aimed at reforming British science and mathematics which started at
Cambridge. One of the roots of this movement was the foundation of the
Analytical Society in 1812 (see Enros 1983) by Charles Babbage (1791–1871),
George Peacock (1791–1858), and John Herschel (1792–1871). Joan L. Richards
called this act a “convenient starting date for the nineteenth-century chapter
of British mathematical development” (Richards 1988, 13). One of the first
achievements of the Analytical Society was a revision of the Cambridge Tripos
by adopting the Leibnizian notation for the calculus and abandoning the
customary Newtonian theory of fluxions: “the principles of pure D-ism in
opposition to the Dot-age of the University” as Babbage wrote in his memoirs
(Babbage 1864, 29). It may be assumed that this successful movement triggered
off by a change in notation might have stimulated a new or at least revived
interest in operating with symbols. This new research on the calculus had
parallels in innovative approaches to algebra which were motivated by the
reception of Laplacian analysis.12 In the first place, the development of symbolic
algebra has to be mentioned. It was codified by George Peacock in his Treatise
on Algebra (1830) and further propagated in his famous report for the British
Association for the Advancement of Science (Peacock 1834, especially 198–
207). Peacock started by drawing a distinction between arithmetical and
symbolic algebra, which was, however, still based on the common restrictive
understanding of arithmetic as the doctrine of quantity. A generalization of
Peacock’s concept can be seen in Duncan F. Gregory’s (1813–1844) “calculus
of operations.”13 Gregory was most interested in operations with symbols. He
defined symbolic algebra as “the science which treats of the combination of
operations defined not by their nature, that is by what they are or what they
do, but by the laws of combinations to which they are subject” (1840, 208).
In his much praised paper “On a General Method in Analysis” (1844), Boole
made the calculus of operations the basic methodological tool for analysis.
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However, in following Gregory, he went further, proposing more applications.
He cited Gregory, who wrote that a symbol is defined algebraically “when its
laws of combination are given; and that a symbol represents a given operation
when the laws of combination of the latter are the same as those of the former”
(Gregory 1842, 153–154). It is possible that a symbol for an arbitrary operation
can be applied to the same operation (ibid., 154). It is thus necessary to
distinguish between arithmetical algebra and symbolic algebra, which has to
take into account symbolic but nonarithmetical fields of application. As an
example, Gregory mentioned the symbols a and +a. They are isomorphic in
arithmetic, but in geometry they need to be interpreted differently. a can refer
to a point marked by a line, whereas the combination of the signs + and a
additionally expresses the direction of the line. Therefore symbolic algebra has
to distinguish between the symbols a and +a. Gregory deplored the fact that
the unequivocity of notation did not prevail as a result of the persistence of
mathematical practice. Clear notation was only advantageous, and Gregory
thought that our minds would be “more free from prejudice, if we never used in
the general science symbols to which definite meanings had been appropriated
in the particular science” (ibid., 158).

Boole adopted this criticism almost word for word. In his Mathematical
Analysis of Logic he claimed that the reception of symbolic algebra and its
principles was delayed by the fact that in most interpretations of mathematical
symbols the idea of quantity was involved. He felt that these connotations
of quantitative relationships were the result of the context of the emergence
of mathematical symbolism, and not of a universal principle of mathematics
(Boole 1847, 3–4). Boole read the principle of the permanence of equivalent
forms as a principle of independence from interpretation in an “algebra of
symbols.” To obtain further affirmation, he tried to free the principle from the
idea of quantity by applying the algebra of symbols to another field, the field
of logic. As far as logic is concerned this implied that only the principles of
a “true Calculus” should be presupposed. This calculus is characterized as a
“method resting upon the employment of Symbols, whose laws of combination
are known and general, and whose results admit of a consistent interpretation”
(ibid., 4). He stressed (ibid.):

It is upon the foundation of this general principle, that I purpose to
establish the Calculus of Logic, and that I claim for it a place among
the acknowledged forms of Mathematical Analysis, regardless that
in its objects and in its instruments it must at present stand alone.

Boole expressed logical propositions in symbols whose laws of combination are
based on the mental acts represented by them. Thus he attempted to establish
a psychological foundation of logic, mediated, however, by language.14 The
central mental act in Boole’s early logic is the act of election used for building
classes. Man is able to separate objects from an arbitrary collection which
belong to given classes to distinguish them from others. The symbolic repre-
sentation of these mental operations follows certain laws of combination that
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are similar to those of symbolic algebra. Logical theorems can thus be proven
like mathematical theorems. Boole’s opinion has of course consequences for the
place of logic in philosophy: “On the principle of a true classification, we ought
no longer to associate Logic and Metaphysics, but Logic and Mathematics”
(ibid., 13).

Although Boole’s logical considerations became increasingly philosophical
with time, aiming at the psychological and epistemological foundations of logic
itself, his initial interest was not to reform logic but to reform mathematics.
He wanted to establish an abstract view on mathematical operations without
regard to the objects of these operations. When claiming “a place among the
acknowledged forms of Mathematical Analysis” (1847, 4) for the calculus of
logic, he didn’t simply want to include logic in traditional mathematics. The
superordinate discipline was a new mathematics. This is expressed in Boole’s
writing: “It is not of the essence of mathematics to be conversant with the
ideas of number and quantity” (1854, 12).

2.3. Boole’s Logical System
Boole’s early logical system is based on mental operations, namely, acts of
selecting individuals from classes. In his notation 1 symbolizes the Universe,
comprehending “every conceivable class of objects whether existing or not”
(1847, 15). Capital letters stand for all members of a certain class. The small
letters are introduced as follows (ibid., 15):

The symbol x operating upon any subject comprehending individu-
als or classes, shall be supposed to select from that subject all the
Xs which it contains. In like manner the symbol y, operating upon
any subject, shall be supposed to select from it all individuals of
the class Y which are comprised in it and so on.

Take A as the class of animals, then x might signify the selection of all sheep
from these animals, which then can be regarded as a new class X from which
we select further objects, and so on. This might be illustrated by the following
example:

animals sheep horned sheep black horned sheep
A X Y Z
↓ ↗ ↓ ↗ ↓ ↗
x y z

sheep horned black

This process represents a successive selection which leads to individuals being
common to the classes A, X, Y , and Z. xyz stands for animals that are sheep,
horned, and black. It can be regarded as the logical product of some common
marks or common aspects relevant for the selection. In his major work, An
Investigation of the Laws of Thought of 1854, Boole gave up this distinction
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between capital and small letters, thereby getting rid of the complicated
consequences of this stipulation.

If the symbol 1 denotes the universe, and if the class X is determined by
the symbol x, it is consequent that the class not-X has to be denoted by the
symbol 1−x, which forms the supplement to x, thus x(1−x) = 0. 0 symbolizes
nothing or the empty class. Now one can consider Boole’s interpretation of
the universal-affirmative judgment. The universal-affirmative judgment “All
Xs are Y s” is expressed by the equation xy = x or, by simple arithmetical
transformation, x(1− y) = 0 (p. 22): “As all the Xs which exist are found in
the class Y , it is obvious that to select out of the Universe all Y s, and from
these to select all Xs, is the same as to select at once from the Universe all
Xs.” The universal-negative judgment “No Xs are Y s” asserts that there are
no terms common in the classes X and Y . All individuals common would be
represented by xy, but they form the empty class. The particular-affirmative
judgment “Some Xs are Y s” says that there are some terms common to both
classes forming the class V . They are expressed by the elective symbol v. The
judgment is thus represented by v = xy. Boole furthermore considers using
vx = vy with vx for “some X” and vy for “some Y ,” but observes “that this
system does not express quite so much as the single equation” (pp. 22–23).
The particular-negative judgment “Some Xs are not Y s” can be reached by
simply replacing y in the last formula with 1− y.

Boole’s elective symbols are compatible with the traditional theory of
judgment. They blocked, however, the step toward modern quantification
theory as present in the work of Gottlob Frege, but also in later systems of
the algebra of logic like those of C. S. Peirce and Ernst Schröder.15

The basic relation in the Boolean calculus is equality. It is governed by
three principles which are themselves derived from elective operations (see
ibid., 16–18):

1. The Distributivity of Elections (16–17):
it is indifferent whether from of group of objects considered as a
whole, we select the class X, or whether we divide the group into
two parts, select the Xs from them separately, and then connect
the results in one aggregate conception, in symbols:

x(u+ v) = xu+ xv,

with u + v representing the undivided group of objects, and u
and v standing for its component parts.

2. The Commutativity of Elections: The order of elections is irrelevant:

xy = yx.

3. The Index Law: The successive execution of the same elective act does
not change the result of the election:

xn = x, for n ≥ 2.
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Boole stressed the importance of the Index Law, which is not generally valid
in arithmetic (only in the arithmetic of 0 and 1) and therefore peculiar for
elective symbols. It allows one to reduce complex formulas to forms more easily
capable of being interpreted.

In his Investigation of the Laws of Thought (1854) Boole abandoned the
Index Law and replaced it by the Law of Duality (“Boole’s Law”) xx = x, or
x2 = x.16 His esteem for this law becomes evident in his claim “that the axiom
of the metaphysicians which is termed the principle of contradiction. . . , is a
consequence of the fundamental law of thought whose expression is x2 = x”
(Boole 1854, 49). Boole referred to the derivation

x2 = x
x− x2 = 0
x(1− x) = 0,

the last formula saying that a class and its complement have no elements in
common. Boole was heavily criticized for this “curious error” (Halsted 1878, 86)
of considering the Law of Contradiction a consequence of the Law of Duality,
not the other way around (the derivation works, of course, also in the other
direction).

Boole’s revisions came along with a change in his attitude toward logic. His
early logic can be seen as an application of a new mathematical method to
logic, thereby showing the efficacy of this method within the broad project
of a universal mathematics and so serving foundational goals in mathematics.
This foundational aspect diminished in later work, successively being replaced
by the idea of a reform of logic. Already in the paper “The Calculus of Logic”
(Boole 1848), Boole tried to show that his logical calculus is compatible with
traditional philosophical logic. Reasoning is guided by the laws of thought. They
are the central topic in Boole’s Investigation of the Laws of Thought, claiming
that “there is to a considerable extent an exact agreement in the laws by which
the two classes of operations are conducted” (1854, 6), comparing thereby the
laws of thought and the laws of algebra. Logic, in Boole’s understanding, was
“a normative theory of the products of mental processes” (Grattan-Guinness
2000a, 51).

2.4. Symbolic Logic within the Old Paradigm: De Morgan
Although created by mathematicians, the new logic was widely ignored by
fellow mathematicians. Boole was respected by British mathematicians, but
his ideas concerning an algebraic representation of the laws of thought received
very little published reaction.17 He shared this fate with De Morgan, the second
major figure of symbolic logic at that time.18

Like Boole, the British mathematician De Morgan was influenced by alge-
braist George Peacock’s work on symbolic algebra, which motivated him to
consider the foundations of algebra in connection with logic. He distinguished,
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for example, algebra as an art associated with what he called “technical algebra”
and algebra as science, that is, “logical algebra”: “Technical algebra is the art
of using symbols under regulations which . . . are prescribed as the definition of
symbols. Logical algebra is the science which investigates the method of giving
meaning to the primary symbols, and of interpreting all subsequent results”
(De Morgan 1842, 173–174, reprint p. 338).

He used algebraic symbolism in logic, being mainly interested in a reform
and extension of syllogistic logic, but ignoring the operational aspect of logic as
calculus. He published his main results in a series of papers in the Proceedings
of the Cambridge Philosophical Society between 1846 and 1862 (reprinted in
De Morgan 1966) and in his book Formal Logic (1847).

He has been called “the last great traditional logician” (Hailperin 2004, 346).
Among his lasting achievements is the introduction of the technical term of a
universe. He spoke, for example, of the “Universe of a proposition, or of a name”
that may be limited in any matter expressed or understood” (De Morgan
1846/1966, 2) but continued to distinguish two kinds of the universe of a
population, “being either the whole universe of thought, or a given portion of
it” (De Morgan 1853/1966, 69).

In the first of the papers “On the Syllogism,” he introduced an algebraic
symbolism for the syllogism, using small letters x, y, z as names contrary to
those represented by capitals X, Y , Z (De Morgan 1846/1966, 3). The relations
between such names as expressed in standard forms or simple propositions are
symbolized as follows (ibid., 4):

P )Q signifies Every P is Q.
P.Q . . . No P is Q.
PQ . . . Some P s are Qs.
P :Q . . . Some P s are not Qs.

The algebraic symbols thus signify both the quantity of the concepts involved
and the copula. For the names X and Y and their contraries x and y, the
following equations are valid (ibid.):

X)Y = X.y = y)x X.Y = X)y = Y )x
X:Y = Xy = y:x XY = X:y = Y :x
Y )X = Y.x = x)y x.y = x)Y = y)X
Y :X = Y x = x:y xy = x:Y = y:X

De Morgan used this symbolism to reconstruct the theory of syllogism. It
served as representation, not as a calculus.

Only after having written the 1846 paper, De Morgan found “that the
whole theory of the syllogism might be deduced from the consideration of
propositions in a form in which definite quantity of assertion is given both to
the subject and the predicate of a proposition,” as he reported in an “Addition,”
dated 27 February 1847 (De Morgan 1966, 17). He claimed to have brought
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this idea to paper before he learned of Sir William Hamilton’s quantification
of the predicate, thereby opening the priority quarrel.

De Morgan focused his subsequent logical work on the theory of the copula,
following “the hint given by algebra” by separating “the essential from the
accidental characteristics of the copula” (1850/1966, 50). The “abstract copula”
characterized only by essential features is understood as “a formal mode of
joining two terms which carries no meaning, and obeys no law except such
as is barely necessary to make the forms of inference follow” (ibid., 51). The
abstract copula follows two “copular conditions,”

(1) transitiveness
X −−− Y −−− Z = X −−− Z

(2) convertibility
X −−− Y = Y −−−X

Affirmative (−−−) and negative (−−) copula are contrary to each other. Of
X −−− Y and X −− Y one or the other must be (De Morgan 1850/1966, 51).

De Morgan was the first to take seriously that traditional syllogistics was
incapable of dealing with relational properties like “Smith is smaller than
Jones.” His ideas concerning a logic of (two-place) relations can be regarded as
his most important contributions (see Merrill 1990, chs. 5–6; Grattan-Guinness
2000a, 32–34). Already in his second paper on the syllogism, he mentioned
the role of the copula for expressing the relation between what is connected.
He also considered the composition of relations (1850/1966, 55), that is, in
modern terms, the relative product. He studied the subject of relations “as a
branch of logic” in his fourth paper on the syllogism (De Morgan 1860/1966,
208). De Morgan used capital letters L, M , N for denoting relations, lowercase
letters l, m, n for the respective contraries. Additionally, two periods indicate
that a relation holds, only one period that the contrary relations holds. Thus,
X..LY or X.lY say that X is “some one of the objects of thought which stand
to Y in the relation L, or is one of the Ls of Y ” (ibid., 220). X and Y are
called “subject” and “predicate,” indicating the mode in which they stand
in the relation, thus in both LY.X and X.LY , Y indicates the predicate. If
the predicate is itself the subject of a relation, a composition of relations
results. “Thus if X..L(MY ), if X be one of the Ls of one of the Ms of Y , we
may think of X as an ‘L of M ’ of Y , expressed by X..(LM)Y , or simply by
X..LM Y ” (ibid., 221). De Morgan used an accent to signify universal quantity
as part of the description of the relation. LM ′ stands for an L of every M ,
LM ′X for the same relation to many (ibid.). The converse relation of L, L′,
is defined as if X..LY , then Y..L−1X” (ibid., 222). De Morgan then applied
this symbolism to his theory of syllogism, introducing “theorem K” as basic
for what he called “opponent syllogism,” which is exemplified by the following
mathematical syllogism (ibid., 224–225):

Every deficient of an external is a coinadequate: external and
coinadequate have partient and complement for their contraries,
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and deficient has exient for its converse: hence every exient of a
complement is a patient; which is one of the opponent syllogisms
of that first given.

Theorem K says (ibid., 224) that

if a compound relation be contained in another relation, by the
nature of the relations and not by casualty of the predicate, the
same may be said when either component is converted, and the
contrary of the other component and of the component change
places.

One of the examples is that “if, be Z what it may, every L of M of Z be an
N of Z, say LM))N , then L−1n))m, and nM−1))l” (ibid.).

The problematic nature of De Morgan’s symbolism becomes obvious in his
notation for complex terms. The conjunctive “P and Q” is expressed by PQ,
the disjunctive (taken in the inclusive sense) by P,Q. Using this notation he
formulated the laws named after him (that can, however, be found already in
the work of William of Ockham): “The contrary of PQ is p, q; that of P,Q,
is pq” (1847, 118). The equivalent in modern notation is ¬(p ∨ q) = ¬p ∧ ¬q,
and ¬(p∧ q) = ¬p∨¬q, or in the quantificational version ¬∃xax = ∀x¬ax and
¬∀xax = ∃x¬ax.

2.5. Reception of the New Logic
In 1864, Samuel Neil, the early chronicler of British mid-nineteenth-century
logic, expressed his thoughts about the reasons for this negligible reception:
“De Morgan is esteemed crotchety, and perhaps formalizes too much. Boole
demands high mathematic culture to follow and to profit from” (1864, 161).
One should add that the ones who had this culture were usually not interested
in logic.

The situation changed after Boole’s death in 1864. In the following comments
only some ideas concerning the reasons for this new interest are hinted at.
In particular the roles of William Stanley Jevons and Alexander Bain are
considered. These examples show that a broader reception of symbolic logic
commenced only when its relevance for the philosophical discussion of the time
came to the fore.

2.5.1. William Stanley Jevons

A broader international reception of Boole’s logic began when Jevons (1835–
1882) made it the starting point for his influential Principles of Science (Jevons
1874). He used his own version of the Boolean calculus introduced in his Pure
Logic (Jevons 1864). Among his revisions were the introduction of a simple
symbolic representation of negation and the definition of logical addition as
inclusive “or,” thereby creating Boolean algebra (see Hailperin 1981). He also
changed the philosophy of symbolism (1864, 5):
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The forms of my system may, in fact, be reached by divesting his
[Boole’s] of a mathematical dress, which, to say the least, is not
essential to it. The system being restored to its proper simplicity, it
may be inferred, not that Logic is a part of Mathematics, as is almost
implied in Professor Boole’s writings, but that the Mathematics
are rather derivatives of Logic. All the interesting analogies or
samenesses of logical and mathematical reasoning which may be
pointed out, are surely reversed by making Logic dependent on
Mathematics.

Jevons’s interesting considerations on the relationship between mathematics
and logic representing an early logicistic attitude will not be discussed here.
Similar ideas can be found not only in Gottlob Frege’s work, but also in that
of Rudolf Hermann Lotze (1817–1881) and Schröder. Most important in the
present context is the fact that Jevons abandoned mathematical symbolism in
logic, an attitude that was later taken up by John Venn (1834–1923) in his
Symbolic Logic (Venn 1894). Jevons attempted to free logic from the semblance
of being a special mathematical discipline. He used the symbolic notation only
as a means of expressing general truths. Logic became a tool for studying
science, a new language providing symbols and structures. The change in
notation brought the new logic closer to the philosophical discourse of the
time. The reconciliation was supported by the fact that Jevons formulated his
Principles of Science as a rejoinder to John Stuart Mill’s (1806–1873) System
of Logic of 1843, at that time the dominating work on logic and the philosophy
of science in Great Britain. Although Mill had called his logic A System of
Logic Ratiocinative and Inductive, the deductive parts played only a minor
role, used only to show that all inferences, all proofs, and the discovery of
truths consisted of inductions and their interpretations. Mill claimed to have
shown “that all our knowledge, not intuitive, comes to us exclusively from that
source” (Mill 1843, bk. II, ch. I, §1). Mill concluded that the question as to
what induction is, is the most important question of the science of logic, “the
question which includes all others.” As a result the logic of induction covers
by far the largest part of this work, a subject that we would today regard as
belonging to the philosophy of science.

Jevons defined induction as a simple inverse application of deduction. He
began a direct argument with Mill in a series of papers titled “Mill’s Philosophy
Tested” (1877/78). This argument proved that symbolic logic could be of
importance not only for mathematics, but also for philosophy.

Another effect of the attention caused by Jevons was that British algebra
of logic was able to cross the Channel. In 1877, Louis Liard (1846–1917),
at that time professor at the Faculté de lettres at Bordeaux and a friend
of Jevons, published two papers on the logical systems of Jevons and Boole
(Liard 1877a, 1877b). In 1878 he added a booklet titled Les logiciens anglais
contemporaines (Liard 1878), which had five editions until 1907 and was
translated into German (Liard 1880). Although Hermann Ulrici (1806–1884)
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had published a first German review of Boole’s Laws of Thought as early
as 1855 (Ulrici 1855, see Peckhaus 1995), the knowledge of British symbolic
logic was conveyed primarily by Alois Riehl (1844–1924), then professor at
the University of Graz in Austria. He published a widely read paper, “Die
englische Logik der Gegenwart” (“English contemporary logic,” Riehl 1877),
which reported mainly Jevons’s logic and utilized it in a current German
controversy on the possibility of scientific philosophy.

2.5.2. Alexander Bain

Surprisingly good support for the reception of Boole’s algebra of logic came
from the philosophical opposition, namely from the Scottish philosopher Bain
(1818–1903) who was an adherent of Mill’s logical theory. Bain’s Logic, first
published in 1870, had two parts, the first on deduction and the second on
induction. He made explicit that “Mr Mill’s view of the relation of Deduction
and Induction is fully adopted” (1870, I, iii). Obviously he shared the “general
conviction that the utility of the purely Formal Logic is but small; and that
the rules of Induction should be exemplified even in the most limited course
of logical discipline” (ibid., v). The minor role of deduction showed up in
Bain’s definition “Deduction is the application or extension of Induction to
new cases” (40).

Despite his reservations about deduction, Bain’s Logic became important for
the reception of symbolic logic because of a chapter of 30 pages titled “Recent
Additions to the Syllogism.” In this chapter the contributions of Hamilton,
De Morgan, and Boole were introduced. One can assume that many more
people became acquainted with Boole’s algebra of logic through Bain’s report
than through Boole’s own writings. One example is Hugh MacColl (1837–1909),
the pioneer of the calculus of propositions (statements) and of modal logic.19

He created his ideas independently of Boole, eventually realizing the existence
of the Boolean calculus by means of Bain’s report. Even in the early parts of
his series of papers “The Calculus of Equivalent Statements,” he quoted from
Bain’s presentation when discussing Boole’s logic (MacColl 1877/78). In 1875
Bain’s logic was translated into French, in 1878 into Polish. Tadeusz Batóg and
Roman Murawski (1996) have shown that it was Bain’s presentation which
motivated the first Polish algebraist of logic, Stanisław Piątkiewicz (1848–?)
to begin his research on symbolic logic.

3. Schröder’s Algebra of Logic
3.1. Philosophical Background
The philosophical discussion on logic after Hegel’s death in Germany was still
determined by a Kantian influence.20 In the preface to the second edition
of his Kritik der reinen Vernunft of 1787, Immanuel Kant (1723–1804) had
written that logic had followed the safe course of a science since earliest times.
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For Kant, this was evident because of the fact that logic had been prohibited
from taking any step backward from the time of Aristotle. But he regarded
it as curious that logic hadn’t taken a step forward either (B VIII). Thus,
logic seemed to be closed and complete. Formal logic, in Kant’s terminology
the analytical part of general logic, did not play a prominent role in Kant’s
system of transcendental philosophy. In any case, it was a negative touchstone
of truth, as he stressed (B 84). Georg Wilhelm Friedrich Hegel (1770–1831)
went further in denying any relevance of formal logic for philosophy (Hegel
1812/13, I, Introduction, XV–XVII). Referring to Kant, he maintained that
from the fact that logic hadn’t changed since Aristotle one should infer that it
needs to be completely rebuilt (ibid., XV). Hegel created a variant of logic as
the foundational science of his philosophical system, defining it as “the science
of the pure idea, i.e., the idea in the abstract element of reasoning” (1830, 27).
Hegelian logic thus coincides with metaphysics (ibid., 34).

This was the situation when after Hegel’s death philosophical discussion on
formal logic started again in Germany. This discussion on logic reform stood
under the label of “the logical question,” a term created by the neo-Aristotelian
Adolf Trendelenburg (1802–1872). In 1842 he published a paper titled “Zur
Geschichte von Hegel’s Logik und dialektischer Methode” with the subtitle “Die
logische Frage in Hegel’s Systeme.” But what is the logical question according
to Trendelenburg? He formulated this question explicitly toward the end of his
article: “Is Hegel’s dialectical method of pure reasoning a scientific procedure?”
(1842, 414). In answering this question in the negative, he provided the occasion
of rethinking the status of formal logic within a theory of human knowledge
without, however, proposing a return to the old (scholastic) formal logic. The
term “the logical question” was subsequently used in a less specific way. Georg
Leonard Rabus, the early chronicler of the discussion on logic reform, wrote,
for example, that the logical question emerged from doubts concerning the
justification of formal logic (1880, 1).

Although this discussion was clearly connected to formal logic, the so-
called reform did not concern formal logic. The reason was provided by
the neo-Kantian Wilhelm Windelband who wrote in a brilliant survey on
nineteenth-century (philosophical) logic (1904, 164):

It is in the nature of things that in this enterprize [i.e., the reform
of logic] the lower degree of fruitfulness and developability power
was on the side of formal logic. Reflection on the rules of the correct
progress of thinking, the technique of correct thinking, had indeed
been brought to perfection by former philosophy, presupposing
a naive world view. What Aristotle had created in a stroke of
genius, was decorated with the finest filigree work in Antiquity
and the Middle Ages: an art of proving and disproving which
culminated in a theory of reasoning, and after this constructing
the doctrines of judgements and concepts. Once one has accepted
the foundations, the safely assembled building cannot be shaken:
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it can only be refined here and there and perhaps adapted to new
scientific requirements.

Windelband was very critical of English mathematical logic. Its quantification
of the predicate allows the correct presentation of extensions in judgments,
but it “drops hopelessly” the vivid sense of all judgments, which tend to claim
or deny a material relationship between subject or predicate. It is “a logic
of the conference table,” which cannot be used in the vivid life of science, a
“logical sport” which has its merits only in exercising the final acumen (ibid.,
166–167).

The philosophical reform efforts concerned primarily two areas:

1. the problem of a foundation of logic itself. It was dealt with by using
psychological and physiological means, thereby leading to new discussion
on the question of priority between logic and psychology, and to various
forms of psychologism and anti-psychologism (see Rath 1994, Kusch
1995).

2. The problem of the applicability of logic which led to an increased interest
in the methodological part of traditional logic. The reform of applied logic
attempted to bring philosophy in touch with the stormy development of
mathematics and sciences in that time.

Both reform procedures had a destructive effect on the shape of logic and
philosophy. The struggle with psychologism led to the departure of psychology
(especially in its new, experimental form) from the body of philosophy at the
beginning of the twentieth century. Psychology became a new, autonomous
scientific discipline. The debate on methodology resulted in the creation of
the philosophy of science being finally separated from the body of logic. The
philosopher’s ignorance of the development of formal logic caused a third
departure: Part of formal logic was taken from the domain of the competence
of philosophy and incorporated into mathematics where it was instrumentalized
for foundational tasks. This was the philosophical background of the emergence
of symbolic logic in Germany and especially the logical work of the German
mathematician Schröder.

3.2. The Mathematical Context in Germany
3.2.1. Logic and Formal Algebra

The examination of the British situation in mathematics at the time when
the new logic emerged has shown that the creators of the new logic were
basically interested in a reform of mathematics by establishing an abstract
view of mathematics which focused not on mathematical objects like quantities
but on symbolic operations with arbitrary objects. The reform of logic was
only secondary. These results can be transferred to the situation in Germany
without any problem.
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Schröder was the most important representative of the German algebra
of logic.21 He was regarded as having completed the Boolean period in logic
(see Bocheński 1956, 314). In his first pamphlet on logic, Der Operationskreis
des Logikkalkuls (1877), he presented a critical revision of Boole’s logic of
classes, stressing the idea of the duality between logical addition and logical
multiplication introduced by Jevons in 1864. In 1890, Schröder started the
large project of his monumental Vorlesungen über die Algebra der Logik,
which remained unfinished, although it increased to three volumes with four
parts, of which one appeared only posthumously (1890, 1891, 1895, 1905).
Contemporaries regarded the first volume alone as having completed the
algebra of logic (see Wernicke 1891, 196). Nevertheless, Schröder’s logical
theory kept, like the one of Boole, close contact to the traditional shape of
logic. The introduction of the Vorlesungen is full of references to that time’s
philosophical discussion on logic. Schröder even referred to the psychologistic
discussion on the foundation of logic, and never really freed his logical theory
from the traditional division of logic into the theories of concept, judgment,
and inference.

Schröder’s opinion concerning the question as to what end logic is to be
studied (see Peckhaus 1991, 1994b, 2004a) can be drawn from an autobio-
graphical note (written in the third person), published in the year before his
death. It contains his own survey of his scientific aims and results. Schröder
divided his scientific production into three fields:

1. A number of papers dealing with some of the current problems of his
science.

2. Studies concerned with creating an “absolute algebra,” that is, a general
theory of connections. Schröder stressed that these studies represent his
“very own object of research” of which only little was published at that
time.

3. Work on the reform and development of logic.

Schröder wrote (1901) that his aim was

to design logic as a calculating discipline, especially making possible
an exact handling of relative concepts, and, from then on, by
emancipation from the routine claims of spoken language, and
also to remove any breeding ground from “cliché” in the field of
philosophy as well. This should prepare the ground for a scientific
universal language that, widely differing from linguistic efforts
like Volapük [a universal language like Esperanto, very popular in
Germany at that time], looks more like a sign language than like a
sound language.

Schröder’s own division of his fields of research shows that he didn’t consider
himself a logician: His “very own object of research” was “absolute algebra,”
which was similar to modern abstract or universal algebra in respect to its basic
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problems and fundamental assumptions. What was the connection between
logic and algebra in Schröder’s research? From the passages quoted one could
assume that they belong to two separate fields of research, but this is not the
case. They were intertwined in the framework of his heuristic idea of a general
science. In his autobiographical note he stressed:

The disposition for schematizing, and the aspiration to condense
practice to theory advised Schröder to prepare physics by perfecting
mathematics. This required deepening of mechanics and geometry,
but above all of arithmetic, and subsequently he became in time
aware of the necessity to reform the source of all these disciplines,
logic.

Schröder’s universal claim becomes obvious. His scientific efforts served for
providing the requirements to found physics as the science of material nature
by “deepening the foundations,” to quote a famous metaphor later used by
David Hilbert (1918, 407) to illustrate the objectives of his axiomatic program.
Schröder regarded the formal part of logic that can be formed as a “calculating
logic,” using a symbolic notation, as a model of formal algebra that is called
“absolute” in its last state of development.

But what is “formal algebra?” The theory of formal algebra “in the narrowest
sense of the word” includes “those investigations on the laws of algebraic
operations . . . that refer to nothing but general numbers in an unlimited
number field without making any presuppositions concerning its nature” (1873,
233). Formal algebra therefore prepares “studies on the most varied number
systems and calculating operations that might be invented for particular
purposes” (ibid.).

It has to be stressed that Schröder wrote his early considerations on formal
algebra and logic without any knowledge of the results of his British prede-
cessors. His sources were the textbooks of Martin Ohm, Hermann Günther
Graßmann, Hermann Hankel, and Robert Graßmann. These sources show that
Schröder was a representative of the tradition of German combinatorial algebra
and algebraic analysis (see Peckhaus 1997, ch. 6).

3.2.2. Combinatorial Analysis

Schröder developed the programmatic foundations of absolute algebra in his
textbook Lehrbuch der Arithmetik und Algebra (1873) and the school program
pamphlet Über die formalen Elemente der absoluten Algebra (1874). Among
the sources mentioned in the textbook, Martin Ohm’s (1792–1872) Versuch
eines vollkommen consequenten Systems der Mathematik (1822) is listed. It
stood in the German tradition of the algebraic and combinatorial analysis
which started with the work of Carl Friedrich Hindenburg (1741–1808) and
his school (see Jahnke 1990, 161–322).

Ohm (see Bekemeier 1987) aimed at completing Euclid’s geometrical pro-
gram for all of mathematics (Ohm 1853, V). He distinguished between number
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(or “undesignated number”) and quantity (or “designated number”) regarding
the first one as the higher concept. The features of the calculi of arithmetic,
algebra, analysis, and so on are not seen as features of quantities but of op-
erations, that is, mental activities (1853, VI–VII). This operational view can
also be found in the work of Graßmann, who also stood in the Hindenburg
tradition.

3.2.3. General Theory of Forms

Graßmann’s Lineale Ausdehnungslehre (1844)22 was of decisive influence on
Schröder, especially Graßmann’s “general theory of forms” (“allgemeine For-
menlehre”) opening this pioneering study in vector algebra and vector analysis.
The general theory of forms was popularized by Hankel’s Theorie der complexen
Zahlensysteme (1867).

Graßmann defined the general theory of forms as “the series of truths that
is related to all branches of mathematics in the same way, and that therefore
only presupposes the general concepts of equality and difference, connection
and division” (1844, 1). Equality is taken as substitutivity in every context.
Graßmann chooses � as general connecting sign. The result of the connection
of two elements a and b is expressed by the term (a � b). Using the common
rules for brackets we get for three elements ((a � b) � c) = a � b � c
(§2). Graßmann restricted his considerations to “simple connections,” that is,
associative and commutative connections (§4). These connecting operations are
synthetic. The reverse operations are called resolving or analytic connections.
a � b stands for the form which results in a if it is synthetically connected with
b: a � b � b = a (§5). Graßmann introduced furthermore forms in which more
than one synthetic operation occur. If the second connection is symbolized
with �� and if there holds distributivity between the synthetic operations, then
the equation (a � b) �� c = (a �� c) � (b �� c) is valid. Graßmann called the
second connection a connection on a higher level (§9), a terminology that
might have influenced Schröder’s later “Operationsstufen,” that is, “levels of
operations.”

Whereas Graßmann applied the general theory of forms in the domain of
extensive quantities, especially directed lines, that is, vectors, Hankel later
used it to erect on its base his system of hypercomplex numbers (Hankel 1867).
If λ(a, b) is a general connection of objects a, b leading to a new object c, that
is, λ(a, b) = c, there is a connection Θ which, applied to c and b leads again
to a, that is, Θ(c, b) = a or Θ{λ(a, b), b} = a. Hankel called the operation θ
“thetic” and its reverse λ “lytic.” The commutativity of these operations is not
presupposed (ibid., 18).

3.2.4. “Wissenschaftslehre” and Logic

Graßmann had already announced that his Lineale Ausdehnungslehre should be
part of a comprehensive reorganization of the system of sciences. His brother,
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Robert Graßmann (1815–1901), attempted to realize this program in a couple
of writings published under the series title Wissenschaftslehre oder Philosophie.
In its parts on logic and mathematics he anticipated modern lattice theory.
He furthermore formulated a logical calculus being in parts similar to that
of Boole. His logical theory was obviously independent of the contemporary
German philosophical discussion on logic, and he was also not aware of his
British precursors.23 Graßmann wrote about the aims of his logic or theory of
reasoning (“Denklehre”) that it

should teach us strictly scientific reasoning which is equally valid for
all men of any people, any language, equally proving and rigorous. It
has therefore to relieve itself from the barriers of a certain language
and to treat the forms of reasoning, becoming, thus, a theory of
forms or mathematics.

Graßmann tried to realize this program in his Formenlehre oder Mathematik,
published in six brochures consisting of an introduction (1872a), a general
part on “Grösenlehre” (1872b) understood as “science of tying quantities,”
and the special parts “Begriffslehre oder Logik” (theory of concepts or logic),
“Bindelehre oder Combinationslehre” (theory of binding or combinatorics),
“Zahlenlehre oder Arithmetik” (theory of numbers or arithmetic), and “Ausen-
lehre oder Ausdehnungslehre” (theory of the exterior or Ausdehnungslehre).

In the general theory of quantities Graßmann introduced the letters a, b,
c, . . . as syntactical signs for arbitrary quantities. The letter e represents special
quantities: elements, or in Graßmann’s strange terminology “Stifte” (pins),
that is, quantities which cannot be derived from other quantities by tying.
Besides brackets, which indicate the order of the tying operation, he introduces
the equality sign =, the inequality sign Z , and a general sign for a tie ◦. Among
special ties he investigates joining or addition (“Fügung oder Addition”) (“+”)
and weaving or multiplication (“Webung oder Multiplikation”) (“·”). These
ties can occur either as interior ties, if e ◦ e = e, or as exterior exterior ties, if
e ◦ e Z e.

The special parts of the theory of quantities are distinguished with the
help of the combinatorically possible results of tying a pin to itself. The first
part, “the most simple and, at the same time, the most interior,” as Graßmann
called it, is the theory of concepts or logic in which interior joining e+ e = e
and inner weaving ee = e hold. In the theory of binding or combinatorics
interior joining e+ e = e and exterior weaving ee Z e hold; in the theory of
numbers or arithmetic exterior joining e+ e Z e and interior weaving ee = e
hold, or 1 × 1 = 1 and 1 × e = e. Finally, in the theory of the exterior or
Ausdehnungslehre, the “most complicated and most exterior” part of the theory
of forms, exterior joining e+ e Z e and exterior weaving ee Z e hold (1872a,
12–13).

Graßmann thus formulated Boole’s Law of Duality using his interior weaving
ee = e, but he went beyond Boole in allowing interior joining e + e = e, so
coming close to Jevons’s system of 1864.
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In the theory of concepts or logic, Graßmann started with interpreting the
syntactical elements, which had already been introduced in a general way. Now,
everything that can be a definite object of reasoning is called “quantity.” In
this new interpretation, pins are initially set quantities not being derived from
other quantities by tying. Equality is interpreted as substitutivity without
value change, inequality as impossibility of such a substitution. Joining is read
as “and,” standing for adjunction or the logical “or.” Weaving is read as “times,”
that is, conjunction or the logical “and.” Graßmann introduced the signs < and
> to express sub- and superordination of concepts. The sign � expresses that
a concept equals or that it is subordinated another concept. This is exactly the
sense of Schröder’s later basic connecting relation of subsumption or inclusion.
In the theory of concepts, Graßmann expressed this relation in a shorter way
with the help of the angle sign ∠. The sign T stands for the All or the totality,
the sum of all pins. The following laws hold: a + T = T and aT = a. 0 is
interpreted as “the lowest concept, which is subordinate to all concepts.” Its
laws are a + 0 = a and a · 0 = 0. Finally Graßmann introduced the “not”
(“Nicht”) or negation as complement with the laws a+ a = T and a · a = 0.

3.3. Schröder’s Algebra of Logic
3.3.1. Schröder’s Way to Logic

In his work on the formal elements of absolute algebra (1874) Schröder inves-
tigated operations in a manifold, called domain of numbers (“Zahlengebiet”).
“Number” is, however, used as a general concept. Examples for numbers
are “proper names, concepts, judgments, algorithms, numbers [of arithmetic],
symbols for quantities and operations, points, systems of points, or any ge-
ometrical object, quantities of substances, etc.” (Schröder 1874, 3). Logic is,
thus, a possible interpretation of the structure dealt with in absolute algebra.
Schröder assumed that there are operations with the help of which two objects
from a given manifold can be connected to yield a third that also belongs to
that manifold (ibid., 4). He chooses from the set of possible operations the
noncommutative “symbolic multiplication”

c = a . b = ab

with two inverse operations

measuring (“Messung”) b . (a : b) = a,

and division (“Teilung”)
a

b
. b = a.

Schröder called a direct operation together with its inverses “level of operations”
(“Operationsstufe”). And again Schröder realized that “the logical addition of
concepts (or individuals)” follows the laws of multiplication of real numbers.

But there is still another association with logic. In his Lehrbuch, Schröder
speculated about the relation between an “ambiguous expression” like

√
a
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and its possible values. He determined five logical relations, introducing his
subsumption relations. Be A an expression that can have different values a, a′,
a,′′ . . . . Then the following relations hold (Schröder 1873, 27–29):

Superordination A�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a
a′

a′′
...

.

Examples: metal� silver;
√

9 � −3.

Subordination

a
a′

a′′
...

⎫⎪⎪⎪⎬
⎪⎪⎪⎭� A.

Examples: gold� metal; 3�
√

9.

Coordination a� a′ � a′′ � · · · .
Examples: gold� silver [in respect to the general concept “metal”] or 3� −3
[in respect to the general concept

√
9 ].

Equality A = B

means that the concepts A and B are identical in intension and extension.

Correlation A(=)B

means that the concepts A and B agree in at least one value.
Schröder recognized that if he would now introduce negation, he would have

created a complete terminology that allows one to express all relations between
concepts (in respect to their extension) with short formulas which can har-
monically be embedded into the schema of the apparatus of the mathematical
sign language (ibid., 29).

Schröder wrote his logical considerations of the introduction of the Lehrbuch
without having seen any work of logic in which symbolic methods had been
applied. It was while completing a later sheet of his book that he came across
Robert Graßmann’s Formenlehre oder Mathematik (1872a). He felt urged to
insert a comprehensive footnote running over three pages for hinting at this
book (Schröder 1873, note, pp. 145–147). There he reported that Graßmann
used the sign + for the “collective comprehension,” “really regarding it as an
addition—one could say a ‘logical’ addition—that has besides the features
of common (numerical) addition the basic feature a+ a = a.” He wrote that
he was most interested in the role the author had assigned to multiplication
regarded as the product of two concepts which unite the marks being common
to both concepts.
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In the Programmschrift of 1874, Schröder also gave credit to Robert Graß-
mann, but mentioned that he had recently found out that the laws of the
logical operations had already been developed before Graßmann “in a classical
work” by Boole (Schröder 1874, 7).

3.3.2. Logic as a Model of Absolute Algebra

In 1877 Schröder published his Operationskreis des Logikkalkuls, in which
he developed the logic of Boole’s Laws of Thought stressing the duality of
the logical operations of addition and multiplication.24 An “Operationskreis”
(circle of operations) is constituted by more than one direct operation together
with their inverses. The “logical calculus” is the set of formulas which can
be produced in this circle of operations. Schröder called it a characteristic
mark of “mathematical logic or the logical calculus” that these derivations
and inferences can be done in form of calculations, namely, in the first part
of logic as calculation with concepts leading to statements about the objects
themselves, that is, categorical judgments, or, in Boole’s terminology, “primary
propositions.” In its second part the logical calculus deals with statements about
judgments as in conditional sentences, hypothetical or disjunctive judgments,
or Boole’s secondary propositions. In this booklet Schröder simplified Boole’s
calculus, stressing, as mentioned, the duality between logical addition and
logical multiplication and, thus, the algebraic identity of the structures of these
operations.

Schöder developed his logic in a systematic way in the Vorlesungen über
die Algebra der Logik (1890–1905) designing it as a means for solving logical
problems (see Peckhaus 1998, 21–28). Again he separated logic from its struc-
ture. The structures are developed and interpreted in several fields, beginning
from the most general field of “domains” (“Gebiete”) of manifolds of arbitrary
distinct elements, then classes (with and without negation), and finally pro-
prositions (vol. 2, 1891). The basic operation in the calculi of domains and
classes is subsumption, that is, identity or inclusion. Schröder presupposes
two principles, reflexivity a� a, and transitivity “If a� b and at the same
time b � c, then a � c.” Then he defines “identical zero” (“nothing”) and
“identical one” (“all”), “identical multiplication” and “identical addition,” and
finally negation. In the sections dealing with statements without negation, he
proves one direction of the distributivity law for logical addition and logical
multiplication, but shows that the other side cannot be proved; he rather
shows its independence by formulating a model in which it does not hold, the
“logical calculus with groups, e.g. functional equations, algorithms or calculi.”
He thereby found the first example of a nondistributive lattice.25

Schröder devoted the second volume of the Vorlesungen to the calculus of
propositions. The step from the calculus of classes to the calculus of propositions
is taken with the help of an alteration of the basic interpretation of the formulas
used. Whereas the calculus of classes was bound to a spatial interpretation
especially in terms of the part–whole relation, Schröder used in the calculus of
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propositions a temporal interpretation taking up an idea of Boole from his Laws
of Thought (1854, 164–165). This may be illustrated regarding subsumption as
the basic connecting relation. In the calculus of classes, a� b means that the
class a is part of or equal to the class b. In the calculus of propositions, this
formula may be interpreted in the following way (Schröder 1891, §28, p. 13):

In the time during which a is true is completely contained in the
time during which b is true, i.e., whenever . . . a is valid b is valid
as well. In short, we will often say: “If a is valid, then b is valid,”
“a entails b” . . . , “from a follows b.”

Schröder then introduces two new logical symbols, the “sign of products”
∏

,
and the “sign of sums”

∑
. He uses

∏
x to express that propositions referring

to a domain x are valid for any domain x in the basic manifold 1, and
∑
x

to say that the proposition is not necessarily valid for all, but for a certain
domain x, or for several certain domains x of our manifold 1, that is, for at
least one x (Schröder 1891, §29, 26–27).

For Schröder the use of
∑

and
∏

in logic is perfectly analogous to arithmetic.
The existential quantifier and the universal quantifier are therefore interpreted
as possibly indefinite logical addition or disjunction and logical multiplication
or conjunction respectively. This is expressed by the following definition, which
also shows the duality of

∑
and

∏
(Schröder 1891, §30, 35).

λ=n∑
λ=1

aλ = a1 + a2 + a3 + · · ·+ an−1 + an
∣∣∣ λ=n∏
λ=1

aλ = a1a2a3 · · · an−1an.

With this Schröder had all requirements at hand for modern quantification
theory, which he took, however, not from Frege but from the conceptions as
developed by Charles S. Peirce (1839–1914) and his school, especially by Oscar
Howard Mitchell (1851–1889).26

3.3.3. Logic of Relatives

Schröder devoted the third volume of the Vorlesungen to the “Algebra and
Logic of Relatives,” of which only a first part dealing with the algebra of
relatives could be published (Schröder 1895). The algebra and logic of relatives
should serve as an organon for absolute algebra in the sense of pasigraphy, or
general script, that could be used to describe most different objects as models
of algebraic structures.

Schröder never claimed any priority for this part of his logic, but always
conceded that it was an elaboration of Charles S. Peirce’s work on relatives
(see Schröder 1905, XXIV).

He illustrated the power of this new tool by applying it to several mathe-
matical topics, such as open problems of G. Cantor’s set theory (e.g., Schröder
1898), thereby proving (not entirely correctly) Cantor’s proposition about the
equivalence of sets (“Schröder-Bernstein Theorem”). In translating Richard
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Dedekind’s theory of chains into the language of the algebra of relatives, he
even proclaimed the “final goal: to come to a strictly logical definition of the
relative concept ‘number of—’ [‘Anzahl von—’] from which all propositions
referring to this concept can be deduced purely deductively” (Schröder 1895,
349–350). So Schröder’s system comes close, at least in its objectives, to Frege’s
logicism, although it is commonly regarded as an antipode.

3.3.4. The Ideas of Peirce

Although Schröder found his way to an algebraic approach to logic indepen-
dently of Boole, he devoted his early work to a discussion and extension of the
Boolean calculus. Main reference point of his mature Vorlesungen, however,
was the logical work of the American “polymath” (Grattan-Guinness 2004,
545) Charles S. Peirce. Peirce contributed a great wealth of ideas to modern
logic. He approached logic to its full range, interested not only in symbolic
logic but also in a reform of traditional syllogistics and applications in the
philosophy of science.27

In one of his first papers on logic, Peirce improved Boole’s algebra of logic
by introducing the inclusive disjunction as Jevons did before him (see Peirce
1868). He introduced “inclusion”� as basic logical operator, in an algebraic
spirit both for inclusion between classes and implication between propositions
(Peirce 1870, WCSP 2, 360). It was later taken up by Ernst Schröder as
“subsumption” �. Among the five “icons” for nonrelative logic, “Peirce’s law”
{(x� y)� x}� x (see Peirce 1885, WCSP 5, 173) is outstanding. It
produces an axiom system for classical propositional logic when being added
to an axiom system for intuitionistic logic (see Beth 1962, 18, 128).

In the paper “A Boolian Algebra with One Constant” (WCSP 4, 218–221),
written around 1880, but not published before 1933, Peirce suggested replacing
all logical connectors by only one interpreted as “neither P nor Q,” thereby
anticipating the NOR operator, which was independently rediscovered by H. M.
Sheffer in 1913 (Sheffer 1913).

In his paper of 1870, Peirce took the first step for developing a logic of
relatives, thereby elaborating the ideas of De Morgan. He distinguished absolute
terms, such as horse, tree, or man, from terms “whose logical form involves
the conception of relation, and which require the addition of another term to
complete the denotation” (WCSP 2, 365). He discussed simple relative terms,
that is, two-place relatives, and conjugate terms, that is, three- or four-place
relatives like “giver of — to —” or “buyer of — for — from —” (ibid.). In his
1880 paper “On the Algebra of Logic,” he took up the topic, now speaking
of singular reference for nonrelative terms and of dual and plural relatives
for two- and more-place relatives. The most elaborated form of his algebra
of relatives can be found in his 1885 paper, where he combined it with the
theory of quantification, the foundation of which had been formulated entirely
independently of Frege by Oscar Howard Mitchell in Peirce’s Johns Hopkins
logic circle (Mitchell 1883). Whereas Mitchell had developed a system limited
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to a theory of quantified propositional functions with two prenex quantifiers,
Peirce developed quantifiers as operators on propositional functions over specific
domains.28 In his 1885 paper, Peirce gave credit to Mitchell in the following
way (WCSP 5, 178):

All attempts to introduce this distinction [of some and all] into
the Boolian algebra were more or less complete failures until Mr.
Mitchell showed how it was to be effected. His method really consists
in making the whole expression of the propositions consist of two
parts, a pure Boolian expression referring to an individual and a
Quantifying part saying what individual this is.

Peirce now used an index notation to express relatives. In the first-order part of
his logic (first-intentional logic), xiyj signifies that x is true of the individual i
while y is true of the individual j. The quantifiers Σ and Π are used in analogy
to their arithmetical meaning. Σixi means that x is true of some one of the
individuals denoted by i, Πixi means that x is true of all these individuals.
Applied to a ordinary language example: Let lij denote that i is a lover of j,
and bij that i is a benfactor of j. Then ΠiΣj lijbij means that everything is at
once a lover and a benefactor of something (WCSP 5, 180).

Peirce added considerations on second-intentional logic, that is, second-
order logic (ibid., 185–190) and many valued logic (ibid., 166). In later work
he used furthermore “existential graphs” for a graphical representation of
quantificational logic (see CP 4.293–584) which inspired several modern systems
for graphical representations of logic (see, e.g., Sowa 1993, 1997).

Peirce’s logical considerations were integral part of his triadic category
system with firstness (possibility), secondness (existence), and thirdness (law),
his semiotics, and his triadic theory of reasoning with deduction, induction,
and abduction (see Hilpinen 2004, 622–628, 644–653).

Most of Peirce’s path-breaking thoughts remained unpublished during his
lifetime. What he was able to publish, however, excited his contemporary
logicians. The best example is Schröder, whose Vorlesungen were deeply
influenced by Peirce, even more, long passages read as critical comments on
Peirce’s papers, especially on the seminal papers “On the Algebra of Logic”
(Peirce 1880, 1885). In an intermediate word separating the halfs of volume
two of the Vorlesungen Schröder wrote that after the completion of the first
half of volume two in June 1891 he had hoped to publish the second half with
the logic of relatives in the autumn of the same year, but (Schröder 1905,
XXIV):

It is true, seldom in my life an estimation of mine failed to the same
extent as then, when I judged the extension and the seriousness of
the gaps in my manuscript. This was due to the fact that the only
writing that seemed to be useful, Mr. Peirce’s paper on relatives
[Peirce 1885], that became indeed the main basis of my volume
three, has only a size of 18 pages in print (that could be printed
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on half the number of my pages), and that I thought, that I could
get away with a largely reproducing report. I became aware of the
enormous significance of this paper when I worked at it in detail.

4. Conclusions
Like the British tradition, but independent of it, the German algebra of logic
was connected to new trends in algebra. It differed from its British counterpart
in its combinatorial approach. In both traditions, algebra of logic was invented
within the enterprise to reform basic notions of mathematics which led to
the emergence of structural abstract mathematics. The algebraists wanted to
design algebra as “pan-mathematics,” that is, as a general discipline embracing
all mathematical disciplines as special cases. The independent attempts in
Great Britain and Germany were combined when Schröder learned about the
existence of Boole’s logic in late 1873, early 1874. Finally he enriched the
Boolean class logic by adopting Peirce’s theory of quantification and adding a
logic of relatives according to the model of Peirce and De Morgan.

The main interest of the new logicians was to use logic for mathematical
and scientific purposes, and it was only in a second step, but nevertheless an
indispensable consequence of the attempted applications, that the reform of
logic came into the view. What has been said of the representatives of the
algebra of logic also holds for the proponents of competing logical systems such
as Gottlob Frege or Giuseppe Peano. They wanted to use logic in their quest
for mathematical rigor, something questioned by the stormy development in
mathematics.

For quite a while, the algebra of logic remained the first choice for logical
research. Authors like Alfred North Whitehead (1841–1947), and even David
Hilbert and his collaborators in the early foundational program (see Peckhaus
1994c) built on this direction of logic, whereas Frege’s mathematical logic was
widely ignored. The situation changed only after the publication of Whitehead’s
and B. Russell’s Principia Mathematica (1910–1913). But even then important
work was done in the algebraic tradition as the contributions of Clarence
Irving Lewis (1883–1964), Leopold Löwenheim (1878–1957), Thoralf Skolem
(1887–1963), and Alfred Tarski (1901–1983) prove.

Notes
1. Independently of each other, Gregorius Itelson, André Lalande, and Louis

Couturat suggested at the 2nd Congress of Philosophy at Geneva in 1904 to use
the name “logistic” for, as Itelson said, the modern kind of traditional formal logic.
The name should replace designations like “symbolic,” “algorithmic,” “mathematical
logic,” and “algebra of logic,” which were used synonymously up to then (see Couturat
1904, 1042).

2. For a book-length biography, see MacHale (1985). See also contemporary
obituaries and biographies like Harley (1866), Neil (1865), both reprinted. For a
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comprehensive presentation of Boole’s logic in the context of British mathematics,
see Grattan-Guinness (2000a).

3. Whately (1826). Risse (1973) lists 9 editions up to 1848 and 28 further printings
to 1908. Van Evra (1984, 2) mentions 64 printings in the United States to 1913.

4. This opinion can be found in a letter of De Morgan’s to Spalding of 26 June
1857 (quoted in Heath 1966, xii) which was, however, not sent. Boole lists Hamilton
among the “two greatest authorities in logic, modern and ancient” (1847, 81). The
other authority is Aristotle. This reverence to Hamilton might not be without irony
because of Hamilton’s disregard of mathematics.

5. See Hamilton 1859–1866, vol. 4 (1866), 287.
6. See his list of symbols in “Logical Notation” in Hamilton 1859–1866, vol. 4

(1866), 469–486.
7. For the priority struggle, see Heath 1966.
8. For diagrammatic methods in logic, see Gardner (1958), Bernhard (2000).
9. See the section “On Expression and Interpretation” in Boole (1847), 20–25, in

which Boole gives his reading of the traditional theory of judgment. The section is
followed by an application of his notation to the theory of conversion (ibid., 26–30)
and of syllogism (ibid., 31–47).

10. This is the subtitle of Boole’s Mathematical Analysis of Logic (1847).
11. For the influence of Aristotelian logic on Boole’s philosophy of logic, see

Nambiar (2000).
12. On the mathematical background of Boole’s Mathematical Analysis of Logic,

see Laita (1977), Panteki (2000).
13. On Gregory with focus on his contributions to the foundations of the calculus

see Allaire and Bradley (2002).
14. On Boole’s “psychologism,” see Bornet (1997) and Vasallo (2000).
15. For the development of quantification theory in the algebra of logic, see Brady

(2000).
16. The reason was that already the factorization of x3 = x leads to uninterpretable

expressions. On Boole’s Laws of Thought see Van Evra (1977); on the differences
between Boole’s earlier and later logical theory see Grattan-Guinness (2000b).

17. On initial reactions see Grattan-Guinness (2000a), 54–59.
18. For a discussion of De Morgan’s logic see Grattan-Guinness (2000a), 25–37;

Merrill (1990); Sánchez Valencia (2004), 408–410, 487–515.
19. On MacColl and his logic see Astroh and Read (1998).
20. See for the following chs. 3 and 4 of Peckhaus (1997), and Vilkko (2002).
21. On Schröder’s biography, see his autobiographical note, Schröder (1901), which

became the base of Eugen Lüroth’s widely spread obituary, Lüroth (1903). See also
Peckhaus (1997), 234–238; and Peckhaus (2004a).

22. On the various aspects of H. G. Graßmann’s work, see Schubring (1996); Lewis
(2004).

23. On Robert Graßmann’s logic and his anticipations of lattice theory see
Mehrtens (1979); Peckhaus (1997), 248–250. On the relation zwischen Schröder and
the Graßmann brothers see Peckhaus (1996).

24. On Schröder’s algebra of logic see Peckhaus (2004a); Sánchez Valencia (2004),
477–487; Brady (2000).

25. See Schröder (1890), 280. On Peirce’s claim to have proved the second form as
well (Peirce 1880, 33) see Houser (1991). On Schröder’s proof see Peckhaus (1994a),
359–374; Mehrtens (1979), 51–56.
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26. See Mitchell (1883), Peirce (1885). On the development of modern quantifica-
tion theory in the algebra of logic see Brady (2000); Peckhaus (2004b). For Mitchell’s
biography, see Dipert (1994).

27. For recent work on Peirce’s Logic, see Houser, Van Evra, and Roberts (1997);
Brady (2000); Grattan-Guinness (2000a), 140–156; Hilpinen (2004).

28. Brady (2000), 6; see Peirce (1883). For Peirce’s interpretation of Mitchell see
also Haaparanta (1993), 112–116.
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5

Gottlob Frege and the Interplay
between Logic and Mathematics
Christian Thiel

Gottlob Frege (1848–1925) has been called the greatest logician since Aristotle,
but it is a brute fact that he failed to gain influence on the mathematical
community of his time (although he was not ignored, as some have claimed),
and that the depth and pioneering character of his work was—paradoxically—
acknowledged only after the collapse of his logicist program due to the Zermelo–
Russell antinomy in 1902. Because of this lack of influence in his time, a leading
historian of logic and mathematics has gone so far as to deny Frege a place
in the development of mathematical logic. Other historiographers of science,
however, are convinced that the history of visible effects of great ideas on
science and scientific communities should be complemented by the recognition
even of solitary insights ineffective at their time, because the intellectual
status of such insights or discoveries will yield most valuable (and otherwise
unobtainable) information about the structure and quality of the community
that made them possible by providing, as it were, the native soil for their
development. Knowledge of this kind is not historically useless.

The neglect of Frege by the contemporaneous scientific community has two
very different reasons. First, there is little doubt that Frege maneuvered himself
out of the mainstream of foundational research (or rather, never succeeded
in joining this mainstream) by his insistence on using his newly developed
“Begriffsschrift,” a logical notation the sophistication and analytical power of
which the experts of the nineteenth century (as, in fact, most of those of the
twentieth and the early twenty-first centuries) failed to recognize. And second,
the double disadvantage of working in the no-man’s-land between formal logic
and mathematics, and of teaching at the then relatively unimportant small
university of Jena gave Frege a low status in the academic world.
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The superficiality of reception is manifest, for example, in Georg Cantor’s
(1885) review of Grundlagen (1884) where Cantor criticizes in condescend-
ing manner an allegedly Fregean definition of (whole) number, whereas the
definition actually found in Grundlagen is quite different and would have
been worthy of a more careful study. Frege’s correction in his “Erwiderung”
(1885) (which he had to publish as a—presumably paid—advertisement) went
practically unnoticed. Similarly, already Ernst Schröder in his (1880) review of
Frege’s Begriffsschrift (1879) had overlooked Frege’s revolutionary technique of
quantification, claiming (incorrectly) that its effects could have been achieved
in a much easier way by Boolean methods.

If Frege has been regarded as the founder of modern mathematical logic,
this characterization refers to his creation of classical quantificational logic in
his Begriffsschrift of 1879 without any predecessor. As to Frege’s motivation,
one can only surmise that he felt the urgent need for a logically water tight
clarification of fundamental concepts of analysis like convergence, continuity,
uniform continuity, and so on, the precise definition of which requires nested
quantification. The mathematical output of the Begriffsschrift approach rested
on Frege’s replacement of the traditional analysis of elementary propositions
into subject and predicate by the general analysis of a proposition into (in
our case, propositional) function and argument(s), and its utilization for the
expression of the generality of a statement (and of existence statements) by
the employment of bound variables and quantifiers. For the antecedent part,
classical propositional logic, Frege gave a consistent and complete (although
not independent) axiom system in terms of negation and conditional, pointing
out that other, equivalent axioms and also other connectives could be used, and
he managed to get along with the rule of detachment and (not yet sufficiently
precise) substitution rules. In quantificational logic, he restricted himself to
universal quantification (which, together with negation, allows the expression of
existential statements), and introduced the decisive concepts of the variability
domain of a quantifier and the scope of a quantifier and of the quantified
variable. The new devices enabled Frege to precisely define, for the first time,
one-one relations, a logical successor and predecessor relation, and a logical
heredity relation, in such a way that the arithmetical successor and heredity
relations are covered as special cases, and mathematical induction can be
formulated, and turns out to have a purely logical foundation.

Frege’s Foundations of Arithmetic (Die Grundlagen der Arithmetik, 1884)
added, after an elaborate criticism of earlier and contemporary views on the
concept of number and on arithmetical statements, a “purely logical” (today
dubbed “logicist”) notion of whole number by defining the number n as the
extension of the concept “equinumerous to the concept Fn,” where Fn is a
model concept with exactly n objects falling under it, and of a purely logical
nature guaranteed by starting with F0 = ¬x = x and constructing Fn+1 recur-
sively from Fn. Frege’s attainment of this notion is somewhat curious because
immediately before that he had described and analyzed an attempt at defining
number by abstraction directly from equinumerous concepts, but had repudi-
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ated this attempt because of difficulties that he considered insurmountable, so
that he decided on the explicit definition just given. Grundlagen also intro-
duced important logical distinctions like that of first-order and second-order
concepts, with existence and number predicates as examples of the latter.

When Frege published Function und Begriff in 1891 and volume 1 of his
monumental Grundgesetze der Arithmetik in 1893, he had already realized
that extensions of concepts, naively regarded as unproblematic in the explicit
definition of number, must be introduced by an abstraction principle, too. As
extensions of concepts have been a main topic of traditional logic at least since
the Logic of Port Royal (1662), Frege’s treatment of abstraction in Grundlagen
and in Grundgesetze centered around his discovery of the invariance property
of statements about “abstract objects,” the logicist definition of number, and
the general abstraction principle (exemplified in Grundgesetze by Frege’s
fundamental law V, vide infra) are legitimate and indeed indispensable topics
of the history of formal logic.

By contrast, the so-called context principle (“The meaning of a word must
be asked for in the context of a proposition, not in isolation,” Grundlagen,
p. X) and the dichotomy of sense and reference developed in Über Sinn
und Bedeutung (1892), often regarded as his most important contribution to
philosophy by drawing guidelines for semantics and for a general theory of
meaning, have only a negligible role in the history of logic. However, the latter
distinction is put to use by Frege in explaining the informative or cognitive
value even of judgments that are derived from and therefore based on purely
logical premises (as, e.g., according to the logicist thesis, all nongeometrical
mathematical theorems), and is of considerable interest for the philosophy of
mathematics.

To derive the fundamental theorems of arithmetic precisely, that is, within
a calculus incorporating strict formation rules for “well-formed formulas” and
rules for the logical derivation of conclusions from premises, Frege had to revise
and to augment his Begriffsschrift. The typically ambiguous “quantification
axiom” (Begriffsschrift, pp. 51 and 62) is now neatly split into a first-order
and a second-order version (Grundgesetze I, p. 61), but the most momentous
change consists in the introduction of new terms of the general form “Φ(ε),”
considered to be names of a new kind of objects called courses-of-values or
value-ranges (Wertverläufe) the identity condition for which is given by an
abstraction principle accepted by Frege as his fundamental law V, the fifth
axiom of his new axiom system:

Φ(ε) = �Ψ(α) ⇔ (x)(Φ(x) = Ψ(x)),

where Φ(x) and Ψ(x) are functions in Frege’s general sense and the right side
of the equivalence expresses the coincidence of their values for every argument,
a state of affairs suggesting the identity of the “courses” (or graphs) of the
functions in the case of mathematical functions, and thereby the terminology
of “courses-of-values.” Frege decided to regard true propositions as names of
the “truth value” TRUE and false propositions as names of the “truth value”
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FALSE, respectively, and reconstructed the traditional concepts as one-place
functions, the function value of which is one of the two truth values for every
argument chosen. So the courses-of-values of such functions are nothing else
but the traditional extensions of concepts, or mathematically spoken, the sets
or classes determined by the associated function as their defining condition. If
concepts are taken as the functions in Frege’s fundamental law V, we get for
this special case (in modern notation),

{x | F (x) } = {x | G(x) } ⇔ (x)(F (x) ↔ G(x)).

In this way, sets have obviously been integrated into the system of Grundgesetze,
and since Frege (linking up with the traditional logic of concepts and their
extensions) considers abstraction a purely logical operation, set theory becomes
(or remains) a proper part of logic. The derivation of arithmetical theorems
from the revised and enlarged axiom system of Grundgesetze keeps well within
the limits of logic, and in this sense the present set-theoretical foundation of
mathematics preserves the intentions and the spirit of Fregean logicism.

It was mentioned in the beginning that Frege’s Grundgesetze system foun-
dered at Zermelo’s and Russell’s antinomy, as shown in the appendix of volume 2
of Grundgesetze as well as in Russell’s The Principles of Mathematics, both
published in 1903. Though Russell proposed to avoid the antinomy by his
type theories, Frege suggested a repair of the axiom system by modifying his
fundamental law V; it was shown only much later that this attempt, which
has been called “Frege’s way out,” also leads to an impasse by allowing the
derivation of other, more complicated antinomies. It is remarkable that the
discovery and analysis of Zermelo’s and Russell’s antinomy was made possi-
ble only by the extraordinary precision, explicitness, and cogency of Frege’s
Grundgesetze system, which in spite of its inconsistency remained a paradigm
of a well-designed logical system well into the twentieth century. Among the
little-known but precious parts of Grundgesetze, §§90 ff. deserve to be high-
lighted because of their clear analysis of the nature and the necessary properties
of an elementary proof theory and metalogic (“Die formale Arithmetik und
die Begriffsschrift als Spiele”: Grundgesetze II, p. IX). Attention should also
be given to hitherto neglected parts like Frege’s derivation of theorem χ in
the appendix to Grundgesetze, where a diagonal argument is used to exhibit
a fundamental inconsistency in the (traditional) notion of the extension of a
concept (see Thiel 2003).

Even the origin of the antinomy has not been located unequivocally up to
now. According to the received view in current Frege literature, fundamental
law V is responsible for the equivalent of Russell’s antinomy in Grundgesetze.
This diagnosis, however, seems a bit rash. It is true that the derivation makes
use of fundamental law V, but a careful analysis of it has to inspect not only
the logical form of that law but also the structure of the formulae which
replace the schematic letters of fundamental law V in every inference that
has an instance of it as a premise. Thiel (1975) has tried to show that Frege’s
formation rules for function names (which include rules for forming function
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names by the creation of empty places in complex object names) may be too
liberal by allowing impredicative function names, and that names of that kind
are essentially involved in the derivation of the Zermelo–Russell antinomy
in Grundgesetze. A decision on this claim and the questions it raises is still
open.

A large part of Fregean studies in the past 50 years has been devoted to the
investigation of problems that are peculiar to Frege’s systems, without visible
impact on the development of the mainstream of mathematical logic invoked
in the second paragraph of this chapter. Topics of this kind have been skipped
here in spite of their intrinsic interest (as, e.g., the “Julius Caesar problem,” the
permutation theorem, and the identification thesis of Grundgesetze §10, Frege’s
miscarried attempt at a referential completeness proof—which would have
implied the consistency of the Grundgesetze system—and last but not least
“Hume’s principle” and “Frege’s theorem”). A great thinker’s legacy consists not
only in far-reaching insights and efficient methods, it also comprises challenging
problems, the solutions of which may sometimes occupy whole generations.
Frege, by proving his theorem χ without recourse to Wertverläufe, exhibited
an inconsistency (or at least an incoherence) in the traditional notion of the
extension of a concept. He prompted our awareness of a situation the future
analyses of which will hopefully not only deepen our systematic control of the
interplay of concepts and their extensions but also improve our understanding
of the historical development of the notion of “extension of a concept” and its
historiographical assessment.
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The Logic Question During the First
Half of the Nineteenth Century
Risto Vilkko

Immanuel Kant wrote, in the preface to the second edition of his Kritik der
reinen Vernunft, that

since Aristotle it [logic] has not required to retrace a single step,
unless, indeed, we care to count as improvements the removal of
certain needless subtleties or the clearer exposition of its recognized
teaching, features which concern the elegance rather than the cer-
tainty of the science. It is remarkable also that to the present day
this logic has not been able to advance a single step, and is thus to
all appearance a closed and completed body of doctrine. (KrV, B
VIII)

Kant’s division of logic into its general and transcendental aspects served,
during the early nineteenth century, as the basis for the removal of philosophers
of logic into, roughly speaking, two opposing camps of the Herbartian formal
logicians and the Hegelian idealist metaphysicians. Also it can be assumed
that Kant’s disbelief in the possibilities of logic to develop any further from
its alleged Aristotelian perfection discouraged many philosophers from trying
to improve the logic proper and led most of them, instead, to studying the
“applications” of logic, that is, the fields of study that are nowadays referred
to as epistemology, psychology, methodology, and the philosophy of science.
However, not all logicians of the early and mid-nineteenth century took Kant’s
conception for granted. Herbart saw a promise of further development in
Drobisch’s Neue Darstellung der Logik (Herbart 1836, 1267f.). Beneke wrote
a few years later that even though Kant’s conception may have felt more or
less credible during the 1780s, “since then, the situation has greatly changed”

203



204 The Development of Modern Logic

(Beneke 1842, 1). According to him, “logic has lost its unchangeable character.
It has adopted a variety of such aspects of the possibility of which the old
logicians, including Kant himself, had no idea” (ibid.). Boole wanted to remark,
in 1854, that “syllogism, conversion, &c., are not the ultimate processes of
Logic. It will be shown . . . that they are founded upon, and are resolvable
into, ulterior and more simple processes which constitute the real elements of
method in Logic” (Boole 1854, 10). De Morgan had the courage to write in 1860
that in the field of logic “innovations have been listened to in a spirit which
seems to admit that Kant’s dictum about the perfection of the Aristotelian
logic may possibly be false” (De Morgan 1860, 247).

After Hegel’s death in 1831, there arose in the academic circles of Germany
a lively discussion concerning the makings of logic both as a philosophical
discipline and as a formal and fundamental theory of science which might clarify
not only the logical but also the metaphysical foundations of science. In fact, this
was perhaps the most popular theme in the philosophical exchange of thoughts
in Germany during the mid-nineteenth century. The most characteristic slogans
in the discussion were “the logic question” and “reform of logic.” These slogans
did not have very specific meanings. They were used rather loosely to refer to
various competing efforts to reform logic. In 1880 Leonhard Rabus (1835–1916)
characterized the logic question in his book on nineteenth-century German
contributions in the field of logic as circling around the fundamental problems
of the possibility and justification of logic (Rabus 1880, 157; see Vilkko 2002).

According to another late nineteenth-century German philosopher, Friedrich
Harms (1819–1880), reform of logic could be sought from logic as (1) an organon
of sciences, (2) a critique of sciences, or (3) a philosophical science (Harms 1874,
124). As an organon, or as a discipline of the methods of sciences, logic is the
science of the forms of thought. As a critique, or as a theory of the necessary
preconditions of knowledge and knowing, logic considers such questions as:
How are objects given to cognition? What are the basic principles of knowing?
What justifies these principles? And how valid are these principles? (Harms
1881, 137). Bacon’s “inductive” reform covered logic as an organon, whereas
Locke and Kant treated logic as a critique (ibid., 150). As far as Harms was
concerned, this was, however, not enough. Harms wanted to stress that these
two aspects of logic must be taken simply as two different sides of the one
and the same logic. In his view, the most important aspect in this reform
concentrated on the form of logic as a philosophical science. He argued as
follows: Since logic is a philosophical science due to its content, it must be a
philosophical science also due to its form, because the content and the form of
a science must coincide. Purely formal logic is, however, originally an empirical
science and thus only an instrument for philosophy. When logic is reformed as
a philosophical science, it is also reformed as an organon as well as a criterion
of correct and consistent thinking (ibid., 121–125, 130).

Hermann Ulrici (1806–1884) defined the logic question as “the question
about the place, the context, and the working of logic” (Ulrici 1869/70, 1). He
began his most important contribution to this debate, titled “Zur logischen
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Frage” (1869/70), by stating that his conception of logic is incompatible not
only with that of Hegel but also with every other attempt that denies the
purely formal character of logic and tries to identify logic with metaphysics,
epistemology, and/or theory of science. According to him, logic “deserves the
name of a fundamental science; and it is clearly impossible for such logic to be
at the same time also metaphysics and a theory of science” (ibid., 8).

In other words, the logic question sprung from a genuine doubt about the
justification of the formal foundations of logic as the normative foundation
of all scientific activity. On the one hand, most of the participants of the
debate opposed Hegel’s attempts to unite logic and metaphysics—on the other,
reform was sought to overcome the old scholastic-Aristotelian formal logic.
The discussion can thus be characterized as a battle on two fronts. In any
case, the need to reform was stimulated by the developments in the field of
philosophy. As Volker Peckhaus has put it:

the reform endeavors that were released through this discussion
scarcely considered the formal logic itself, but rather its psychologi-
cal foundations and its use in theories of science that strove to seize
the positive and formal sciences of that time. (Peckhaus 1997, 12)

The very slogan “logic question” was used for the first time by Adolf Trendelen-
burg (1802–1872). His writings provoked anew an awareness of the problematic
philosophical position of formal logic. What is more, it was from his initiative
that the reform discussion of logic really started around the turn of the 1840s.
In 1842, he asked in his essay “Zur Geschichte von Hegel’s Logik und dialekti-
scher Methode” whether Hegel’s dialectical method of pure thought should
be treated as a scientific one. His own answer to this question was negative
(Trendelenburg 1842, 414). However, of more importance was his criticism of
both Herbartian formal logic and Hegelian dialectical logic in his two-volume
Logische Untersuchungen (Trendelenburg 1840, I, 4–99). Before going into the
details of Trendelenburg’s criticism, let us take a closer look at Herbart’s and
Hegel’s conceptions of the nature and the task of logic.

1. Herbart’s Theory of the Structures of Thought
Johann Friedrich Herbart (1776–1841) defined philosophy as cultivation and
arranging of conceptual material that is given in sense-experience (Herbart
1813, 38f.). His basic division of the field of philosophy was the that time
usual tripartite one: logic, metaphysics, and aesthetics (the most important
part of which was ethics). The task of logic was to take care of the first and
the foremost duty of philosophy, that is, of conceptual clarity. The task of
metaphysics was to justify concepts as objects of thought by analyzing and
resolving conceptual contradictions that originate from thought itself. The
third constituent, aesthetics, complemented the objects of thought by an
analysis of values (Ueberweg 1923, 156f.).
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Herbart remained in many ways faithful to Kant’s conceptions. In his logic
writings he himself sketched only the very basics and trusted, when it came
to more advanced issues, the textbooks of, for example, Wilhelm Krug and
Jakob Fries. Logic meant for him a regulative science which merely establishes
the ways of handling concepts as such and lays down the law of contradiction
as their highest standard. In his supplement “Hauptpuncte der Logik” to the
second edition of his Hauptpuncte der Metaphysik Herbart wrote:

Indeed logic is concerned with representations but not with the
practice of representing. Hence, it is neither concerned with the
mode and the manner of how we get to a representation, nor with
the conditions of mind that are given thereby, but only with what
becomes represented. (Herbart 1808, 217)

In his works, Herbart gives logic such definitions as, for example, “a general
science of understanding” (Herbart 1813, 67) and “a theory of the structures of
thought” (Herbart 1808, 222). Logic meant for him a fundamental science that
occupies itself first of all with separating, classifying, and combining concepts
as such; thereafter with making and analyzing judgments; and finally with
revealing the modes of inference. The task of logic was to develop the formal
consequences from the given premises (Herbart 1808, 218; 1831, 204).

The fundamental point of difference between Hegel’s and Herbart’s concep-
tions of logic dealt with the relation between logic and metaphysics. Whereas
the former drew an identity between logic and metaphysics, the latter wanted
to keep the two strictly separated from each other. Herbart also insisted that
for the benefit of pure logic, it is necessary to avoid all psychological considera-
tions. In the second chapter of his Lehrbuch zur Einleitung in der Philosophie,
Herbart summarizes his logic conception in five theses:

1. Logic provides us with the most general regulations of separating, classi-
fying, and combining concepts.

2. Logic presupposes concepts as known and does not distress itself with
their specific contents.

3. Therefore logic is not really an instrument of such an investigation that
aims at finding something novel. It rather gives instructions for revealing
what we already know.

4. Nevertheless logic also points out the primary conditions of investigation
in general and takes care of the important duty of paying attention to
the possibility of committing errors.

5. The term “applied logic” refers to a combination of logic and psychology
which, however, falls out as defective on issues where psychology does
not already lead the way. (Herbart 1813, 41f.)

Even though it is fully justified to characterize Herbart as an advocate
of formal logic and to see his philosophy of logic as an offspring of Kant’s
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empirical realism, it can be asked why the logicians of the early nineteenth
century did not seem to be very interested in making an effort toward further
development of formal logic. One reasonable answer is based on the fact that
was already pointed out in the beginning of this chapter. That is, because
during the early nineteenth century logic sprung straight from Kant’s view,
according to which the inherited scholastic-Aristotelian logic was to be seen
as closed and complete. The only thing there seemed to be left for logicians
to deal with was its applications, such as epistemology, methodology, and the
philosophy of science.

2. Drobisch’s Formal Philosophy
Around the mid-nineteenth century, the perhaps most eminent opponent to
the idealist identification of logic and metaphysics was the mathematician,
astronomer, and philosopher Moritz Wilhelm Drobisch (1802–1896). He was
one of the most important and insightful thinkers in the Herbartian school.

In the first paragraph of the introduction to his Neue Darstellung der Logik
(1836), Drobisch introduced philosophy as “the general science” (Drobisch
1836, 1). According to him, it was not the task of philosophy to investigate the
auxiliary apparatus of subjective cognition. That was the task of special sciences.
For him, like for Herbart, philosophy meant working with purely conceptual
material and trying to reach understanding of concepts in themselves (ibid., 2).

In Neue Darstellung der Logik, Drobisch focused on what he called “formal
philosophy,” that is, logic. He introduced logic as the doctrine of the conditions
of correct and consistent thinking (ibid., 5). In his view, logic must not be
understood as a description of human thinking. It must not be considered as
a descriptive natural history of thinking, but rather as a normative discipline
of thought in general or as a “Code of Laws of Thought” (ibid., 6). In this
connection Drobisch referred to Kant’s description of logic not as a descriptive
but as a demonstrative a priori science, the function of which is to take care of
the necessary laws of thought, that is, as the science of the adequate use of un-
derstanding and of reason in general (see KrV, B IX, XXII). Drobisch regretted
the fact that the law-giving character of logic had been spoiled by the Kantian
school. Therefore he saw it necessary to once again impress on philosophers
the importance of this normative aspect of logic (Drobisch 1836, 7).

Drobisch was concerned about the purity of logic. Already in the preface to
the first edition of Neue Darstellung der Logik he made it clear that in what
follows, logic will be understood as an independent and autonomous formal
foundation of all scientific activity. He wrote that “logic is, in fact, nothing
but pure formalism. It is not meant to be, and must not be, anything else”
(ibid., VI). Moreover, he did not consider logic as a branch of mathematics
(ibid., VIII–X).

At the end of the first edition of Neue Darstellung der Logik, there is an
exceptional and incisive logico-mathematical appendix (ibid., 127–167). In this
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appendix Drobisch concentrates on the problematic connection between logic
and mathematics, and introduces his algebraic construction of the simplest
forms of judgment and derivation of inferences founded thereupon (ibid., 131–
136). In effect, he develops an extensional algebraic calculus of classes and
elementary judgments. Drobisch’s calculation apparatus follows Aristotelian
theory of syllogisms. To give just a couple of examples, the classical modi
BARBARA and DARAPTI are presented in the following way (ibid., 134f.):

BARBARA M = p
S = m (< M = p′)
S = p′ (where p′ < p)

DARAPTI M = p
M = s
s = p

From today’s perspective, Drobisch’s calculus appears as one of the most
interesting chapters of Neue Darstellung der Logik. It has been valued as
an improvement in comparison with the intensional systems of his famous
predecessors Ploucquet, Lambert, Gergonne, and Jacob Bernoulli (Thiel 1982,
763). Unfortunately, Drobisch removed his calculus from the subsequent edi-
tions of Neue Darstellung der Logik, which became one of the leading German
textbooks of logic during the nineteenth century. He also executed a number
of other modifications to the later editions of his book. In the preface to
the second edition, he even admitted that the changes that had been carried
out were so extensive that one could almost speak of two altogether different
books (Drobisch 1851, III). Trendelenburg’s hard criticism was undoubtedly an
important catalyst for these changes. But was it the decisive one? Drobisch’s
uncompromising attitude toward Trendelenburg in the preface to the second
edition suggest that perhaps he just felt that after all his calculus was not
quite ripe to be published.

3. Hegel’s Dialectical Logic
The first one of the two most important sources of Georg Wilhelm Friedrich
Hegel’s (1770–1831) dialectical logic is his monumental Wissenschaft der Logik
(1812/16). This much debated and thoroughly interpreted work was Hegel’s
attempt to provide a comprehensive philosophical synthesis of his union of
logic, metaphysics, and epistemology. The second source of Hegel’s logic is
Encyclopädie der philosophischen Wissenschaften im Grundrisse, of which
Hegel prepared and published three different versions—the first one in 1817 and
the two others in 1827 and 1830. Of particular interest here is the first part of
the book: “Die Logik, die Wissenschaft der Idee an und für sich” (§§19–244). In
the following we pay attention only to the third edition, which was published
the year before Hegel’s death. It can be regarded as Hegel’s philosophical
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testament. Reading it this way requires, however, keeping in mind that it
does not provide the reader with a thoroughly elaborated and fully developed
system but only with a sketch of the foundations of one. And when considering
the relations between Wissenschaft der Logik and the Encyclopädie, it is worth
knowing that Hegel kept on working intensely with the former one until his
death (Nicolin and Pöggeler 1959, xxix, xxxviif.).

It is no surprise that Hegel’s and Herbart’s thought with regard to logic
did not meet, because the very foundations and the aims of the two differed
from each other as greatly as day and night. The following quotation from the
introduction to Wissenschaft der Logik gives the reader a hint of the distance
between Hegel’s understanding of the term “logic” and that of the Herbartians:

logic is to be understood as the system of pure reason, as the realm
of pure thought. This realm is truth as it is without veil and in its
own absolute nature. It can therefore be said that this content [of
pure science] is the exposition of God as he is in his eternal essence
before the creation of nature and a finite mind. (Hegel 1812, 31)

Hegel built his dialectical logic on the trivet of Kant’s transcendental logic,
Schelling’s identity between the real and the ideal, and Fichte’s Wissenschafts-
lehre. The resulting theory was designed to serve the needs of his own monu-
mental philosophical system, which divides into the three main constituents of
Science of Logic, Philosophy of Nature, and Philosophy of Spirit. Logic was
regarded as the foundational science of the system.

Hegel’s works provide the reader with the most comprehensive theory of
metaphysical philosophy of logic. In his philosophy there is no way of separating
logic and metaphysics from one another. In the Encyclopädie Hegel states that
“logic therefore coincides with Metaphysics, the science of things set and held
in thoughts—thoughts accredited able to express the essential reality of things”
(Hegel 1830, 58). If Hegel’s philosophy in toto is a science about the real world
of change and development, understood as the collective self-education of
humanity about itself, then logic is the construction of the history of thinking.
In the Encyclopädie Hegel defines logic as “the science of the pure Idea; pure,
that is, because the Idea is in the abstract medium of Thinking” (ibid., 53). His
logic does not consider the categories merely as forms of subjective thinking.
They are also seen as the forms of objective Being itself. The Absolute or
the Reason—which is the ultimate subject matter of Hegel’s philosophy—is
a union of Thinking and Being, and it is the task of logic to develop this
unity. Accordingly Hegel divided his logic into two parts: (1) the objective
logic concerned with the Being, and (2) the subjective logic concerned with
the Thinking.

In Wissenschaft der Logik Hegel attacked fiercely the “dull and spiritless”
(Hegel 1812, 34) attempts of formal logicians to elaborate logic as the most
general deductive science of thinking. According to him, the deduction of
the “so-called rules and laws, chiefly of inference is not much better . . . than
a childish game of fitting together the pieces of a colored picture puzzle”
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(ibid.). This “thinking” which formal logic strove to govern constituted for
Hegel the mere form of cognition. According to him, formal logic abstracted
from all content of cognition and the material constituents of knowledge are,
consequently, totally independent of it. Thus, formal logic could provide only
“the formal conditions of genuine cognition and cannot in its own self contain
any real truth, nor even be the pathway to real truth because just that which
is essential in truth, its content, lies outside logic” (ibid., 24).

The two most important concepts in Hegel’s critique of the traditional
scholastic-Aristotelian conception of logic are “formal” and “abstract.” His
accusation of traditional logic as being merely formal thinking is based on a
conception according to which logical form and content should correspond to
each other. This requirement has several consequences. It explains why logic
embraces for him, in addition to the problem of classification of propositions
and inferences, also the study of the categories on which these classifications
are based. It implies, for example, that logic also deals with the distinctions
between different levels of knowledge correlative to the various aspects of
reality given in the categories. It also has implications for Hegel’s conceptions
of judgment and truth (Kakkuri 1983, 41).

Hegel’s conclusion of the history of logic until the early nineteenth century
was as follows:

Before the dead bones of logic can be quickened by spirit, and so
become possessed of a substantial, significant content, its method
must be that which alone can enable it to be pure science. In the
present state of logic one can scarcely recognize even a trace of
scientific method. It has roughly the form of an empirical science.
(Hegel 1812, 34f.)

This leads us to the central topic of Wissenschaft der Logik, that is, the problem
of appropriate philosophical method. Hegel’s starting point was the assumption
that philosophy had not yet found a method of its own, but merely borrowed
bits and pieces from the methodologies of various sciences and, in particular,
“regarded with envy the systematic structure of mathematics” (ibid., 35). The
connection between logic and philosophy is inextricable because “the exposition
of what alone can be the true method of philosophical science falls within the
treatment of logic itself; for the method is the consciousness of the form of the
inner self-movement of the content of logic” (ibid.).

From Kant’s remark of elementary logic having neither lost nor gained any
ground since the time of Aristotle, Hegel drew a very radical conclusion. He
held the same opinion as Kant in stating that logic had not undergone any
positive changes in more than 2000 years. But judging by the logic-compendia
of his time the few traceable changes appeared to him as consisting “mainly
in omissions” (ibid., 33). Therefore he concluded that it is “necessary to make
a completely fresh start with this science” (ibid., 6).

Hegel’s logic dealt not only with the traditional Aristotelian laws of thought
or Kant’s logic of the understanding but also with metaphysical issues. He
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begun the introduction to the first book of Wissenschaft der Logik by re-
gretting the fact that “what is commonly understood by logic is considered
without any reference whatever to metaphysical significance” (ibid., 28). His
at first relative and later absolute identification of logic and metaphysics is
the fundamental point of difference between Hegel’s philosophy of logic and
that of the Herbartian school.

There is no undisputable clear-cut answer to the question “What kind of
logic is Hegel’s logic?” It is certainly not, for example, a doctrine of the laws of
formally impeccable inference. Yvon Gauthier (1984) has suggested an answer
that amounts to saying that Hegelian logic is a transcendental logic, which in
turn would be the study of the a priori structures of logical thought. According
to him, what Hegel calls objective logic is nothing less than metaphysics in
the traditional sense, and therefore it is justified to consider Hegelian logic
as transcendental-metaphysical. For Hegel, transcendental-speculative logic,
which deals with the most general features of thought, reaches even further
than it does for Kant (ibid., 303f.). Whatever the truth, in any case Hegel’s
program was one of the most influential efforts to reform logic during the
nineteenth century.

4. Trendelenburg’s Logical Investigations
Friedrich Adolf Trendelenburg (1802–1872) was not concerned with logic as
mere doctrine of the laws of correct inference. The first two chapters of his
greatest work, the two-volume Logische Untersuchungen (1840) can well be
considered to discuss philosophy of logic in today’s sense of the saying, but
the rest of the book—the essence of Trendelenburg’s logical investigations—
is perhaps best characterized as fundamental epistemology with a strong
metaphysical flavor. Trendelenburg’s intention was to solve what he considered
to be the ultimate task of philosophy, namely, the apparent correspondence
between “the external reality of Being and the internal reality of Thinking”
(Trendelenburg 1840, I, 110). In effect, his Logische Untersuchungen was an
attempt first to show the defects of both Herbartian and Hegelian logic and
then to supplement and reformulate them to achieve a formal and fundamental
theory of science and metaphysics.

4.1. Critique of Formal Logic
When talking about formal logicians, Trendelenburg meant those philosophers
who attempted to explain the pure forms of thought without paying attention
to the contents of thought. This tradition rested, according to Trendelenburg,
on a strict distinction between thoughts and their objects, that is, between
Thinking and Being. Furthermore, because in Trendelenburg’s view these so-
called formal logicians took truth as simple correspondence between thoughts
and their objects, they also accepted silently the presupposition of harmony
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between forms of thought and things in themselves. In particular Trendelenburg
wanted to criticize those philosophers who subscribed to Herbartian conception
of logic (Trendelenburg 1840, I, 4–6).

Formal theories of logic had traditionally begun with a theory of concepts.
Accordingly, Trendelenburg begun his criticism with some critical remarks on
traditional theories of concepts and specified the target of his criticism: “In
particular we consider two ingenious and consistent presentations of formal
logic, the famous works of A. D. Ch. Twesten [1825] and the University of
Leipzig Professor Moritz Wilhelm Drobisch [1836]” (ibid., 7). He was not
content with taking concepts as given and understanding them merely as
sub- and superordinate combinations of properties. He criticized this view
as much too naive for uncovering the secrets of the foundations of human
thought. In his view, the traditional subordination of concepts was based on
nothing but simple operations of adding and subtracting properties. According
to him, every attempt to find the essence of thought with the help of such
basic operations as these—or with any such alternatives as multiplication and
division—remains always futile. Every theory that rested on such theory of
concepts became thus “more than dubious” (ibid., 8).

Hence, according to Trendelenburg, the whole edifice of formal logic was
built on sand. However, for the sake of argument, he assumed that there is
nothing wrong with formal theories of concepts and turned to examine the
fundamental principle of classical formal logic, that is, the law of identity and
contradiction: “A is A and A is not not-A.” Formal logicians had traditionally
believed that in the final analysis everything else in logic derives from this
principle. Trendelenburg wanted to find out if this belief really was tenable.
Even though he admitted that the principle seemed unassailable at the first
sight, he wanted the reader to pay closer attention to the latter part of it:
A given concept A stands in contradiction with its negation and is logically
equivalent with its double negation. According to Trendelenburg, this “blindly
accepted” (ibid., 11) interpretation was insufficient for explaining the nuances
with regard to contents of concepts. It reduced all of the various conceptual
contrasts to the pure formal logical contradiction. Trendelenburg wanted to
criticize this inflexibility. In his opinion, every purely formal definition for
identity and negation fails to explain them properly (ibid., 11–14).

It may be difficult to understand why Trendelenburg wanted to make such
an issue about formal logic not paying attention to the contents of judgments
if one does not keep in mind that his logical investigations was an attempt
to elect the best parts of metaphysics and logic and to reformulate them as
a general, formal, and fundamental theory of science. In the introduction to
Logische Untersuchungen, he wrote that “the range of these investigations
must run through the sphere of logic questions and reach for insight on the
whole field of science” (ibid., 3). After having scrutinized both formal logic
and dialectical method, Trendelenburg announced that the rest of his book
will be committed to answering, with regard to the objective foundations of
logic, the question about the possibility of knowledge (ibid., 100f.). His project
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was more ambitious than just explicating the laws of correct and consistent
deductions.

Trendelenburg also probed into different types of inference and asked if it
was possible to derive all the forms of inference from what the formal logicians
regarded as the basic premises of formal logic, that is, the principle of identity
and the idea of concepts as combinations of properties. He found nothing
to complain about the classical forms of deductive inference. However, the
problematic cases were logic of induction and inferences based on analogy.
“What a great shame it is,” he wrote, “if there is no ability to understand
the logic of induction and analogy expressed by science; and in case it is
generality and not necessity that follows, then the principle of identity and
contradiction is not the [basic] principle of logic” (ibid., 18). Indeed, according
to Trendelenburg, inadequate understanding of logic of induction was one of
the most alarming shortcomings of early nineteenth-century formal logic.

Trendelenburg dedicated the end of the first chapter to his favorite subject,
Aristotelian philosophy. He had noticed that formal logicians often appealed to
Aristotle and willingly called themselves Aristotelians. Trendelenburg, however,
had found a number of reasons why they should not be regarded Aristotelian.
According to him (ibid., 18–21):

1. Aristotle did not propose that the forms of thought should be understood
purely in themselves;

2. Understanding concepts simply as given combinations of properties does
not correspond to Aristotle’s refined theory of concepts;

3. The nineteenth-century formulation for the principle of identity and
contradiction, “A is A and A is not not-A,” differs significantly from
Aristotle’s original formulation: “The same attribute cannot at the same
time belong and not belong to the same subject” (Met. 1005b 18–20);

4. Aristotle did not regard affirmation and negation as purely logical forms;
5. Aristotle considered modal judgments of necessity and possibility as

rooted in the nature of things;
6. Aristotle did not postulate syllogisms as merely formal relations between

judgments.

This was roughly what Trendelenburg left in the hands of the public for
deciding whether formal logic could be taken seriously with regard to the logic
question.

4.2. Critique of Metaphysical Logic
If it was the most serious defect of Herbartian formal logic to strictly separate
Thinking from Being and to concentrate only on the former one, then Hegelian
metaphysical logic was guilty of exactly the opposite. According to Hegel,
Thinking and Being could not be separated from each other. In his system
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knowledge of Being derives straight from Thinking in itself. Trendelenburg,
however, could not see how this could be possible. Shortly, in his opinion the
biggest fault with Hegel’s conception of logic was the attempt to completely
and unjustly neglect the decisive intermediate role of the Aristotelian concept
of motion in obtaining knowledge (Harms 1881, 236).

Trendelenburg’s criticism of Hegel’s dialectical method ranges over a broad
field of philosophical topics. In the following we shall, however, concentrate
only on those aspects and arguments that can be regarded as belonging to
the field of philosophy of logic. Trendelenburg summarized the basic situation
with dialectical method in the following way:

The dialectical method strives for the greatest possible. It wants to
develop and create the pure Idea as if in a divine intellect—solely out
of itself. Content and form are supposed to arise simultaneously. Be-
cause the pure Idea brings forth only what lies deep in itself, it must
create such a world where nothing exists in itself and every thought
is a genuine part of the totality. . . . We must, however, resign [from
the dialectical method] at once. The means are too frail for executing
the plan of such a titanic project. (Trendelenburg 1840, I, 94)

Trendelenburg’s first argument concerned the alleged presuppositionless of
Hegel’s logic. According to Hegel, pure Thought needed no support from
perception or sense experience. The pure Idea was the stone foundation of his
logic and vice versa. Therefore, according to Hegel, logic was both quite easy
and extremely hard:

From different points of view, Logic is either the hardest or the
easiest of sciences. Logic is hard, because it has to deal neither with
perceptions nor, like geometry, with abstract representations of the
senses, but with the pure abstractions; and because it demands a
force and facility of withdrawing into pure thought, of keeping firm
hold on it, and of moving in such an element. Logic is easy, because
its facts are nothing but our own thought and its familiar forms or
terms: and these are the acme of simplicity, the ABC of everything
else. (Hegel 1830, §19)

Trendelenburg could not accept this view. In his opinion Hegel’s “pure Thought”
did not deserve its name because it could not escape from tacitly presupposing
the fundamental principle of all knowledge, that is, the Aristotelian idea of
motion. According to Trendelenburg, even the most elementary dialectical steps
were impossible without support from this concealed principle: “Wherever we
turn to, motion remains the presupposed vehicle of the dialectically breeding
Thought. . . . This spatial motion is hereupon the first assumption of this presup-
positionless logic” (Trendelenburg 1840, I, 24–29; see also Petersen 1913, 156).

Trendelenburg’s second argument against the dialectical method concerned
the two seemingly logical relations of negation and identity. However, Trende-
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lenburg wanted to point out that with a closer look it can be seen that it is
not the logical negation that works in Hegel’s system:

What is the nature of this dialectical negation? It can have a twofold
character. Either it is understood in a pure logical way, so that
it simply denies what the first concept affirms without replacing
it with something new, or it can be understood in a real way, so
that the affirmative concept is denied by a new affirmative concept,
in what way both of the two must be replaced with each other.
We call the first instance logical negation, and the second one real
opposition. (Trendelenburg 1840, I, 31)

Is it now possible for the logical negation, Trendelenburg asked further, to stip-
ulate such progress that from a given denial a new positive concept arises which
exclusively unites in itself both the affirmation and the negation? According to
Trendelenburg’s definition for logical negation, this was totally out of question.
In other words, it would be a mistake to treat the dialectical negation as logical
contradiction. Hence, it must be regarded as a real opposition. However, if
it is a real opposition, then it is unattainable from the logical point of view
and Hegel’s dialectic is not the dialectic of pure Thought. Hence the one who
takes a closer look on the so-called negations of Hegel’s dialectical logic shall
in most cases discover ambiguities (ibid., 30–45).

According to the rules of Hegel’s dialectical logic, identity creates a new
concept of a higher level out of a given concept and its opposite. This dialectical
product is the truth of its “ingredients.” Hence, dialectical identity appears
to be a real unit, even though it is, in the final analysis, only a kind of
shallow similarity of abstraction. Trendelenburg could not see how it could
be possible for two distinct concepts to mutate into a third, new one. He
wrote that “dialectical identity offers more than it has” (ibid., 55). If the
dialectical identity was supposed to be some kind of an impetus of the concrete
reality, then it surely could not be an identity of abstraction. According to
Trendelenburg, there is an obvious contradiction between the origin of the
dialectical concept of identity and its alleged effect (ibid., 45–56).

Trendelenburg’s third point of criticism concerned Hegel’s conception of im-
mediacy. In Aristotle’s philosophy, Trendelenburg clarified, every such element
of thought is immediate that does not reduce to any other element, for example,
the basic elements of representation in general or certain particulars sensed
in such a manner that nothing whatsoever comes in between the sensuous
representation and its object. In the nineteenth-century philosophy it was,
according to Trendelenburg, more customary to use the term “immediate”
in the latter sense of the word. Since the whole dialectic was in the final
analysis nothing but a chain of mediation, immediacy was out of question in
this sense. However, in Hegel’s system, the concept of immediacy is prominent
everywhere in the dialectical process of mediation. Now it seemed to be, in
Trendelenburg’s opinion, that in this context immediacy can only mean self-
subsistence, that is, Being-for-self. Hegel himself expressed this quite clearly
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in his Encyclopädie: “Being-for-self, as reference to itself, is immediacy, and as
reference of the negative to itself, is a self-subsistent, the One. This unit, being
without distinction in itself, thus excludes the other from itself” (Hegel 1830,
§96). Later in the same volume he exclaims that “the immediate judgment
is the judgment of definite Being. The subject is invested with a universality
as its predicate, which is immediate, and therefore a sensible quality” (Hegel
1830, §172; emphasis added). In Trendelenburg’s opinion, this explanation left
no room for misunderstanding: In Hegel’s logic the term “immediate” refers to
something foreign to his system, that is, to something sensuous. And above we
just saw how in Hegel’s dialectic the function of immediacy was by no means
supposed to lead the way from pure thoughts to something sensuous. Thus,
Hegel’s use of the term “immediate” remains ambiguous (Trendelenburg 1840,
I, 56–59).

Trendelenburg closed the first chapter of Logische Untersuchungen by esti-
mating whether it is right to regard the Herbartian projects of formal logic as
latest extensions to the Aristotelian tradition of logic. Accordingly, at the end
of the second chapter, he paid attention to dialectical method having sought
for its original from Plato’s Parmenides dialogue (ibid., 89).

The latter part of the Parmenides dialogue (137c–166c), where Socrates
and Parmenides discuss the intertwined concepts of the one and many and the
problematic relations between parts and wholes, has been interpreted in many
different ways since time immemorial. Hegel recognized a resemblance between
Parmenides’s holistic concept of One and his own Absolute. Admittedly there
are certain similarities. However, there are also other ways of understanding
the passage. Another possibility is to read Parmenides simply as Plato’s
reply to his critics. According to a number of scholars, the safest principle of
interpretation is to excavate the hints that Plato himself gives to the reader
for understanding the dialogue. Trendelenburg subscribed to this strategy.
One of these hints is also the heart of Trendelenburg’s last argument against
Hegel: In the beginning of the latter part of the dialogue Parmenides suggests
that Socrates could use some training in the art of dialectic so that he might
be more successful in searching for solutions to Parmenides’s philosophical
dilemmas (135c–136a). Thus, the arguments and proofs of the latter part
can be regarded as merely heuristic. It can be read as just an evaluation
of various juxtaposed philosophical arguments and theses, some of which
reappear in other dialogues by Plato—others being mere formal supplements
to Parmenides’s arguments. Trendelenburg also held the opinion that it is hard
to find a credible uniform philosophical doctrine hidden beneath Parmenides’s
lesson to Socrates (Trendelenburg 1840, I, 89).

The task of Hegel’s dialectic was to show how a closed system could seize
the whole reality. The outcome, however, failed to convince Trendelenburg. It
seemed to him evident that the role of perception is silently assumed everywhere
in Hegel’s theory and that the concepts of the pure Thought are, in the final
analysis, nothing but diluted representations. “Intuition is,” he wrote in the
closing pages to the second chapter of Logische Untersuchungen, “vital for
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human thought and it starves to death if it must try to live on its own entrails”
(ibid., 96). At the end of the whole work, Trendelenburg glanced back to his
work and wrote:

As we have seen, formal logic is essential but not sufficient for
accomplishing the logical task. Hegel’s dialectic, in its turn, gives
a promise of more—as a matter of fact of the greatest that can be
imagined—but falls out as impossible. (Trendelenburg 1840, II, 363)

As the discussion on the reform of logic moved on, there appeared certain
general points of agreement concerning the basic nature and the task of
logic. It became common to accept that the possible reform of logic must
go hand in hand with the reform of philosophy. The Kantian appreciation
of mathematics against its Hegelian devaluation became rehabilitated even
though the question about the relationship between logic and mathematics
remained difficult. On the one hand formal logic became almost resistant
to philosophical criticism, but on the other hand it lost at least part of its
prestige as the foremost constituent of philosophy proper as it gradually was
transformed into a subdiscipline of mathematics.

5. Herbartian and Hegelian Reactions to the Criticism
Trendelenburg’s Logische Untersuchungen had a devastating impact in both
the Herbartian and the Hegelian camps. Academic public expected the leading
representatives from both sides to formulate and present counterarguments.
This they also did. The leading Herbartian philosophers were, however, a little
slower in defending themselves than their Hegelian colleagues.

Even though Trendelenburg explicitly aimed his censure at Drobisch and
August Twesten (1789–1876), apparently most of those who took part in the
evaluation discussion of Logische Untersuchungen read the first chapter of
the book as censure of Herbartian logic and metaphysics. Drobisch wrote and
published several articles in defense of Herbart. Twesten did not reply on
Logische Untersuchungen.

It took more than 10 years before Drobisch was ready to step forth with
counterarguments. The first set of his answers was published in 1851 in
the preface to the second edition of his Neue Darstellung der Logik (1851).
The second one came out the year after, in the form of a journal article
(Drobisch 1852). Before these two contributions, only Hermann Kern had
dared to defend Herbartian philosophy against Trendelenburg’s authority.
Kern published an essay for justifying Herbartian metaphysics nine years after
Logische Untersuchungen (Kern 1849). In addition to Drobisch and Kern,
Ludwig Strümpell appears to be the only eminent Herbartian who had the
courage to defend Herbartian philosophy in public against Trendelenburg
with his essay “Einige Worte über Herbart’s Metaphysik in Rücksicht auf die
Beurtheilung derselben durch Herrn Professor Trendelenburg” (1855). Even
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Trendelenburg himself was astonished to find out how long it took for his
opponents to prepare any answers to his criticism (Trendelenburg 1855, 317).

In the second edition of Neue Darstellung der Logik (1851), Drobisch still
subscribed to formal logic. In general, Drobisch accused Trendelenburg of
making formal logic appear as if it was philosophically much less sophisticated
than it really was. In particular he emphasized that Trendelenburg’s statement
about formal logic totally separating thoughts from their objects is incorrect:

Formal logic does not presuppose pure thought and does not attempt
to analyze or explain the forms of thought in abstracto. . . . Formal
logic does not recognize forms without content. It only recognizes
such forms that are independent of particular contents which they
might fulfil. Contents, which they cannot completely do without,
remain thus indeterminate and accidental. (Drobisch 1851, IV)

Drobisch also still held that there is no insurmountable dividing wall between
Aristotelian logic and formal logic (ibid., III–XIV).

A year later Drobisch admitted, in a journal article “Ueber einige Einwürfe
Trendelenburg’s gegen Herbart’sche Metaphysik” (1852), that it might have
been a good idea to reply on Logische Untersuchungen a little sooner. However,
he thought that it still was not too late to break that silence. This article
was, above all, an act in defense of Herbartian metaphysics. When it comes to
Trendelenburg’s arguments against Herbartian philosophy of logic, this time
Drobisch only referred briefly to the preface to the second edition of his Neue
Darstellung der Logik (ibid., 11–12)

Evidently Trendelenburg had expected more vivid reactions to the “two-
edged critique” of his Logische Untersuchungen. This is at least what the
critique itself (Trendelenburg 1840, 4–99), his reply to Drobisch (Trendelenburg
1855), and its extension (Trendelenburg 1867) suggest. Perhaps he had even
planned the first two chapters of Logische Untersuchungen rather as an opening
of a polemic than as a coup de grâce. At least Hegelian philosophers reacted a
little faster.

Hegelians were naturally very sore with Trendelenburg’s criticism. Differ-
ences between their published reactions were largely due to different personal
temperaments. For instance, the leading Hegelian of the 1840s, Karl Rosenkranz
(1805–1879), could not quite understand how “a man, who is so throughly
familiar with Aristotle’s philosophy, [could] have sunk so deep that he denies
νοησιζ τηζ νοησεως from νους” (Rosenkranz 1844, xviif.). There were, how-
ever, other Hegelians who did not manage to keep themselves as dispassionate
as Rosenkranz. Karl Michelet characterized Trendelenburg’s philosophy as
“jumble” (Michelet 1861, 126), and Arnold Ruge wrote, in Deutsche Jahrbücher
für Wissenschaft und Kunst, that

those who are dull enough to be unable to recognize the progress
Hegel has stimulated have no scientific importance—and even less
do they possess positive political credibility. Their work is still-born,
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a matter of deepest ignorance and complete lack of strength. Those
who cannot digest Hegel, cannot digest either the heroes of the Ger-
man Spirit: Luther, Leibniz and Kant! (cited in Petersen 1913, 158)

Trendelenburg’s victory over both of his opponents seems to have been
undisputable. In 1859 Rosenkranz confirmed, in his Wissenschaft der logischen
Idee (1858/59), that as a consequence of Trendelenburg’s censure in his Logische
Untersuchungen the whole discussion around Hegelian dialectic had come to
durable stagnation—the advance of Hegelian philosophy had ceased. Some 30
years after Logische Untersuchungen, Hermann Bonitz wrote, in his memorial
essay to Trendelenburg, that “in any case it is true that now, after three
decades, the substantial influence of Hegelian philosophy has been confined to
a very modest group of faithful adherents and that Trendelenburg has had a
considerable effect on this change with his criticism” (Bonitz 1872, 23). Forty
years after Logische Untersuchungen, Friedrich Harms valued Trendelenburg’s
contribution to the nineteenth-century philosophy of logic as easily the most
significant. Either neglecting or not knowing what for instance Gottlob Frege
and Ernst Schröder had recently accomplished, he wrote that

Trendelenburg’s Logische Untersuchungen is the latest significant
attempt to reform logic. . . . we are living in a time of fragmentary
efforts to reform logic. These attempts do not have any accurate
continuity. They attempt to remodel logic from greatly varying
starting-points and with greatly varying results. The future will
make the best out of what Lotze, Ulrici, Ueberweg, Chr. Sigwart,
and others have accomplished. (Harms 1881, 238)
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The Relations between Logic
and Philosophy, 1874–1931
Leila Haaparanta

One who seeks to discuss the relations between logic and philosophy in the nine-
teenth century and the early twentieth century has to pay special attention to
his or her use of the term “logic.” In the context of nineteenth-century and early
twentieth-century philosophy, that term occasionally refers to similar activities
to those we now call logic. In those days, logic could mean what we nowadays
tend to call logic proper, that is, working with formal systems that resemble
those of mathematics. However, it could also mean activities that we would
now wish to label as “epistemology,” “philosophy of science,” “philosophy of
language,” or “philosophy of logic.” Therefore, it may sound strange to promise
to discuss the relations between nineteenth-century and early twentieth-century
logic and philosophy. It is more to the point to claim that this chapter gives
a survey of the field of philosophy where (1) the philosophical foundations of
modern logic were discussed and (2) where such themes of logic were discussed
that were on the borderline between logic and other branches of the philosophi-
cal enterprise, such as metaphysics and epistemology. What will be excluded in
this chapter are the formal developments on the borderline between logic and
mathematics, hence, contributions made by such logicians as Augustus De Mor-
gan (1806–1871), George Boole (1815–1864), Ernst Schröder (1841–1902), and
Giuseppe Peano (1858–1932), for example (see chapters 4 and 9 in this volume).
Gottlob Frege (1848–1925) and Charles Peirce (1839–1914) are included, since
their work in logic is closely related to and also strongly motivated by their
philosophical views and interests. In addition, this chapter pays attention to a
few philosophers to whom logic amounted to traditional Aristotelian logic and
to those who commented on the nature of logic from a philosophical perspective
without making any significant contribution to the development of formal logic.
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The choice of the years 1874 and 1931 has its reasons. In 1874 Franz Brentano
(1838–1917) held his inaugural lecture “Über die Gründe der Entmutigung
auf philosophischem Gebiete” in Vienna. The lecture showed the way to
philosophers who made a sharp distinction between subjective psychological
acts studied by the empirical sciences and the objective contents of those
acts represented by means of logic (Brentano 1929, 96). Basically the same
distinction had already been made by Bernard Bolzano (1781–1848) in his
Wissenschaftslehre (1837). In 1931, which is the last year that is taken into
account in this chapter, a volume of Erkenntnis was published which contained
Rudolf Carnap’s (1891–1970) criticism of Martin Heidegger (1889–1976) titled
“Überwindung der Metaphysik durch logische Analyse der Sprache” and Arendt
Heyting’s (1898–1980) “Die intuitionistische Grundlegung der Mathematik,”
which was inspired by Edmund Husserl’s (1859–1938) and Heidegger’s thoughts.
Those articles were important in view of the division of philosophical schools
in the twentieth century. This chapter is far from being the whole story of
the relations between logic and philosophy 1874–1931. Instead, it consists of a
number of themes and opens up a few perspectives on the period. There is
slight emphasis on German philosophy. The chapter focuses on Frege, Husserl,
and Peirce. Frege and Peirce are chosen because of their central role in the
development of modern logic. Husserl is chosen because he wrote a great deal
on the philosophical problems related to the logical enterprise. If we use the
labels of our time, we would say that Husserl was one of the most important
philosophers of logic of his own time.

1. The Historical Setting, 1874–1931
Even if Kant thought that no significant changes are possible in logic, his
own transcendental logic raised several new themes that we could now call
philosophy of logic. Transcendental logic was philosophy of certain logical
categories, especially of their metaphysical limits and epistemological import.
After Kant, the role of those categories was discussed in various ways. There
were philosophers such as Johann Gottlieb Fichte (1764–1814), Friedrich
Wilhelm Schelling (1775–1854), and G. W. F. Hegel (1770–1831) who anchored
logical categories to the world, who argued that logical categories are categories
of being, of what there is (see chapter 6). In the second half of the century,
the situation changed. Philosophers started to debate on the relation between
logic and psychology. That debate increased interest in the epistemological
questions related to logic, but it also brought about a new formulation of
metaphysical or ontological problems. The basic question was no longer what
the most general structure of the world is. Instead, philosophers pondered on
whether there was a specific abstract realm that had thoughts as its denizens
and that logic could represent.

In his Lehrbuch der Logik (1920), Theodor Ziehen listed and characterized
various groups of nineteenth-century logic (Ziehen 1920, 155–216). The main
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opposition in the last decades of the century was that between psychologists
and antipsychologists. In the first half of the century, there were a number of
psychologists such as Friedrich Beneke (1798–1854), Otto Friedrich Gruppe
(1804–1876), William Whewell (1794–1866), and August Comte (1798–1857).
In Germany several schools arose in the late nineteenth century that attacked
psychologism, such as neo-Kantians like Hermann Cohen (1842–1918) and Paul
Natorp (1854–1924) and logicists like Frege and Husserl. Husserl’s early views
are usually considered psychologistic. Among logicists there were philosophers
whom Ziehen called value-theoretical logicists, such as Wilhelm Windelband
(1848–1915) and Heinrich Rickert (1863–1936), and moderate logicists like
Hermann Lotze (1817–1881) and Gustav Teichmüller (1832–1888). Moderate
or weak psychologists included several thinkers, for example, Christoph Sigwart
(1830–1904), Wilhelm Wundt (1832–1920), Benno Erdmann (1851–1922), and
Theodor Lipps (1851–1914).1 The contents of these doctrines will be clarified
later in this chapter.

The opposition between logic and metaphysics became important in a new
way in the beginning of the twentieth century, when Carnap raised criticism
against Heidegger’s views. Researchers who have tried to trace the origin of
the distinction between the analytic and the phenomenological, more generally,
the Continental tradition, have paid attention to the debate between Carnap
and Heidegger concerning the relation between logic and metaphysics. Various
interpretations can be proposed concerning the core of Carnap’s criticism.
It is not clear how Heidegger would have defended his view or attacked
Carnap’s position. Michael Friedman (1996, 2000), among others, has studied
the theme by taking the historical context into account. He has argued that the
roots of Carnap’s thought were in the neo-Kantianism of the Marburg school,
while Heidegger’s philosophy ensued from the Southwest school. According to
Friedman, that difference largely explains the fact that Carnap emphasized the
role of logic, while Heidegger stressed the centrality of questions concerning
human beings and their values.

There are various ways of making the distinction between the analytic and
the phenomenological tradition. Several criteria have been suggested, such
as their attitudes toward the history of philosophy, toward their own history,
toward science, and toward the idea of scientific philosophy; their views on what
are the central problems of philosophy, the objects of philosophical research,
and the methods of philosophy; and their attitudes toward the ideal of clarity in
philosophy. It has been suggested that views on the relation between logic and
metaphysics are an important criterion if we wish to divide philosophers into the
two camps. The different criteria turn out to be problematic in closer scrutiny.2
One who seeks to locate the differences between the two traditions cannot
ignore the fact that there were at least two ideas that early phenomenology,
especially Husserl’s thought, and most of early analytic philosophy shared.
First, there was the idea of pure philosophy, which presupposed a belief in the
sharp distinction between knowledge a priori and knowledge a posteriori. That
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belief had one of its origins in late nineteenth-century antipsychologism. Second,
there was the belief in the method of analysis as the method of philosophy.
That method, though in different versions, was used by Frege, the “godfather”
of analytic philosophy, and Husserl, the pioneer of phenomenology. These two
common features were intertwined in various ways.3

Carnap’s and Heidegger’s debate had its background in lively discussion
concerning the philosophy of logic and mathematics that was going on par-
ticularly in German philosophy at the end of the nineteenth century and at
the beginning of the twentieth century. Hermann Lotze (1817–1881), who
was professor at the University of Göttingen, influenced a number of those
who took part in the discussion. On Lotze’s view, objectivity is not the same
as that actuality (Wirklichkeit) which belongs to concrete beings. Lotze also
regarded abstract objects like thoughts and values as objective in the sense
that they are valid. Frege was one of Lotze’s students, and so was Bruno
Bauch, Frege’s colleague in Jena, a neo-Kantian philosopher and the founder
of the society for German idealism. Frege also belonged to that society. Hein-
rich Rickert, who was professor in Freiburg, was also influenced by Lotze’s
philosophy. Carnap was a student of Bauch’s, while Heidegger was a student of
Rickert’s. Rickert and Windelband were central figures of the neo-Kantianism
of Southwest Germany.4 Frege’s philosophical environment was not the South-
west school but rather the Marburg school. Frege was most likely to receive
his concept of truth value from Windelband, who was one of the so-called
value-theoretical logicists; they were philosophers who thought that besides
the moral values the realm of values includes the truth values studied by
logic.5

Like Frege, Husserl criticized psychologists and held the view that logic and
mathematics study abstract objects, such as numbers and thoughts, that is,
the structure of thoughts and the inferential relations between thoughts. At the
beginning of the twentieth century, Husserl was professor in Göttingen, until
he moved to Freiburg in 1916, to follow Rickert in the professorship. Husserl’s
follower in Freiburg was Heidegger. Frege was a logicist in two meanings,
Husserl in one meaning of the word. A competing doctrine, namely formalism,
was represented by David Hilbert (1862–1943), who was Husserl’s colleague
and friend in Göttingen. In the philosophy of mathematics, logicism meant
two things; on the one hand, it was the view that arithmetic or even the whole
of mathematics can be reduced to logic; on the other hand, it was the view
that numbers are abstract objects that are independent of the human mind.
On this latter view, mathematical knowledge has to do with these very objects.
Frege’s logicist program had to do with arithmetic, and it included defining
the concept of number by means the concepts of “extension of a concept”
and “equinumerous.” Frege took extensions of concepts to be logical objects.6
Husserl’s studies in the foundations of logic and mathematics were closely
connected to the rise of phenomenology. Logicism in the latter meaning was
a natural starting point of Husserl’s phenomenology; namely, if the objects
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of logic and mathematics have their origins in consciousness, even if not in
empirical consciousness studied by psychology, as Husserl argued, one has to
find out how to make the distinction between empirical and non-empirical
consciousness. If psychology is interested in empirical consciousness, and if
philosophy, including the philosophy that studies the relations between the
subject and logic and mathematics, is interested in pure consciousness, how
are these consciousnesses distinguished from each other?7 Are we dealing
with ontologically two different consciousnesses, or are we talking about two
different points of view to the same consciousness? If the latter holds, what
do we mean by saying that in the last analysis it is the same consciousness
we are talking about, and if it is one and the same, how can we justify the
claim that it is one and the same consciousness? Several difficult ontological
and epistemological questions arise. Therefore, it is not surprising that Husserl
moved from studies in the philosophical foundations of logic to studies of
consciousness.

Husserl asked how logic as science is possible. He wished to justify the field
of knowledge called logic, but it often seems that he also wished to justify a
certain logic, namely, classical logic, by studying its origin in consciousness.
There has been a debate on whether Husserl wished to take a position on the
correctness of logical systems, and if he did, whether he was a conservative
or a revisionist in logic. One has raised the question whether Husserl would
have suggested giving up the law of excluded middle or any other law of logic,
if we cannot find philosophical justification for those laws. Phenomenologists
often emphasize the incommensurability of philosophy and the sciences. We
could think that Husserl’s philosophical studies and logicians’ debate on the
acceptability of various logics are incommensurable. Dieter Lohmar has, for
his part, sought to show that Husserl was a moderate revisionist. In his view,
Husserl thought that it is possible that we cannot find justification for all laws of
classical logic.8 Radical revisionists in logic were Oskar Becker (1889–1964) and
Heyting, who sought to change logic on the basis of Husserl’s and Heidegger’s
thought. They tried to develop intuitionistic logic by using Husserl’s concepts
of meaning intention and meaning fulfillment or disappointment.9 As noted,
one of Heyting’s papers, inspired by Husserl and Heidegger, came out in the
same volume of Erkenntnis where Carnap had his criticism of Heidegger, the
criticism where Carnap sought to show by means of logic that Heidegger’s
sentences are meaningless.

In this chapter, I proceed as follows. First, I consider logic as a category
theory, hence, as a doctrine that is interested in the categories of thought
and being. I discuss those views in which logic is understood as the ideal
language that mirrors reality in the right way. Husserl’s formal ontology is
related to these doctrines. This consideration brings us to Heidegger’s view of
metaphysics. I then take up the ideas of one world and of the plurality of worlds
and consider the theories of modalities. The doctrine of three realms was much
discussed in the late nineteenth century. I will consider the acknowledgment
of the third realm and the reasons for such an acknowledgment. This question
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is tied to the debate on psychologism and antipsychologism and the problem
of the objectivity of the realm of thoughts that logic speaks about. The
important point made by antipsychologists was epistemological rather than
ontological. That point brings us to the question of the possibility of logical
knowledge and the various ways of answering the question given by Kant,
Frege, and Husserl. I then continue with epistemological considerations and
discuss Frege’s idea that in logical inference no intuitive gaps are allowed. If a
logical theorem is justified, there is no reference to intuition in the inferential
chain. In addition, philosophers raised the question concerning the justification
of traditional logical laws and a specific logical language. Husserl was one of
those who raised such questions. That theme also brings us to intuitionistic
logic and to the relations between logic and experience. Finally, Frege’s and
Peirce’s methodologies of logic are discussed, and Frege’s semantic views are
presented.

2. The Relations between Logic, Metaphysics,
and Ontology

In nineteenth-century logic and philosophy, logic was often understood con-
tentually or materially (inhaltlich). The idea that logic has content received
various meanings. (1) Logic was regarded as contentual in the sense that it was
assumed to speak about the objects of the world. Kant’s transcendental logic
was contentual in this sense in a peculiar way; it showed us the form of the
phenomenal world. Hegelian logic was contentual, because it sought to mirror
the historical development of reality. (2) Logic was taken to be contentual
in the sense of being transcendental, that is, being a picture of the a priori
conditions of all thought. (3) Logic was thought to have content in the sense
that it was assumed to speak about the objects of the abstract realm, that is,
to convey thoughts, which were considered objective. (4) Logic was thought to
have content in the sense that it was assumed to mirror the structure of the
psychological realm.

Philosophers who regarded logical categories as categories of being or as
categories of objects of knowledge and experience represented the first or the
second position. Leibniz and Kant belonged to that tradition of logic, even
if their views otherwise differed radically. Frege also thought that an ideal
language can be discovered that is the correct mirror of the universe. However,
Frege is also famous for his writings about objective thoughts and of his view of
logic as a representative of the realm of abstract objects. Hence, besides being
a mirror of all that there is, for Frege logic was a mirror of a specific realm; the
problem for interpreters has been whether Frege considered that realm in the
framework of epistemology only, or whether he regarded its objects as having
an ontological status. This doctrine, whether in its epistemological version or
both its epistemological and its ontological version, was in opposition with the
fourth doctrine listed, which was called psychologism.
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2.1. The Leibnizian Starting Point: Logic as the Mirror of Reality
Leibniz was the most prominent of the pre-Fregean thinkers who maintained
that the terms of our natural language do not correspond to the things of the
world in a proper way and that we should therefore construct a new language
which mirrors correctly the whole universe. One important characteristic of
modern logic was that unlike traditional logic, it proposed a new language—
mathesis universalis, lingua characteristica, begriffsschrift, or whatever it was
called by various authors. Modern logicians, primarily Frege, wished to establish
a new language that mirrors the world and replaced the grammatical subject-
predicate analysis of sentences by the argument-function analysis. Therefore,
the term “linguistic turn,” as applied to Frege, may lead us astray, if we do
not remember that Frege also turned away from language. That is, unlike
traditional logicians, he paid little attention to grammatical concepts like those
of subject and predicate in his logical studies.

In addition to the dream of ideal language, there was the idea of calculus
strongly emphasized by Boole and his followers. It meant the effort to formulate
the rules of logical inference explicitly by presenting logical and non-logical
vocabulary, formation rules, and transformation rules. Boole stated as follows:

We might justly assign it as the definitive character of a true
Calculus, that it is a method resting upon the employment of
symbols, whose laws of combination are known and general, and
whose results admit of a consistent interpretation. (Boole 1965, 4)

The nineteenth century saw a breakthrough of the two ideas, even if em-
phases varied among logicians. Frege stressed that he did not want to put
forward, in Leibniz’s terms, only a calculus ratiocinator, by which he primarily
meant the rules of logical inference. He argued that his conceptual notation
was to be a lingua characterica, which was the term that he used for Leibniz’s
lingua characteristica. That is, his notation was to be a proper language which
speaks about all that there is.10 Frege raised criticism against Boole, because
in his view Boole merely focused on developing a Leibnizian calculus in his
logical works. However, this was not exactly what Boole himself thought of
his project, because he included the idea of logic as a mental or philosophical
language in his philosophical remarks on logic (Boole 1958, 11, and Boole
1965, 5).

It has been argued in the literature that since different logicians empha-
sized different sides of the Leibnizian project, they finally came to advocate
conflicting views of the basic nature of logic. It has been claimed that Boole,
Peirce, and Schröder, for example, were inclined to stress the importance of
developing a calculus, whereas Frege and the early Russell were among those
who laid more emphasis on the idea of logic as a universal language. The
systematic consequences of the two views have been studied by a number of
authors, especially Jean van Heijenoort (1967), Warren D. Goldfarb (1979),
and Jaakko Hintikka (1979, 1981a, 1981b). According to these studies, those
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who stressed the idea of logic as language thought that language speaks about
one single world. This was the position to which Frege was committed. He
thought that there is one single domain of discourse for all quantifiers, as
he assumed that any object can be the value of an individual variable and
any function must be defined for all objects. This is what was stated by his
principle of completeness (Grundsatz der Vollständigkeit) (GGA II, §§56–65).
On the other hand, those who supported the view that logic is a calculus were
ready to give various interpretations or models for their formal systems. This
appears to have been Boole’s standpoint. Boole wrote:

Every system of interpretation which does not affect the truth of
the relations supposed, is equally admissible, and it is thus that the
same process may, under one scheme of interpretation, represent the
solution of a question on the properties of numbers, under another,
that of a geometrical problem, and under a third, that of a problem
of dynamics or optics. (Boole 1965, 3)

However, it is not clear how this passage ought to be interpreted. It is note-
worthy that Boole’s statement is not far from what Frege thought. Frege also
wished to construct such a language as can be applied to various fields like
arithmetic and geometry (BS, 1964, “Vorwort,” XII). However, fields of appli-
cation are not what is meant by the distinction between the one-world and the
many-world view. Moreover, Frege wanted to develop both a language and a
calculus; if he wanted to develop them as they are understood by contemporary
scholars, he could not consistently support both of the implications stressed
by those scholars, that is, he could not preach for the one-world view and for
the plurality of worlds at the same time.

The twentieth-century perspective has also given more content to the two
views. It has been claimed that those who support the idea of logic as language
tend to think that they cannot step beyond the limits of language and that this
prevents them from developing a proper semantic theory for their language. On
the other hand, it has been argued that those who endorse the view of logic as
calculus are inclined to think that it is possible to look at a formal system, as it
were, from the outside and develop a semantic theory for it. For example, even
if Frege introduced his doctrine of senses (Sinne) and references (Bedeutungen),
which is a semantic doctrine, he did not believe that he could propose a proper
semantic theory for a formal or a natural language. He repeatedly pointed
out that he can only give suggestions and clues concerning his basic semantic
concepts and the semantic properties of his conceptual notation.11

Frege made the distinction between language and calculus on the basis
of his interpretation of Leibniz’s project, but he was not conscious of all
the implications of the two views of logic which have been detected in the
literature. Hence, there are at least three different (though closely connected)
stories to be told, as far as the ideas of a universal language and calculus are
concerned. There is the story of the content which Leibniz gave to his idea, the
story Frege and Boole told about their projects, and the story told from the
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twentieth-century perspective that tries to capture the far-reaching systematic
implications of the two extreme positions.

In Frege’s hands, the dream of a universal language was tied to the task of
philosophy. Otherwise Frege did not write much about the task of philosophy.
In the beginning of his Begriffsschrift (1879) he writes that if one task of
philosophy is to free the human mind from the power of word by revealing
the mistakes that are often almost unavoidably caused by the use of language,
then his conceptual notation, which has been constructed for this purpose,
will be a useful tool for a philosopher (Frege, BS, 1964, XII–XIII). Frege often
complains that natural language leads us astray. However, he nowhere states
that it would be the only task of philosophy to clarify language.

There is one story to be told concerning the relations between Kant and Frege
which illuminates Frege’s position among the opponents and the supporters
of metaphysics. In the preface of his Begriffsschrift, Frege states that he tries
to realize Leibniz’s idea of lingua characterica. The term was most likely to
come from the Leibniz edition by J. E. Erdmann from the years 1839 and
1840, as the word characterica is used there instead of the word characteristica
used by Leibniz (see Haaparanta 1985, 102–117). Adolf Trendelenburg also
used the same word in his writing “Über Leibnizens Entwurf einer allgemeinen
Charakteristik” (1867). According to Trendelenburg, philosophers ought to
construct a Leibnizian universal language, Begriffsschrift, by taking Kant’s
theory of knowledge into account. In his view, Kant’s contribution was that
he distinguished the conceptual and the empirical component of thought and
stressed the importance of studying the conceptual component. Trendelenburg
also tells us about Ludwig Benedict Trede, who in his article “Vorschläge zu
einer nothwendigen Sprachlehre” in 1811 tried to create a universal language
by following Leibniz and Kant. Frege also called his language conceptual
notation, which he, it is true, took to be a less successful name for it. He also
used the expression “the formula language of pure thought” in the subtitle
of his book Begriffsschrift and the expression “the intuitive representation of
the forms of thought” in his article “Über die wissenschaftliche Berechtigung
einer Begriffsschrift” (1882) (Frege, BS, 1964, 113–114). The above-mentioned
connections have been noticed and also stressed by a few scholars several years
ago (see Sluga 1980; Haaparanta 1985). Even if there were no similarities
whatsoever between Trede’s notation and Frege’s language, we can say that by
his reference to Trendelenburg Frege told us something about the philosophical
background of his conceptual notation.

On the basis of what has been said, we may argue that Frege’s conceptual
notation was itself a philosophical position taking. It was not in favor of
psychologistic transcendentalism, according to which the necessary conceptual
conditions which make knowledge and experience possible are typical of the
human mind. Nor was it in favor of transcendental idealism, if we think that
a transcendental idealist is one who acknowledges a transcendental subject.
We can say, however, that Frege was a transcendentalist in a very weak sense;
he tried to write down the forms of thought, which Kant would have called
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the necessary conditions of knowledge and experience. It is, of course, obvious
that Frege’s conceptual notation was not a codification of those forms that we
find in Kant’s table of categories.

The Vienna Circle gave a special treatment to the new logic that Frege had
developed. The manifest of the Vienna Circle was directed against metaphysics,
and the same spirit can be found in many other writings of the members of
the circle. In the manifest, the new logic was described as a neutral system of
formulas, a symbolism which is free from the slag of the historical languages,
as a tool by means of which it is possible to show that the statements made
by metaphysicians and theologians are pseudo-statements, that they express
feeling of life, which would be properly expressed by art. The Vienna Circle
regarded the close relation with traditional languages as the main problem of
metaphysics. They also blamed metaphysics for assuming that thought can
know itself without empirical material; that kind of knowing was sought by
transcendental philosophy. The Vienna Circle declared that it is not possible to
develop metaphysics from “pure thought” (Der Wiener Kreis 1973, 308). They
believed that logical analysis overcomes not only scholastic metaphysics but
also Kantian and modern apriorism. That position taken by the Vienna Circle
meant the rejection of synthetic judgments a priori and hence the rejection of
transcendental knowledge.

Hence, if we draw a line from Kant to Frege and further to the Vienna
Circle, there is a crucial change in how the relations between being and the
pure forms are understood. It is as early as in his Allgemeine Erkenntnistheorie
(1918) that Schlick raised the question of whether there are any pure forms
of thought and answered that thought with its judgments and concepts does
not press any form on reality (Schlick 1918, 304–305). For Schlick, that means
the repudiation of Kant’s philosophy (ibid., 306). In his article “Die Wende
der Philosophie” (1930) he argued that the greatest change is due to a new
insight concerning the nature of the logical, which was made by Frege, Russell,
and particularly Wittgenstein. According to that new understanding, the pure
form is merely the form of an expression, but that form cannot be presented
(Schlick 1938, 33–34). It is true that Frege did not present the system of
signs called conceptual notation, if presenting it had meant giving a semantic
theory for the system in a metalanguage. If Frege thought that forms of
thought are proper objects of knowledge, that knowledge was for him a kind
of immediate recognition. Recognition of the correct forms, the result of which
is the creation of conceptual notation, can be called immediate intellectual
seeing or intuition. In his late writings in 1924 and 1925, Frege stressed that
we see correctly, if natural language does not disturb our intellectual seeing.
Moreover, when Frege discussed certain important features of his language,
such as the distinctions between the different meanings of “is,” which are
existence, predication, identity, and class inclusion, he gave lengthy arguments
for the distinctions. One of the most central reasons he put forth was that his
new language takes care of the difference between individuals and concepts,
which is missing both in Aristotelian logic and in Boole’s logic, and that the
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difference is mirrored by the distinction between identity and predication
as well as by the distinction between predication and class inclusion. For
example, to preserve the distinction between objects and concepts, Frege
considered it necessary to realize that the “is” of identity differs from the “is”
of predication and, moreover, that this distinction reflects how things really
are (“Über Begriff und Gegenstand,” 1892, KS, 168). Moreover, the motivation
for denying that existence is a first-order predicate came from Kant’s thought.
Frege also gave a positive contribution by trying to tell what existence is,
namely, that it is a second-order concept. We can say that Frege had not
only a view of the word “being” but also a view of the forms of being, which
are forms of thought, and those forms were meant to be codified as his ideal
language.12

There was a well-known controversy between logic and metaphysics in the
early days of the analytic tradition and the phenomenological movement, to
which I already referred. The Vienna Circle declared in 1929 that the new logic,
the ideal language developed by Frege, Russell, and Whitehead, frees philosophy
from considering the true nature of reality. It was believed that by means of the
new formula language, it was possible to show that metaphysical statements
are meaningless. It was not thought that the very ideal language would have
a metaphysical content. For a logical empiricist, Heidegger’s philosophy was
an example of the meaninglessness of metaphysics. In 1931 Carnap published
his article “Überwindung der Metaphysik durch logische Analyse der Sprache,”
in which he studied Heidegger’s sentences and stated that the sentences of a
metaphysician cannot be combined with the ways in which logic and science
proceed. In his Was ist Metaphysik? (1929) as well as in the afterwords of its
later editions, Heidegger discussed the criticism that had been raised against
the way he used the word “nichts.” According to Heidegger, nothing is the
origin of negation, not the other way round. His message was that logic has
its origin in the being of Dasein (Heidegger 1992, 37) and philosophy can
never be measured by means of the standards of the idea of science (ibid.,
41). Hence, for Heidegger the origin of the logical concept of being was the
being of Dasein. There thus seemed to be a sharp contrast between Heidegger,
who spoke about the meaning of being and a linguistic philosopher who spoke
about the different meanings of the word “is.” It was Frege who distinguished
the different meanings of “is” in his conceptual notation, and therefore it may
seem that Frege was clearly among those who wished to limit the talk about
being to the word “is.” This is not the case, as Frege was not an opponent of
metaphysics. It is more to the point to say that Frege’s thought lay somewhere
between the philosophy of the Vienna Circle and Heidegger’s fundamental
ontology.

The view of philosophy held by the Vienna Circle was characterized by
the fact that philosophy was taken to be an art of using a tool and the good
tool was Frege’s, Russell’s, and Whitehead’s formula language. However, the
language lost the metaphysical content that it had for Frege. The pure forms
were interpreted as the forms of a system of signs; the system of signs was no
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more “an intuitive representation of the forms of thought,” as Frege wrote. In
its manifest the Vienna Circle declared that there are no depths in science but
there is surface everywhere (Der Wiener Kreis 1973, 306). In that sense, the
circle also wanted philosophy to be like science.

Both Frege and Heidegger were interested in the philosophical basis of logic,
Frege mainly in the epistemological basis and Heidegger in the origin of logic in
the being of Dasein. Both thought that there is something under the “surface.”
The Vienna Circle thought that philosophy is activity; that was especially
emphasized by Schlick in “The Future of Philosophy” (1931). Schlick referred
to Wittgenstein, for whom philosophy was not a theory but a certain kind of
activity, that is, of clarifying meanings and writing formulas which do the job
of clarification (Schlick 1938, 132). It is true, the incentive for that kind of
philosophizing was given by Frege, but it would be far from the truth to argue
that Frege held that view.

Edmund Husserl touched on the relations between logic and being in several
connections, for example, when he distinguished between formal ontology
and material ontologies in his Ideen zu einer reinen Phänomenologie und
phänomenologischen Philosophie I (1913). It was already in the first volume
of the Logische Untersuchungen (1900) that he divided logic into two parts
according to the two tasks that he believed logic to have. One of the tasks
was to give the formal categories of meaning, whereas the other was to put
forward the formal categories of objects. Husserl listed the basic concepts of
pure logic or analytical categories both in the Logische Untersuchungen I (A
244–245/B 243–244) and in the Ideen I (Husserl 1950b, 26–32). His categories
of meaning include such concepts as belong to the essence of the proposition
or apophansis, such as subject and predicate, conjunctive, disjunctive, and
hypothetical connections, that is, what we would call logical connectives, and
the concepts of concept, proposition, and truth. In addition to the categories
of meaning, he gave a list of pure formal objective categories, such as object,
property, relation, state of affairs, identity, whole and part, number, and genus
and species. Husserl called these categories of objects substrate-categories. In
the Ideen I, Husserl states that “formal ontology contains the forms of all
ontologies . . . and prescribes for material ontologies a formal structure common
to them all” (Husserl 1950b, 27; Kersten’s translation, 21), and then goes on
with treating formal ontology and pure logic as synonymous terms. He also
claims that pure truths of meaning can be converted into pure truths of objects
(ibid., 28).

In the Logische Untersuchungen, Husserl pays attention to the distinc-
tion between formal and empirical (or material) concepts, as well as to the
distinction between formal or analytic propositions and laws and material
propositions and laws. He states that concepts like something, one, object,
quality, relation, association, plurality, number, order, ordinal number, whole,
part, magnitude, and so on, have a basically different character from concepts
like house, tree, color, tone, space, sensation, feeling, and so on, which for
their part express genuine contents. It is not clear how we should make the
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distinction between form and content. What is clear, however, is that Husserl
and his contemporaries took the very distinction between form and matter,
or form and content, to be essential to logical studies, whether logicians were
interested in concepts or in inferences in which the concepts were used.

2.2. The Absence of the Metaphysics of Modalities
Our contemporary modal logic is usually considered as an extension of the
two-valued predicate calculus that was developed in the late nineteenth century.
However, the roots of our modal theory reach far back to Aristotelian logic,
which regarded modal logic as a legitimate branch of logical studies. Interest in
modal notions is a new phenomenon among logicians only when it is considered
in the framework of the developments of those late nineteenth-century logicians
who are honored as the pioneers of modern logic.

In the beginning of the twentieth century, logicians were not willing to
discuss modal concepts. They were mainly inspired by the extensionalist
program which was preached by Frege, among others, and codified in the
Principia Mathematica. Modal notions seemed to escape all treatments that are
interested only in references. Later in the twentieth century, logicians proposed
axiomatic systems for modal logic, which, however, first avoided all systematic
semantic considerations. Since the late 1950s, they introduced and developed
interpretations for the axioms of modal systems. These interpretations are
useful for clarifying which systems of axioms most naturally correspond to our
intuitions concerning modal notions and their relations.

Leibniz is an important figure behind our contemporary modal logic. It
is also known that he is an important figure behind Frege’s logical work.
Nonetheless, given that Frege set out to realize what Leibniz had dreamt
of, it is surprising that he was reluctant to develop modal logic in the early
twentieth century. Even if he started from Leibniz’s program in arguing that
we must construct a proper language that represents the world, he was not
true to Leibniz’s view that there could be alternative worlds to which our
ideal language would be related. Frege’s conceptual notation was meant to
represent only one world. As already noted, this doctrine of Frege’s is most
clearly visible in his requirement that all of the predicates of the language
must be defined for all objects. Frege’s formula language was thus meant to
speak about all that there is, and its quantifiers were meant to range over all
individuals. Modal logic, as we understand it nowadays, was thus blocked out
in the very beginning.

Frege gave another reason for his unwillingness to discuss the concepts of
necessity and possibility within the limits of his logic. The reason was that
those concepts do not concern logic at all but that they have to do with the
nature of the grounds of our judgments (BS, §4). For Frege, logic is interested
in the objective realm of thoughts.13 Frege regarded the act of judging as a
psychological phenomenon, which belongs to the realm of our private minds.14

Hence, even if Frege severely criticized all efforts to reduce logical laws to
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psychological laws, he restricted modal notions to the realm of psychology, thus
agreeing with psychologists. He did not believe that thoughts are necessary
or possible as such, but he insisted that they are necessary or possible for
our private minds. Like psychologists, he connected modal concepts with the
concept of certainty and took them to modify our acts of thinking, which are
units of the subjective realm. Signs for modal concepts did not play any role
in his ideal language (for Frege’s views in more detail, see chapter 12 in this
volume).

3. The Relations between Logic, Epistemology,
and Psychology

3.1. Logical Psychologism
In the late nineteenth century, the question of what logic mirrors, if it mirrors
something, was mostly discussed in a way that was determined by the debate
on the relation between logic and psychology. Contemporary naturalism has
its roots in late nineteenth-century psychologism. The word “naturalism” was
also used in the late nineteenth century. Like contemporary naturalism, late
nineteenth-century naturalism and its version called psychologism had various
contents(see Haaparanta 1995, 1999b; Kusch 1995).

In her book Philosophy of Logics (1978) Susan Haack distinguishes between
strong and weak logical psychologism. According to the strong view, logic
describes our thought and may also tell us how we ought to think (Haack 1978,
238). In his book Husserl and Frege (1982), J. N. Mohanty describes strong
logical psychologism as a doctrine according to which logic is a branch of
psychology, the laws of logic describe actual human thought, and psychological
study is therefore both sufficient and necessary for studying the foundations of
logic (Mohanty 1982, 20). In Haack’s terminology, weak logical psychologism
is the view that logic determines how we ought to think (Haack 1978, 38).
Mohanty, for his part, characterizes the weak version as a thesis that it is
necessary but not sufficient to study human thinking processes if we want to
clarify the theoretical foundations of logic (Mohanty 1982, 20). Many logicians
who are regarded as antipsychologists (Frege, for example) might accept what
Haack calls weak logical psychologism. However, they would not say that
determining the norms of thought would be the only or the basic task of logic
(GGA I, “Einleitung,” XV).

Logical psychologism had two different roots in nineteenth-century philoso-
phy. First, there was an interpretation of transcendentalism which regarded
the transcendental conditions of experience as the conditions determined by
the mental structure of the human race. Second, there was the tradition of
empiricism, which attempted to base all knowledge on experience. German,
French, and British logical psychologism in the nineteenth century was so
complicated a doctrine that many ways of classifying it are possible. It could
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be a doctrine concerning the basic concepts of logic, the basic laws of tra-
ditional logic, or the nature of logical inference. If logical psychologism was
understood as a theory that primarily concerns the conceptual tools of logic, it
either claimed that such concepts as unity, plurality, negation, and possibility
are structural features of the human mind, or it argued that those concepts
are abstracted from sense perception. The latter position is linked with the
empiricist tradition of the modern times. The former position followed if one
interpreted transcendentalism by saying that the transcendental conditions of
experience are determined by the structure of our factual minds.

If logical psychologism was a doctrine concerning such laws as the law of
excluded middle or the law of noncontradiction, it either maintained that those
laws are structural features of the human mind or claimed that those laws
have their origin in sense perception. There were a number of philosophers
who stressed that the laws of logic have an empirical basis in sense perception,
but who did not call themselves psychologists. J. S. Mill, for example, did
not want to take that label (Mill 1906, Book II). If a psychologist claimed
that the basic laws of logic represent the constant and innate structures of
the human mind, he regarded the laws of logic as factual in the sense that
he took them to be research objects of the science called psychology. Hence,
both the empiricist and the transcendentalist version of psychologism were
epistemological theories that tried to reveal the natural origin of logic and to
justify certain logical concepts, logical laws, and logically valid inferences by
means of the revealed origin.

The foregoing classification contained two basic forms of psychologism.
Husserl also hinted at a similar division, when he distinguished between
empirical and transcendental psychology as two different bases of psychologism
(LU I, A 123/B 123). One of the versions abstracts such laws as the law of
noncontradiction from the objects of experience, whereas the other version
pushes the structure of the mental realm into the objects of experience.

In his Philosophie als strenge Wissenschaft (1910–1911) and in his lecture
notes “Logik als Theorie der Erkenntnis” (1910–1911) Husserl characterized
naturalism in various ways.15 He stated that naturalism is a phenomenon
consequent on the discovery of nature, which is to say, nature considered as a
unity of spatiotemporal being subject to exact laws of nature (PsW, 79). He
also remarked that psychology is concerned with “empirical consciousness,”
with consciousness from the empirical point of view, whereas phenomenology
is concerned with “pure consciousness,” which is consciousness from the phe-
nomenological point of view (PsW, 91). For Husserl, the phenomenological
point of view was the philosophical point of view. Moreover, he continued that
any psychologistic theory “naturalizes” pure consciousness (PsW, 92). Natural-
izing pure consciousness amounts to identifying it with empirical consciousness.
If the realm of pure consciousness had been the realm of norms for Husserl, his
criticism would have been that naturalism deduces norms from facts. However,
the core of the distinction between pure and empirical consciousness was not
at that point.
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In his lectures on logic as the theory of knowledge (1910–1911), Husserl
distinguished between laws of logic, laws of natural sciences, and norms created
by human beings. The distinction corresponds to that made by Frege in his
preface to the first volume of the Grundgesetze. Husserl admitted that there
are major reasons which speak in favor of logical psychologism. However, he
explained by means of an analogy that logical psychologism is not true. In
his “Göttinger Vorlesungen über Urteilstheorie” in the summer term of 1905
Husserl talked about the analogy between geometry and logic. There he points
out that it is common to draw a false analogy; the psychologistic view is that
the art of logical reasoning is related to psychology as geodesy is related to
geometry or as technical physics is related to theoretical physics (19b). In
his lectures in 1910 and 1911, Husserl explained what he thought is the right
analogy (20b). Just as geodesy is related to ideal geometry, normative logic is
related to logic as a theoretical discipline. Moreover, just as behind geodesy
there is a natural science or several of them, likewise behind normative logic
there is psychology. In Husserl’s view, the norms of logic are inferred from the
facts of pure or theoretical logic, not from the facts given by psychology; the
facts given by pure logic have to do with the structures of propositions and
with the inferential relations between propositions.

Husserl also stated in his lecture notes that naturalistic philosophy is char-
acterized by the fact that it acknowledges only one field of possible knowledge,
which is nature (17a). Moreover, he stated that naturalism recognizes only one
method of giving foundations for knowledge; it argues that all knowledge is
based on experience (17b). In Husserl’s view, the essential difference between
naturalism and antinaturalism was that naturalism does not acknowledge the
ideal realm. Husserl characterized the ideal realm as eternal, self-identical,
timeless, spaceless, unmovable, and unchangeable; he did not state that it is
something that is expressed by normative propositions. He also remarked that
there is no mysticism in such a view (28a, 28b). As we will see in the next
section, in his later writings he expressed his view in constructivist terms and
stressed the difference between two attitudes more than the difference between
the two realms.

3.2. Antipsychologism and the Doctrine of the Third Realm
In the passages quoted, Husserl acknowledged what is called “the third realm”
by Frege. The doctrine of the three realms can be found in Lotze. According
to Lotze, the being of abstract objects is not like the being of concrete objects.
Instead, abstract objects are valid, geltend. Lotze took it to be important to
distinguish between what is valid and what is (was gilt and was ist) (Lotze
1874, 16 and 507).

Frege presented a doctrine of three realms, by means of which he expressed
his view on the being and the being known of logical categories and of thoughts
that are constituted by those categories. In the first volume of his Grundgesetze
der Arithmetik (1893) and in his article “Der Gedanke” (1918) he made a
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distinction between the subjective realm of ideas (Vorstellungen), the objective
realm of actual (wirklich) objects, and the realm of objects that do not act
on our senses but are objective, that is, the realm of such abstract objects
as numbers, truth values, and thoughts (GGA I, XVIII–XXIV; KS, 353). His
conceptual notation, which he called the formula language of pure thought,
was meant to mirror parts of the third realm, as it was meant to present the
structure of thoughts and the inferential relations between thoughts.

It is usually assumed that Frege’s acknowledgment of the third realm was a
Platonic doctrine. Some interpreters have challenged the received view, but
others, most notably Tyler Burge (1992), have given strong arguments for
the view that Frege held a Platonic ontology; Burge also emphasizes that
Frege did not seek to defend his position, except for showing problems in
competing views, and that he did not make any effort whatsoever to develop
a sophisticated version of his ontology.

In spite of Burge’s carefully documented argumentation, other interpreta-
tions remain serious candidates. When Frege discussed his third realm in his
“Der Gedanke,” he remarked that he must use metaphorical language. In other
words, such expressions as “the content of consciousness” and “grasping the
thought” must not be understood literally (KS 359, n. 6). As Frege expressed
his worry about the fact that natural language leads us astray as early as in
the preface of his Begriffsschrift, the interpretation that Frege did not take
numbers or thoughts to have being in the proper sense of the word “being”
is at least worth considering. Frege did think that the objects of the third
realm are objective, hence, independent of subjective minds. That is not yet an
ontological position. On Frege’s view, thoughts and their constitutive logical
categories are denizens of the third realm, but their being is not like the being
of the denizens of the objective and actual realm. Thomas Seebohm has argued
that Frege presented a transcendental argument to the effect that the existence
of mathematical objects and logical categories is a necessary condition of the
meaningfulness of mathematical and logical practice (Seebohm 1989, 348). If
that argument holds, Frege’s acknowledgment of the third realm would have
ensued from his epistemological views.

Husserl argued that we must acknowledge an ideal realm of abstract objects
to avoid psychologism. He pointed out that there is an unbridgeable difference
between the sciences of the real and the sciences of the ideal, as the former are
empirical, while the latter are a priori. Husserl realized that if we acknowledge
the ideal realm, we must face an epistemological problem concerning our access
to this realm. Most of Husserl’s logical studies after his Logische Untersuchun-
gen are an effort to answer this question by means of phenomenology. In
his last logical works, titled Formale und transzendentale Logik (1929) and
Erfahrung und Urteil (1939), which was published posthumously, he sought
to show that we have an access to the denizens of the ideal realm, because
we have set the structure of transcendental consciousness to those denizens,
hence, we have maker’s knowledge of that realm.
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Husserl did not think that we could be mistaken about what the correct
logical categories are. His problem was how to give a justification for what he
regarded as our true beliefs concerning those categories. In his sixth logical
investigation (LU II, 1901, 1921) Husserl studies the components of meaning
which determine the form of a proposition and calls them categorial meaning-
forms (Bedeutungsformen). In his view, those forms are expressed in natural
language in several ways, for example, by definite and indefinite articles,
numerals, and by such words as “some,” “many,” “few,” “is,” “and,” “if—then,”
and “every” (LU II, A 601/B2 129; LU II, A 611/B2 139). Husserl asked what
the origin of logical forms is, when nothing in the realm of real objects seems
to correspond to them (LU II, A 611/B2 139). He took it to be a problem
how the logical words originally get their meaningfulness, hence, what kind of
activity of a subject is required so that the logical words become meaningful.
In his last works on logic, Husserl sought to show that that activity is precisely
the activity of transcendental consciousness.

Kant interpreted logical categories as the pure concepts of understanding,
which correspond to certain types of judgments and which give form to the
objects of experience. In his Begriffsschrift, Frege, for his part, introduced
eight signs as the basic signs of his formula language of pure thought; those
signs expressed the basic logical categories and made it possible for Frege
to present most types of judgments listed in Kant’s table. As was noted, in
Frege’s doctrine of the three realms the logical categories were regarded as
constitutive for the denizens of the third realm called thoughts.

3.3. On the Possibility of Logical Knowledge

3.3.1. What Is Logical Knowledge?

Kant is famous for his effort to answer the so-called transcendental questions,
such as “How is pure mathematics possible?”, “How is pure natural science
possible?”, and “How is metaphysics as science possible?” This type of questions
have two readings. One either wants to know whether x is possible and wishes
to have a justification for its possibility, or one assumes that x is possible and
tries to find out the conditions of its possibility.16

If one raises the question concerning the possibility of logical knowledge,
one may think of two questions, first, whether logical knowledge is possible
at all, and second, if it is, under what conditions it is possible. This section
is a short study of a few late nineteenth-century and early twentieth-century
logicians’ and philosophers’ views of that possibility. Frege’s and Husserl’s
views will again be in focus. By logical knowledge, one may mean knowledge
which is reached by means of logical inference, hence, knowledge based only
on logical truths. For example,

knowing that p& q → p
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would be an example of logical knowledge. By logical knowledge, one may
also mean knowledge concerning the basic concepts of logic, the logical forms
of propositions, the basic laws of logic, or the rules of logical inference. For
example, statements like

Existence is a logical concept.

The logical form of the sentence “Man is an animal” is “∀x(F (x) →
G(x))”.

The law of noncontradiction holds.

would express logical knowledge in the intended meanings.
In his Grundlagen der Arithmetik (1884, §3) Frege stated that the distinc-

tions between a priori and a posteriori, synthetic and analytic, concern not
the content of the judgment but the justification for making the judgment.
He excluded the naturalistic interpretation of his claim and stated that by
his distinctions he intends to refer to the ultimate ground on which rests the
justification for holding a proposition to be true. He continued that the problem
becomes that of finding the proof of the proposition. By his characterizations of
analytic and synthetic truths and truths a priori and a posteriori, he expressed
the view that the justification of analytic truths a priori comes from general
logical laws and definitions. In his view, logical laws neither need nor admit of
justification. However, the question remains what Frege would have named as
the source of knowledge if he had thought that we can know the structure of
the ideal logical language in the proper sense of knowing. Did he think that we
know that existence is a logical concept? If he thought that way, what would
he have labeled as the source of knowledge, hence, what would have been a
justification for such a claim?

As already stated in section 3.2, Husserl studied the components of meaning
which determine the form of a proposition and called them categorial meaning-
forms (Bedeutungsformen). He took it to be a problem how the logical words
originally get their meaningfulness, hence, what kind of activity of a subject is
required so that the logical words become meaningful. In Husserl’s thought,
the questions of origin were linked with the questions of justification.

3.3.2. Can We Have Logical Knowledge?

Emil Lask on Kant’s View Kant thought that categories, hence, logical concepts,
have their origin in the logical forms of propositions. However, he took the
list of the logical forms of propositions for granted. If Kant’s transcendental
deduction was a justification of certain logical concepts, the idea of that
justification was to show the role of those concepts in cognition and experience;
it was to show how the pure concepts of understanding contribute to making
objects of knowledge possible and how they are linked with the forms of
intuition. Expressed in contemporary terminology, Kant sought to give us the
epistemological foundation of logic by showing how the pure forms of thought
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are applied to sensuous experience. Moreover, by that project Kant also tried
to show us how logical knowledge in general is possible. He argued that logical
concepts are hidden in objects of experience, they have their origin in those
objects, and we can have knowledge of them precisely via their link to what is
given in intuition.

Emil Lask, a student of Rickert, whose thought influenced Heidegger’s early
philosophy, praised Kant’s Copernican revolution in his work on logic and
the doctrine of categories. According to his writing published in 1911, Kant
had shown that certain questions concerning objects belong to logic, hence
not to metaphysics (LP, 31).17 However, Lask argued that Kant’s critique of
knowledge could not touch on the questions concerning logic or the logical
forms of objects in a proper manner (LP, 260–262). In his view, that followed
because Kant was committed to a two-world doctrine in which a distinction
was made between the world of sensory objects and the transcendent world.
Lask argued that as Kant neither regarded logic as sensory nor took it to be
metaphysical, he made it homeless (heimatlos; LP, 263).

We may disagree on Lask’s two-world interpretation of Kant’s thought.
However, it is interesting to find out how Lask solved the problem concerning
the homelessness of logic which he thought to have found in Kant’s philosophy.
His starting point was to give up the two-world doctrine and replace it by an
epistemological doctrine concerning the concept of objectivity. That doctrine
came from Lotze. As was noted, according to Lotze the being of abstract
objects is not like the being of concrete objects. Lotze took them to be valid,
and he considered it to be important to distinguish between what is valid and
what is (Lotze 1874, 16 and 507). Lask supported that kind of division between
two worlds (LP, 6), but he did not consider it an ontological distinction. Instead,
for him that was a distinction between two different attitudes or points of
view, which we can take toward our sensory experience (LP, 48–49, and 88–91).
Lask thought that the logical attitude considers psychological, physical, and
cultural beings in a way that differs from the attitude of everyday experience
and scientific activity; it is interested in what is valid for those beings.

On Frege’s View In his “Über die wissenschaftliche Berechtigung einer Be-
griffsschrift” (1882) Frege writes: “a perspicuous representation of the forms of
thought (eine anschauliche Darstellung der Denkformen) has . . . significance
extending beyond mathematics. May philosophers, then, give some attention
to the matter!” (BS, 1964, 114). The forms of thought Frege talked about were
not meant to be the forms which the human mind happens to have. However,
Frege thought that we (or he) can have an access to those forms and they can
be written down as a language, as a conceptual notation (begriffsschrift), as he
thought to have done in his book titled Begriffsschrift: eine der arithmetischen
nachgebildete Formelsprache des reinen Denkens. These forms were not tied to
human psychology, but they were pure, hence, not naturalistically characteriz-
able forms. If Frege thought that logical forms can be known in the proper
sense of knowing, he must have meant by “knowing” some kind of immediate
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recognition of the presence of the forms of thought. That recognition, the
result of which is Frege’s conceptual notation, could be called intuition, in the
sense of immediate intellectual seeing.

How is this intellectual seeing possible at all? In view of Frege’s conceptual
notation, which is meant to be a genuine language that speaks about the
world and carries fixed meanings, intellectual seeing presupposes grasping the
correct structure of thoughts. Frege did not think that meanings could be
given syntactically, hence, for him, giving meanings to logical constants did not
amount to giving inferential rules, say, rules of introduction and elimination.
For him, meanings of logical function names were found by means of grasping
thoughts and by analyzing them. Still, Frege assumed that meanings are
present in the syntax of the conceptual notation and there is no way of giving a
semantic theory for that notation. He thought that our knowledge concerning
the structure of the ideal logical language, hence, the basic logical concepts
and the logical forms of propositions, and concerning the basic laws of logic
carries its own justification, which has to do with “immediate seeing,” which is
not disturbed by sensory data. However, even if Frege did not seek to present
any theory of logical knowledge, that did not mean that his ideal language
would not have been motivated by epistemological considerations.18

On Husserl’s View Husserl’s doctrine of categorial perception in the Logische
Untersuchungen was meant to be a solution to the problem concerning the
origin of logical knowledge. Husserl introduced a new concept of perception that
was not sensuous perception. In his view, categorial meanings are originally
related to objects of sense perception but in a peculiar manner; logical forms
are in the objects of sensuous acts but hidden in them as it were. In categorial
perception, which was the term Husserl used, the subject sees the sensuous
object differently; he or she perceives the object via logical forms, hence, the
object is for him or her in these forms (LU II, A 615/B2 143). Sensuous objects
are objects of sensuous acts, whereas ideal objects are objects which arise in
that kind of “seeing differently” (LU II, A 617/B2 146). In Husserl’s view, such
acts as the act of conjunction, disjunction, and generalization need sensuous
acts which are their foundation (LU II, A 618/B2 146). In the later edition
of the sixth logical investigation in 1921, Husserl remarked that these acts
that are not founding acts are in relation to what appears in the sensuous
founding acts (LU II, B2 146).19 Lask and Husserl thus shared the idea that
the philosophical nature of logic must be studied by studying the attitudes
or the points of view which the subject of knowledge has to the objects of
knowledge.

Hence, in Husserl’s view the origin of logical concepts is in sense perception;
logical forms can become ideal objects studied by the science called logic,
because there is a subject who sees the objects of perception in an explicating
manner (LU II, A 623–625/B2 151–153). Logical concepts, like the concepts
of whole and part, are possibilities in objects which become articulated in
categorial acts (LU II, A 627/B2 155). Logical forms are not in themselves
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but the subject makes them exist. Husserl thus found the origin of logical
concepts in the activity of the subject. For Husserl, the forms of thought have
been set into sensuous objects and as objective they can be known by us.
To know them is to construct new categorial objects, and that constructing
is categorial intuition. On this reading of Husserl’s text, logical knowledge
is possible because it is knowledge concerning our own constructions. Frege
thought that we cannot take distance from logical categories, we can only write
them down when we see them correctly; we cannot present an epistemological
theory for them. Nonetheless, Frege gave us several epistemological arguments
which aimed at supporting his choice of a certain kind of logical language.
Unlike Frege, Husserl thought that logical categories and even logical laws
need and can be given justification, which means giving an epistemological
theory for logic.20

A somewhat surprising conclusion can be drawn if we pay attention to
the connection between the views of the possibility of logical knowledge just
discussed and of the nature of philosophy. The philosophers of the Vienna Circle
thought that Frege’s, Russell’s, and Whitehead’s logic was a neutral system
of formulas and a useful tool for clarifying thoughts, hence, philosophy was for
them a certain kind of activity, namely, the activity of clarifying thoughts by
means of the new tool. They did not suggest that philosophers ought to present
theories of anything, not even of logical knowledge. Later, it has been typical
of the analytic tradition to put forward philosophical, formal, and semiformal
theories of various kinds, including theories of logic, or logics, and of natural
language. From that perspective, Husserl’s way of thinking of the possibility
of logical knowledge and his search for a theory of that kind of knowledge is
a more natural background for the analytic tradition than Frege’s approach.

4. Discovery, Justification, and Intuition
4.1. The Rejection of Intuition

The problem of justification became a central theme in the philosophy of logic
during the first decades of the twentieth century. The role of intuition as a
justifier was discussed by logicians and philosophers. From what has been
said, it seems that Husserl opposed reference to intuition in cases where Frege
was ready to rely on intuitive knowledge. If we argue that way, we suggest
that Husserl’s demand for justification goes further than that of Frege’s. It is
true Husserl thought that even if propositions that are taken to be basic in
a formal system are not in need of justification in terms of logical inference,
they need another kind of justification, namely, a philosophical justification.
Unlike Frege, Husserl thought that logical categories and logical laws need and
can be given philosophical justification in the sense of giving a philosophical
or an epistemological theory for logic. In section 4.2.1, I trace Husserl’s view
back to its Kantian origins.
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In a postumous work published in 1991, J. Alberto Coffa considers the
semantic tradition from Bolzano to Carnap, hence from the early nineteenth
century until the early twentieth century. According to Coffa, the semantic
tradition reacts against Kant’s philosophy. He claims that that tradition tried
to get rid of all references to intuition, which it took to be Kant’s great problem.
Coffa points out that the semantic tradition can be defined by means of its
problem, its enemy, its goal, and its strategy. According to Coffa, its problem
was a priori, its enemy was pure intuition, on which Kant relied when he
studied the possibility of mathematics, its aim was to develop a concept of
a priori in which pure intuition played no role, and its strategy was to base
that theory on the development of semantics (Coffa 1991, 22). Coffa also
argues that in geometry it is particularly necessary to refer to constructions
which are seen immediately but that even calculus, which was the strongest
branch of eighteenth-century mathematics, had the same practice (ibid., 23).
Coffa remarks that by the end of the nineteenth century Bolzano, Helmholz,
Frege, Dedekind, and many others helped settle that Kant was not right, that
concepts without intuition were not empty (ibid., 140). The pioneers of logic
at the end of the nineteenth century stressed that in the field of logic one is
not allowed to refer to intuition; each inferential step must be written down.
Particularly, Frege’s conceptual notation was meant to be a tool by means
of which each step in the process of inference can be written down exactly
without any resort to intuition.

However, even if Frege and Peirce, among others and maybe most promi-
nently, were creating a new logic and Frege tried to carry out a program which
aimed at reducing arithmetic to logic, they did not, and they did not even
want to, get rid of intuition altogether. Of course the very concept of intuition
was problematic for them. If we look at the pages of Frege’s Begriffsschrift, we
notice that he appeals to what we would nowadays call our pattern recognition
abilities both in his analysis of sentences and in his ways of presenting infer-
ences. Peirce laid even more emphasis on the role of intuition. For example, in
1898 he praised Kant for understanding the role of constructions or diagrams
in mathematical inference. He wrote that mathematical inference proceeds
by means of observation and experiment and that the necessary nature of
this inference is merely caused by the fact that a mathematician observes
and tests a diagram which is his own creation (“The Logic of Mathematics
in Relation to Education,” 1898, CP, 3.560). In 1896, Peirce noted that logic
has to do with observing facts concerning mental constructions (NE 4, 267).
He very often stressed the value of figures in inference and states in 1902
that all knowledge has its origin in observation (NE 4, 47–48). Of course
these pioneers of modern logic did not assume that a logician is able to see
all the consequences of given premises, and they did not give a logician a
permission to refer to seeing the conclusion of given premises immediately.
Nevertheless, they thought that when taking the shortest steps in an inferential
process, a logician does something that can be naturally called perceiving or
seeing.
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4.2. Husserl’s Problem of Justification and Frege’s and Peirce’s
Discoveries

Even if the idea of axiomatic science in logic is not discussed in this section, the
methods of logical discovery and justification deserve attention. Frege claimed
that all great scientific improvements of modern times have their origin in the
improvement of method. He wrote:

I would console myself on this point with the realization that a
development of method, too, furthers science. Bacon, after all,
thought it better to invent a means by which everything could
easily be discovered than to discover particular truths, and all great
steps of scientific progress in recent times have had their origin in
an improvement of method. (Frege, BS, 1964, XI; Frege 1972, 105)

The method Frege proposed for science was his begriffsschrift, the new logic,
but there was even a deeper truth in his statement. A better method was also
needed if one wished to improve logic.

In his paper “Explanation of Curiosity the First” (1908) Peirce described
Euclid’s procedure in proving theorems. Euclid first presented his theorem in
general terms and then translated it into singular terms. Peirce paid attention
to the fact that the generality of the statement was not lost by that move.
The next step was construction, which was followed by demonstration. Finally,
the ergo-sentence repeated the original general proposition. Peirce laid much
emphasis on the distinction between corollarial and theorematic reasoning in
geometry. He took an argument to be corollarial if no auxiliary construction
was needed. For Peirce, construction was “the principal theoric step” of the
demonstration (CP, 4.616). Peirce also stressed that it is the observation
of diagrams that is essential to all reasoning and that even if no auxiliary
constructions are made, there is always the step from a general to a singular
statement in deductive reasoning; that means introducing a kind of diagram
to reasoning.

Peirce’s methodological interests are well known. For example, in 1882 he
stated in his “Introductory Lecture on the Study of Logic”: “This is the age of
methods; and the university which is to be the exponent of the living condition
of the human mind, must be the university of methods” (W 4, 379). Moreover,
in his “Introductory Lecture on Logic” (1883) he made an interesting remark
on methodology. He wrote:

But modern logicians generally, particularly in Germany, do not
regard Logic as an art but as a science. They do not conceive the
logician as occupied in the study of methods of research, but only
as describing what they call the normative laws of thought, or the
essential maxims of all thinking. Now I have not a high respect for
the Germans as logicians. I think them very unclear and obtuse. But
I must admit that there is much to be said in favor of distinguishing



246 The Development of Modern Logic

Logic from Methodology. . . . Let us say then that Logic is not the art
of method but the science which analyzes method. (W 4, 509–510)

As Peirce thus regarded logic as science, it is no surprise that he was also
interested in the methodological commitments and choices of the one who
works in the science of logic.

There is an interesting history of method from Kant to Frege and Husserl.
What was especially important is that all the way the task is twofold. On the
one hand, Kant considered transcendental forms, that is, logical concepts, to be
our method or tools for reaching the phenomenal world, as he considered them
to be our tools for constructing that world. On the other hand, he regarded it
as necessary to have a proper method, which is transcendental analysis, for
knowing those very tools. Frege’s task was also twofold. Frege set out to find a
new method for science, which would be his begriffsschrift, but he also needed
a new method of discovering that very method.

In Husserl’s philosophy the method of finding the method came to be a
method of knowing the ideal world. That happened because Husserl considered
the logical tools to have being as structures of that world. According to Husserl,
logic tries to claim something about the structure of the realm of ideal objects,
which is strange for us in the sense that it is independent of our subjective
mental realms. Husserl’s question brings us back to the question of method,
as Husserl assumed that we have knowledge of the ideal realm only if there
is a reliable route from our subjective minds to the objective realm, that is,
only if we have proper tools for reaching that realm. Therefore, for him the
foundational task was to know and describe these very tools.

4.2.1. Husserl and the Justification of Logic

Husserl’s question “How is logic as science possible?” amounted to the question
“What were the methods of discovery and justification that justified modern
logic as science?” Husserl also proposed this problem for those who are inter-
ested in the foundations of logic. He compared the activities of a practicing
artist with those of a scientist. He argued that both of them are in an equally
bad shape if we think of how conscious they are of the principles of their
creation or their evaluation. Husserl even claimed that mathematics has no
special position on this issue. A mathematician is often unable to inform us of
his steps of discovery or to give us a proper theoretical evaluation, that is, a
justification, of his results (LU I, A 9–10/B 9–10). Husserl proposed that all
discovery and testing rest on regularities of form and that regularities of form
also make the theory of science, that is, logic, possible (LU I, A 22/B 22).

Husserl’s thought lends itself easily to the framework of the philosophical
tradition introduced by Kant. His main works in the field of logic bear Kantian
labels in their very titles. His trilogy of logic consisted of the book titled
Logische Untersuchungen I–II (1900–1901), the first volume of which he calls
Prolegomena zur reinen Logik, Formale und transzendentale Logik (1929),
and Erfahrung und Urteil (1939), which was posthumously completed and
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published by Ludwig Landgrebe. Even if Husserl attached his philosophy to
Kantian themes, he was convinced that he had to raise heavy criticism against
Kant’s ideas. He blamed Kant for having failed to achieve a “pure” theory
of knowledge, which would be free from all naturalistic elements, such as
psychological and anthropological assumptions. No more was he satisfied with
neo-Kantians’ developments, which he called transcendental psychology (LU I,
A 92–97/B 92–97).21 He admitted, though, that Kant’s philosophy also had
features that go beyond psychologism (LU I, A 94/B 94, note).

In his early writings, Husserl seemed to speak in favor of psychologism,
for example, in his book Philosophie der Arithmetik (1891), which Frege, the
devoted antipsychologist, heavily attacked in 1894 (“Rezension von: E. Husserl,
Philosophie der Arithmetik, Erster Band, Leipzig, 1891,” KS, 179–192). Some
scholars, for example Mohanty (1982), have disputed that Husserl was a
psychologist in the sense that Frege gave to the term. Mohanty stresses that
Frege’s criticism led Husserl to revise some parts of his theory of number and it
may have made him pay more attention to distinguishing between act, content,
and object. However, Mohanty points out that it could not lead Husserl to
reject such a version of psychologism which Frege attacked simply because
Husserl never subscribed to that version (Mohanty 1982, 22–26). However
that may be, it was at the very end of the nineteenth century that Husserl
clearly joined the antipsychologistic camp, which his Logische Untersuchungen
testified. It may be noted that in that work he also pointed out that he does not
want to reject everything that he has done in his Philosophie der Arithmetik
(LU II, B1 283, note).

In the Logische Untersuchungen, the main starting points for Husserl were
Bolzano, Lotze, and Brentano, to whom Husserl paid homage in those two
logical works (LU I, A 219–227/B 219–227, and LU II, A 344–350/B1 364–370).
Bolzano (1837) had introduced Sätze an sich and Vorstellungen an sich, which
he regarded as neither existing in space and time nor depending on our mental
acts (Bolzano 1929, §19). Hence, Bolzano distinguished the proposition itself
from our thinking of it and acknowledged a specific realm of ideal objects, for
which he did not admit proper existence, though. As was noted, Lotze, for his
part, considered being and validity to be two senses of actuality (Wirklichkeit)
and distinguished between the being of concrete things and the validity of
abstract objects. For him, validity was a way of being independent of subjective
mental acts (Lotze 1874, 507). Even if Brentano was not a defender of abstract
entities, he distinguished between mental acts and their objects, which have
intentional inexistence in those acts but need not have any real existence
(Brentano 1924, 124–125). Husserl was influenced by Brentano already from
the middle of the 1880s, when he was Brentano’s student in Vienna.21

As was noted in section 3.2, Husserl approved of those ideas and made a
distinction between the real and the ideal. He stated:

There is an essential, quite unbridgeable difference between sciences
of the ideal and sciences of the real. The former are a priori, the latter



248 The Development of Modern Logic

empirical. The former set forth ideal general laws grounded with
intuitive certainty in certain general concepts; the latter establish
real general laws, relating to a sphere of fact, with probabilities
into which we have insight. (LU I, A 178/B 178; LI I, 185)

Husserl observed that once the distinction between the ideal and the real
realm is acknowledged, we quite naturally come to realize one crucial problem.
This problem constituted an important part of Husserl’s criticism against Kant.
In 1929 Husserl maintained that because Kant did not make the distinction
between the ideal and the real, he failed to ask one important question. Because
Kant did not assume any world of ideal objects of thought, he could not ask
how we can have an access to these objects (FTL, 233–235). In the Formale
und transzendentale Logik, Husserl was explicit in stressing the importance of
Kant’s theories concerning the Humean problem, which include his doctrine
of transcendental synthesis and of transcendental abilities in general. Husserl
praised Kant’s questions concerning our knowledge and its presuppositions.
However, he blamed Kant for not asking transcendental questions about formal
logic (FTL, 228–230). Kant took Aristotelian logic to be a complete system,
which needs no major corrections. All we can do for what he called general logic
was to make it more elegant; the proper task of that logic, which is to expose
and prove the formal rules of all thought, had already been accomplished, in
Kant’s view (KRV, B viii–ix). Kant asked how pure mathematics is possible,
how pure natural science is possible, and how metaphysics as natural disposition
and as science is possible (KRV, B 20–22), but he did not ask how logic as
science is possible. Husserl believed that if Kant had distinguished between
the ideal and the real realm, it would have occurred to him to ask such an
epistemological question.

Husserl concluded that both Hume and Kant realized the transcendental
problem of the constitution of what he called the real realm. He thought
that they failed to see the corresponding problem concerning the constitution
of the ideal objects, such as the judgments and the categories which belong
to the sphere of reason and which logic is interested in. In other words,
Kant did not make his analytic a priori a problem (FTL, 229–230). Husserl’s
question in his logical works can thus be formulated in three ways: (1) How
can we have knowledge of the realm of ideal objects? (2) How can we rely
on what logic claims? (3) How can we justify the analytic truths a priori?
These formulations have close connections. The ideal realm consists of abstract
objects like numbers and thoughts, and it is precisely logic that tries to say
something about the structure of thoughts and about the inferential links
between thoughts. Therefore, because Kant did not ask how we can know
anything about the ideal realm, he did not ask how logic as science is possible,
either. Moreover, since logical laws are analytic a priori, Husserl asked how we
can rely on the analytic a priori claims which logic offers to us.22

Husserl thus blamed Kant for not being able to ask how we can have
knowledge of the ideal realm. We could certainly defend Kant by the argument
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that because he did not postulate any such problematic realm as the realm
of abstract objects, he did not need to face such epistemological problems as
Husserl. We may also say that even if Kant did not ask Husserl’s question,
his Kritik der reinen Vernunft served as an answer to that question. However,
the point in Husserl’s argument might be construed as the statement that
we cannot know anything that is not made objective, hence that the proper
definition of the concept of knowledge implies that the object of knowledge is
distinguished from the knowing subject. On this construal of his argument,
Husserl required that logical concepts and laws are something that can be
known in the proper sense of knowledge. If this is what he meant, the point of
his criticism was that Kant did not set the conceptual tools of logic outside
consciousness to study those tools.23

Husserl thus asked the question which Kant did not ask and tried to do
what Kant did not do, namely, lay the epistemological foundations of logic. But
what was actually the philosophical incentive of the question concerning how
logic as science is possible? From Galilei and Descartes to Kant, philosophers
had sought for a firm foundation for modern natural science, for mathematics
and even for metaphysics. If we believe that the history of logic can be
reconstructed as a Kuhnian science, hence, that the question of foundations
arises in logic when the received framework is threatened, we quite naturally
see the nineteenth century as a revolutionary period in logic. Aristotelian logic
was losing ground in those days, and new formal developments arose. What
this period needed, then, was an epistemological justification for either the old
logic or for those new suggestions. Hence, on this construal, Husserl’s question
was necessitated by the new developments of logic in the nineteenth century.
Husserl remarked: “how could such a logic [scientific logic] become possible
while the themes belonging to it originally remained confused?” (FTL, 158;
Husserl 1969, 178).

The foundational crisis was not the most perspicuous reason for the question
concerning the possibility of logic as science. The question arose as a natural
consequence of the various confrontations within logic and philosophy of
logic in the nineteenth century. As we saw in Husserl’s case, it arose from
a philosophical position that postulated a specific realm of abstract objects
like thoughts which logic speaks about. If that kind of realm is assumed and
acknowledged, it is quite natural to ask how we can have knowledge of it, that
is, how we can rely on logic which is supposed to speak about it.

But why does anyone want to assume such an objective realm? I already
suggested one answer that had to do with the proper concept of knowledge.
Other guesses can also be made. Husserl’s argumentation suggests that histor-
ically the objectivity of the field of interest of logic was probably necessitated
by a proper criticism against a psychological or anthropological interpretation
of Kant’s transcendentalism, which was represented by such logicians as Jakob
Fries and Benno Erdmann, for example. Fries thought that logical concepts
must be understood as the ways in which the human species organizes ex-
perience, and the logical laws must be construed as anthropological laws.24
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On Husserl’s judgment, the philosophy of logic of his own day was strongly
anthropologistic; he even argued that it was rare to find a thinker who would
be free from the influence of that doctrine (LU I, A 116/B 116). In addition to
the empiricist tradition, psychologism in logic had a natural connection with
Kant’s transcendentalism, for the transcendental structure of human thought
was easily construed as a psychological structure, which is typical of the human
race. If one wanted to save transcendental logic from that kind of reading,
one had better regard the transcendental structure as the structure of some
objective realm.25

4.2.2. The Role of Judgments in Frege’s and Peirce’s Logical Discoveries

Frege and Peirce discovered quantification theory independently of each other.
They both introduced a new formula language in which arguments or indices
were distinguished from functions or relative terms. In his paper “Über den
Zweck der Begriffsschrift” (1883) Frege remarked:

In fact, it is one of the most important differences between my
way of thinking and the Boolean way—and indeed I can add the
Aristotelian way—that I do not proceed from concepts but from
judgements. (BS 1964, 101)

That Frege opposed Aristotle and Boole has been noticed by all interpreters,
but it was about 30 years ago that Frege’s way of thinking was taken under
more extensive historical consideration. Interpreters such as Hans Sluga (1980)
linked Frege’s view with Kant’s idea that judgments have priority over their con-
stitutive concepts. Kant was also one of Peirce’s philosophical heroes. Murray
Murphey (1961) already noted that Peirce’s logical discovery brought him closer
to Kant, as Peirce distinguished between indices and relative terms, hence, as
it were, wrote down Kant’s distinction between intuitions and concepts.

In his paper “Booles rechnende Logik und die Begriffsschrift” (1880/81),
Frege clarified the difference between his conceptual notation and Boolean
logic. He stated that the real difference is that in logic he avoids a division into
two parts, of which the first is dedicated to the relation of concepts, that is, to
primary propositions, and the second to the relation of judgments, that is, to
secondary propositions, by construing judgments as prior to concept formation
(ibid., 14 and 52). He continued that unlike Boole, he reduces his primary
propositions to the secondary ones, which comes up in that he construes
the subordination of two concepts as a hypothetical judgment (ibid., 17–18).
This result came out when Frege broke up the judgment which contained
subordination, which is a relation between two concepts. Before Frege was
able to do this, he had to realize the distinction between individuals and
concepts. This is what he also emphasized. In the article he remarked that
his view does justice to that distinction. In Frege’s view, the problem with
Boole’s notation lay in that Boole’s letters never meant individuals but always
extensions of concepts. The distinction between individuals and concepts, or
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more generally functions, hence, between proper names and function names,
was a crucial part in Frege’s discovery. It seems on the basis of Frege’s remarks
in the Grundlagen that even if Frege criticized Kant’s concept of intuition,
he viewed the distinction between intuitions and concepts as a precursor of
his own distinction (GLA, §27, n.). The same methodological change from
the Boolean method to the analysis of judgments was essential to Peirce’s
discovery. I already mentioned that Kant was an important figure behind
Peirce’s philosophy. As Murphey remarked, it was the manner in which Kant
discovered his categories that interested Peirce most of all (Murphey 1961, 33).

In the 1870s, Peirce discovered his logic of relatives, which was inspired by
De Morgan’s ideas and Boole’s algebra of logic. Peirce’s articles titled “The
Logic of Relatives” (1883) and “On the Algebra of Logic: A Contribution
to the Philosophy of Notation” (1885) contained the first presentation of his
quantification theory, which he himself called his general algebra of logic and
which, as he wrote, he developed on the basis of O. H. Mitchell’s, his student’s,
ideas (CP, 3.363 and 3.393). The first important change from Boole’s logical
algebra was that Peirce added indices to relations. Indices referred directly to
individuals. Second, he introduced the quantifiers “some” and “every.”

When he introduced his two improvements of logic, Peirce referred to
Mitchell’s article “On a New Algebra of Logic” (1883). He expressed his
indebtedness to Mitchell regarding both indices and quantifiers. However,
when he described Mitchell’s way of using indices, he deviated from what
Mitchell said. Peirce interpreted Mitchell’s formula “F1” as “the proposition F
is true of every object in the universe” and formula “Fu” as “the proposition
F is true of some object in the universe.” For Mitchell, the symbol F was any
logical polynomial involving class terms and their negatives. He did not take
it to be a proposition, but rather called it a predicate or a description of every
or some part of the universe (Mitchell 1883, 75 and 96). Moreover, Peirce used
the concept of individual, which Mitchell did not use. Otherwise, it is true
that Mitchell had both indices and quantifiers, as Peirce declared.

Mitchell supported the view that objects of thought, in which logic is
interested, are either class terms or propositions, but that every proposition
expresses a relation among class terms (Mitchell 1883, 73). Because Mitchell
thought that, basically, every proposition expresses a relation among class
terms, he relied on the Boolean method, which started from concepts and
came up with propositions by combining concepts. It is precisely this way of
thinking which Frege attacked, as we noted. Hence, even if Mitchell did suggest
indices and quantifiers, the new logical language cannot be encountered in his
treatment. Peirce’s contribution was to take propositions as the starting point
of analysis and generate a distinction between relative terms and the names of
individuals.

In his article “On a New List of Categories” (1867), which was meant to
improve Kant’s doctrine of categories, Peirce relied on the subject-predicate
form of propositions and assumed that in the aggregate of a subject and a
predicate the subject represented what he calls substance (CP, 1.547 and 1.548).
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For Peirce, substance was the present in general, hence not an individual. It is
not until the 1880s that individuals in the sense of Kant’s intuitions appeared
in Peirce’s logical notation. These observations suggest that between Peirce’s
“New List” (1867) and his discovery of the new notation (1883, 1885) there was
a methodological change, which contributed to his logical discovery. Hence,
the decisive insight both for Frege and Peirce was that a judgment is not an
aggregate of terms that represent concepts or classes but that its elements
have different kinds of roles in their contexts. Two of those basic roles are that
of representing relations and that of denoting individuals.

5. Origins of Twentieth-Century Semantics: Frege’s
Distinction between Sinne and Bedeutungen

Even if Frege did not have any semantic theory, he expressed views of semantic
concepts and had considerations in his works that can be called semantic.
For Frege, the Sinne, senses, of sentences are thoughts and the Bedeutungen,
references, of sentences are truth values, the True and the False. Sentences are
compounded out of proper names, which refer to objects, and function names,
which refer to functions. The Sinne of function names are simply parts of
thoughts.26 But what are the Sinne expressed by proper names? In “Über Sinn
und Bedeutung” (1892), Frege remarked that the sense of a proper name is a
way the object to which this expression refers is presented, or a way of “looking
at” this object. Furthermore, he stated that the sense expressed by a proper
name belongs to the object to which the proper name refers. In other words,
for Frege, senses were not primarily senses of names but senses of references.
Hence, it is more advisable to speak about senses expressed by names than
senses of names. Frege also gave examples of senses, like “the Evening Star”
and “the Morning Star” as senses of Venus, and “the teacher of Alexander
the Great” and “the pupil of Plato” as senses of Aristotle (“Über Sinn und
Bedeutung,” KS, 144).

Nonetheless, Frege admitted that we speak meaningfully about entities
which do not exist. In his view, a sentence lacks only a truth value—but not a
sense—if it contains a name that has no reference (“Über Sinn und Bedeutung,”
KS, 148). Russell adopted a critical standpoint against this idea, according
to which an expression can have a sense although it lacked a reference. In his
article “On Denoting” (1905) he argued that a sentence like “The present King
of France is bald” should be construed as the sentence “One and only one
being has the property of being the present King of France, and that being is
bald.” The property of being the present king of France does not belong to
any being, and therefore the sentence is false. Moreover, according to Russell,
the sentence “The present King of France is not bald” is false if it means
that there is an entity which is now king of France and is not bald. Russell,
however, suggested another analysis for the latter sentence which says that it



The Relations between Logic and Philosophy, 1874–1931 253

is false that there is an entity that is now king of France and is bald. On this
interpretation, the sentence turns out to be true (Russell 1956, 53).

Frege regarded it as possible for an object to be given to us in a number
of different ways. He observed that it is common in our natural language
that one single proper name expresses many of those senses which belong
to an object. For Frege, to each way in which an object is presented there
corresponds a special sense of the sentence that contains the name of that
object. The different thoughts that we get from the same sentence have the
same truth value. In Frege’s view, we must sometimes stipulate that for every
proper name there is just one associated manner of presentation of the object
denoted by the proper name (“Der Gedanke,” 1918, KS, 350). However, he
believed that different names for the same object are unavoidable, because
one can be led to the object in a variety of ways (“Über den Begriff der Zahl,”
1891/92, NS, 95). For Frege, our knowledge of an object determines what sense,
or what senses, the name of the object expresses to us. One sense or a number
of senses provides us only with one-sided knowledge (einseitige Erkenntnis)
of an object. Frege argued: “Complete knowledge [allseitige Erkenntnis] of
the reference would require us to be able to say immediately whether any
given sense belongs to it. To such knowledge we never attain” (“Über Sinn
und Bedeutung,” KS, 144; Frege 1952, 58).27

On the basis of Frege’s hints, we may conclude that his concept of Sinn
is thoroughly cognitive. Many of his formulations suggest that Sinne are
complexes of individual properties of objects, hence, something knowable. If
this interpretation of the concept of Sinn were correct, it would have been
Frege’s view that we know an object completely only if we know all its
properties, which is not possible for a finite human being. It would also follow
that according to Frege, each object could in principle have an infinite number
of names which would correspond to the modes of presentation of the object.
Frege did not hold the position that knowing some arbitrary property or
complex of properties of an object constitutes knowing the object completely
since, for him, a necessary condition for knowing an object would be knowing
all the properties of that object. Nevertheless, on the suggested interpretation
he thought that in a weaker sense we know an object precisely by knowing
some properties of that object. It is true Frege’s weaker sense of knowing an
object is not free from problems, either, even if it is more natural than the
stronger sense. This is because Frege does not explain which properties of an
object one must know to know the object.

In Frege’s view, we are not able to speak about the senses of proper names
as senses, for if we start speaking about them, they turn into objects, which,
again, have their own senses. But what are these objects in case we speak about
the senses expressed by proper names? Frege said that senses can be named
(“Über Sinn und Bedeutung,” KS, 144–145) and proposed such examples as
“the teacher of Alexander the Great” and “the pupil of Plato.” But if senses
were complexes of the properties that belong to objects, as suggested, their
names ought to be such as “being the teacher of Alexander the Great” or
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“being the pupil of Plato.” Frege’s examples suggest that when we name a sense
of an object, we do not name any new object which would be a complex of
individual properties of that object, but we name the original object in a new
way. Hence, it follows from these examples that we do not succeed in naming a
sense of an object as any new object, after all. Instead, we only name the object
itself as considered under the description with which the sense provides us.

There has been much discussion on what Frege’s motivation for adopting the
distinction between senses and references might have been. When he introduced
the distinction, he primarily referred to identity statements. It seems as if the
distinction between Sinn and Bedeutung had, above all, been meant to give
an adequate account of the symbol of identity, which Frege wanted to preserve
in his language. By making the distinction between Sinn and Bedeutung, he
sought to give a natural reading for identity statements. When introducing
the concepts of sense and reference, Frege tried to solve the problems that
what we now call intensional contexts caused for what we now call his idea of
extensional language. The principle of functionality, which we may call the
principle of compositionality in the case of references, is the core of that idea.28

Everything worked well according to what we would call truth tables when
Frege constructed complex sentences out of simple sentences by means of
conditionality (BS, §5). The trouble for Frege was caused by what became
later called intensional contexts. Frege tried to deal with those contexts by
introducing the concepts of indirect sense and indirect reference, the latter
being the same as the normal sense of an expression. Frege claimed that in
certain indirect contexts our words automatically switch their references to
what normally are their senses. In a letter to Russell, he even recognized
the need for using special signs for words in indirect speech (BW, 236). For
example, in the complex sentences “A believes that a is P” and “A believes
that b is P ,” “that a is P” and “that b is P” name two different thoughts,
since “a” and “b” have different senses. Let us assume that a and b have the
same normal reference. Given that the truth value of the complex sentence is
considered to be the value of a function whose arguments are the references of
the components of the sentence, it does no harm to what we call the principle
of functionality even if the complex sentences have different truth values. Since
the arguments of the function differ from each other, that is, because a and b
have different indirect references, the references of the complex expressions
may quite well be different, and the principle of functionality is thus saved.

Frege’s theory of Sinn and Bedeutung was not only a solution offered to the
problems that indirect contexts caused to the idea of extensional language, but
it was also a direct consequence of his idea of a universal language. As noted,
Frege’s begriffsschrift, conceptual notation, was meant to be a realization of
Leibniz’s great idea. Leibniz thought that the terms of our natural language
do not correspond to the things of the world in a proper way, and therefore
we ought to construct a new language which mirrors correctly the whole
universe.29 He dreamed of a language that speaks about the actual world in
the sense of mirroring the individual concepts instantiated in this world. Frege’s
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world differed from that of Leibniz in the sense that for him the actual world
was the only world. For Frege, Sinne were something that we cannot avoid
when we try to reach the world by means of our language. Frege’s belief in the
inescapability of Sinne can thus be considered a special form of the Kantian
belief that we must always consider objects through our conceptual systems.
In “Ausführungen über Sinn und Bedeutung” (1982–1985) he remarked: “Thus
it is via a sense and only via a sense that a proper name is related to an
object” (NS, 135; Frege 1979, 124). Hence, the distinction between senses
and references was something that Frege would have accepted in any case
because of his belief in the role of conceptual machinery in reaching the world.
That observation brings us back to where we started, namely, to how Frege
understood the nature of his conceptual notation.30

Notes
I have used extracts from my article “Analysis as the Method of Logical Discovery:
Some Remarks on Frege and Husserl,” Synthese 77 (1988), 73–97, with the kind
permission of Springer Science+Business Media. The chapter also contains passages
from my article “Existence and Propositional Attitudes: A Fregean Analysis,” Logical
Analysis and History of Philosophy 4 (2001), 75–86, which appear here with the
kind permission of Mentis, and from my article “Finnish Studies in Phenomenology
and Phenomenological Studies in Finland,” in Leila Haaparanta and Ilkka Niini-
luoto (eds.), Analytic Philosophy in Finland, Poznań Studies in the Philosophy of
the Sciences and the Humanities, vol. 80 (Rodopi, Amsterdam, 2003), 491–509,
which appear here with the kind permission of Rodopi. I have used the manuscripts
“Göttinger Vorlesungen über Urteilstheorie” (1905) and “Logik als Theorie der
Erkenntnis” (1910–1911) with the kind permission of the Husserl Archives at the
University of Leuven.

1. For the debate between psychologists and antipsychologists, see, for example,
Kusch (1995).

2. See Friedman (1996, 2000) and Haaparanta (1999a, 2003).
3. See Beaney (2002) and Haaparanta (2007).
4. See Haaparanta (1985, 1999a) and Friedman (1996, 2000).
5. See Gabriel (1986). Cf. Ziehen (1920), 132–240.
6. See, for example, Haaparanta (1985) and Mancosu (1998). Also see Detlefsen

(1992) and chapters 9 and 14 in this volume.
7. See Haaparanta (1988, 1999b).
8. See Lohmar (2002a, 2002b).
9. See Becker (1927) and Heyting (1930a, 1930b, 1931).
10. See, for example, Leibniz (1961a), 84 and 192, and Leibniz (1961b), 29, 152,

and 283. See, for example, Frege, “Booles rechnende Logik und die Begriffsscrift”
(1880/1881), NS, 9–52, “Über den Zweck der Begriffsschrift” (1883), BS (1964), 98,
“Über die Begriffsschrift des Herrn Peano und meine eigene” (1896), KS, 227, GGA
II, §§56–65, and “Anmerkungen Freges zu: Philip E. B. Jourdain, The development
of the theories of mathematical logic and the principles of mathematics” (1912), KS,
341. For the terminological difference between Leibniz and Frege, see Haaparanta
(1985), 11, and its references.
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11. The idea that Jaakko Hintikka (1979, 1981a, 1981b) has labeled as the idea
of the ineffability of semantics and to which Hugly (1973) has also paid attention
in Frege’s logic is visible at various points in Frege’s writings. For example, see
Frege’s remarks on senses in “Über Sinn und Bedeutung” (1892), KS, 144–145, on
functions in “Über Begriff und Gegenstand” (1892), KS, 170, on the concept of
identity in “Rezension von: E. G. Husserl, Philosophie der Arithmetik I” (1894), KS,
184, and on the concept of truth in “Der Gedanke” (1918), KS, 344. Also see his
informal explanations of the semantics of his conceptual notation, “Darlegung der
Begriffsschrift,” in GGA I. See Haaparanta (1985), 33, 41–43, 61–62, and 66.

12. See, for example, “Dialog mit Pünjer über Existenz” (before 1884), in NS,
GLA, §53, “Über Begriff und Gegenstand,” (1891), KS, 173, and Frege’s letter to
Hilbert 6.1.1900, BW, 75. See also Haaparanta (1985).

13. See Frege’s “Vorwort” to GGA I. Also see his article “Der Gedanke” (1918),
KS, 342–362.

14. See “Der Gedanke,” KS, 351, where Frege discusses the realm of representations
(Vorstellungen). In Frege’s view, representations like sense impressions and feelings
need someone who has them. Obviously, acknowledging the truth of a thought, that
is, judging, needs someone who acknowledges. Frege’s terminology thus suggests that
he takes the acts of judging to belong to the realm of our minds.

15. References are to the manuscripts “Göttinger Vorlesungen über Urteilstheorie”
(1905) and “Logik als Theorie der Erkenntnis” (1910–1911).

16. See, for example, Kemp Smith (1962), 43–45.
17. See Haaparanta and Korhonen (1996), 40–41. See Crowell (1992) and Friedman

(1996), 58–59.
18. See Haaparanta (1985).
19. See Haaparanta and Korhonen (1996), 42.
20. See Haaparanta (1988).
21. See Husserl’s biography in Schuhmann (1977). Even if the doctrine of “propo-

sitions in themselves” was popular among a number of Husserl’s predecessors and
contemporaries, Husserl’s view can also be interpreted as ensuing from certain in-
ternal motives of his philosophy. This kind of reading is suggested by Cooper-Wiele
(1989), who emphasizes the role of the idea of a totalizing act in Husserl’s thought.
See Cooper-Wiele (1989), 11 and 90–108.

22. For Husserl’s concept of formal or analytical law, see LU II, A 246–251/B1
252–256. For Husserl’s discussion concerning the relationship between logical laws
and the analytic a priori, see, for example, Husserl (1950b), 28.

23. The same problem had also been tackled by Hegel from an opposite point of
view. In Hegel’s view, Kant’s problem was that his critical philosophy tried to study
the faculty of knowledge before the act of knowing. Hegel argued that other tools
can be studied before they are used, but the use and study of logical tools is one
and the same process (Hegel, 1970, §10 and §41, Zusatz 1).

24. See Fries (1819), 8. Also see Fries (1827), 4. For Erdmann’s psychologistic in-
terpretation of transcendentalism, see Erdmann (1923), 472–477. For Frege’s criticism
of Erdmann, see GGA I, “Vorwort,” xv–xvi.

25. Kusch (1995) has studied the sociological aspects of the debate on psychologism.
My presentation is restricted to those aspects that are internal to the philosophical
discussion. For Husserl’s criticism of psychologism, also see Willard (1984), 143–166.

26. See Haaparanta (1985). Also see chapter 13 in this volume.
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27. The word “complete” is not a good translation for allseitig, but it is in any
case not so misleading as the word “comprehensive” chosen by Geach and Black. A
better expression would, perhaps, be “knowledge from every angle.”

28. See Frege’s argumentation in “Über Sinn und Bedeutung.”
29. See note 10. See also Leibniz (1969), sec. 8.
30. There are a great number of studies in late nineteenth-century and early

twentieth-century philosophy, especially Frege and Husserl, that one could recommend
for further reading, for example, Beaney (1996), Bilezki and Matar (1998), Dummett
(1993), Floyd and Shieh (2001), Glock (1999), Hill (1991), Hill and Rosado Haddock
(2000), Kreiser (2001), Macbeth (2005), Mendelsohn (2005), Reck (2002), Schumann
(1977), Tieszen (1989, 2004), Tragesser (1977), and Weiner (2004).
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A Century of Judgment and
Inference, 1837–1936: Some Strands
in the Development of Logic
Göran Sundholm

Dedicated to Per Martin-Löf on the occasion of his 60th birthday.

“O judgement! thou art fled to brutish beasts,
And men have lost their reason.”

—Julius Caesar, Shakespeare

My office in the present chapter is to tell how, within a century, the notions
of judgment and inference were driven out of logical theory and replaced by
propositions and (logical) consequence. Systematic considerations guide the
treatment. My history is unashamedly Whiggish: A current position will be
shown as the outcome, or even culmination, of a historical development. No
apology is offered, nor, in my opinion, is one needed. Philosophy in general,
and the philosophy of logic in particular, treats of conceptual architecture.
The logical edifice is an old one and its supporting concepts have a venerable
pedigree. Many parts of the building are buried in the past. Thus, the study of
conceptual architecture has to be aided by conceptual archaeology. In the light

The present chapter is based on lectures that I have given to second-year philosophy
students at Leyden since 1990, and also draws on my inaugural lecture (1988). Per Martin-
Löf’s (1983) Siena lectures were an important source of inspiration, as were innumerable
subsequent conversations with him on the history and philosophy of logic. In recent years
conversations with my colleagues Maria S. van der Schaar and E. P. Bos have also been
helpful. I am also indebted to Dr. Björn Jespersen and Dr. van der Schaar for valuable
comments on the penultimate draft and to Dott.ssa Arianna Betti for much appreciated help
with word processing. The material has been treated in invited lecture-courses, at the ESSLI
Summerschool in Saarbrücken 1991, and at the universities of Siena 1992, Campinas and Rio
de Janeiro 1993, Turku 1998, and Amsterdam 1999, as well as in a complete semester-course
at Stockholm 1994. I am indebted to hosts and participants alike. My Cracow 1999 LMPS
11 lecture, now published as (2002), briefly tells the inference half of the tale. Translations
into English are in general my own.
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of the many changes that logic underwent during my chosen period, this may
even seem rather apposite. Within the philosophy of logic, to understand what
a present-day position is, it is often essential to understand how it became
what it is. Furthermore, the systematic philosophical underpinning of present-
day logic is not fixed; the balance is not ready to be drawn up. Accordingly,
a survey of the historical development that led to the various options is a
required aid for an informed choice among contemporary alternatives. In one
essential respect, though, mine differs from a Whig history. The final outcome
is not necessarily seen as an improvement on earlier but now largely abandoned
views. My own preferences go in the direction of anti-realism, but a deliberate
attempt has been made to adopt a neutral stance when describing the various
positions.

The heroes and villains of my plot, in rough chronological order, are John
of St. Thomas, Bernard Bolzano, Franz Brentano, Gottlob Frege, the Ludwig
Wittgenstein of the Tractatus, Arend Heyting, and Gerhard Gentzen. Minor
roles will be played by Immanuel Kant, Johann Gottlieb Fichte, David Hilbert,
Bertrand Russell and G. E. Moore, Harold Joachim, and L. E. J. Brouwer.

The treatment will not be exhaustive. In particular, many eminent logicians
will not be treated, even though they do belong to the period under considera-
tion, for the simple reason that their contributions did not touch the systematic
theme that unifies my exposition. The criteria for inclusion and exposition are
based also on systematic considerations. It is my conviction, with respect to
our present stage of logical knowledge, both systematic and historical, that
this deserves preference above a mere recording of chronological facts. The
systematic framework in which such facts are fitted confers coherence and
memorability on the unfolding tale. Such a procedure is not without its dangers.
They have been faced with great lucidity by Jonathan Barnes:

On the one hand, no discussion of the ancient theories will have
any value unless it is conducted in moderately precise and rigorous
terms; and on the other, a rigorous and precise terminology was
unknown in the ancient world. If I insist on precision I shall be
guilty of anachronism. If I stick to the ancient formulations, I shall
be guilty of incoherence. I prefer anachronism.1

Barnes’s point is well taken and applies with equal force to the nineteenth
century. Taking my cue from him, if methodological demands force me into
anachronism, I would rather be coherent than (chronologically) right.

The (Oxford English) dictionary explains logic as the art and science of valid
reasoning. In my chosen century, the central notion of logic is that of judgment.
Its form and function in inference will play a crucial role in the sequel. Changes
in the conception of judgment and, concomitantly, of inference, are central
here. Other topics, such as the position of the law of the excluded third, its
function as a criterion for significance, and its relation to the knowability of
truth, also serve to structure the chapter. The (un)definability of truth, as
well as the nature of the formal calculus used (if any), will also so serve.
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1. L’ancien Régime: The Logic That Was to Be
Overturned

The preface to early editions of Quine’s Methods of Logic opened with the
terse observation that “Logic is an old subject, and since 1879 it has been a
great one.”2 One would be hard put not to agree with the first part of Quine’s
quip, but a number of us have taken issue with the second. Surely, logic was
great also prior to 1879, the year in which Frege published his Begriffsschrift.
George Boolos and Hilary Putnam have respectively dated the inauguration
of logical greatness to 1847 and 1854 on the strength of the appearance of
George Boole’s logical works.3 Contrary to the received Massachusetts wisdom
of Harvard and MIT, it seems obvious to me that the year 1837 deserves pride
of place within the history of logic as the proper counterpart to 1879.4

To grasp the substance and magnitude of the logical revolution, we have
to consider in outline the kind of logic that was superseded. To a large extent
it was nothing but a latter-day version of traditional logic, with the typical
methodological accretions that became common after the Port Royal Logic.5
We do well to remember that traditionally logic was conceived of as more wide-
ranging than what is today the case. As a matter of fact, the “sweet Analytics
of Aristotle”—Prior and Posterior—are not addressed to the same problematic.
The Analytica Priora is devoted to the theory of consequence, that is, an answer
is offered to the question: What follows from what? The Analytica Posteriora,
on the other hand, treats of the theory of demonstration, where the crucial
question is: How does one obtain further knowledge from known premises?
Present-day logic restricts itself to the theory of consequence and relegates the
theory of demonstration to epistemology. In the nineteenth century, on the
other hand, these epistemological concerns constituted a part of logical theory.

At the beginning of my chosen period, the traditional patrimony is still
very much in charge. The following familiar square offers a convenient starting
point for (my description of) the successive revolutions in logic:

The Traditional Structure of Logic:

Operation of the

Intellect

(Mental)
Product

(External)
Sign

1 Simple Apprehension Concept, Idea,
(Mental) Term

(Written/spoken)
Term

2
Judging,

Composition/Division
of two terms

Judgment,
(Mental) Proposition:

S is P .

Assertion,
(Written/spoken)

Proposition

3 Reasoning,
Inferring (Mental) Inference (Written/spoken)

Inference, Reasoning

The diagram6 employs a conceptual order of priority from left to right, from
acts, via products, to signs: Acts of various kinds have mental products that
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(may) have (outward) linguistic signs, be they spoken or written. But for this
“horizontal” order of conceptual priority there is also a “vertical” order of
priority among the (act-)kinds, that is, the operations of the mind. The proper
subject matter of logic is reasoning, that is, the third operation of the mind.
Nevertheless, the two other operations have to be included in the domain
of logic, since inferences are built from judgments. Judgments, in turn, are
formed through the composition, or division, of two concepts (“terms”). In
logic, the conceptual order starts with terms, and proceeds via judgment to
inference.

The traditional diagram exhibits a characteristic tripartite

act
object ←→ sign

structure. Indeed, Johann Gottlieb Fichte went so far as to claim that essentially
there are only two philosophical positions with respect to its epistemological
components

act
object.7

Either you give the object through the act, in which case—with Fichte—you
are an idealist, or you direct the act toward the prior object, in which case
you are a dogmatist.8 Under this act/object structure, concepts are objects of
acts of grasping (“apprehending”), and similarly the judgments made (“mental
propositions”) are products of the acts of judging. With respect to the third
operation, though, the traditional position is not consequent. To sort this out
we note a basic ambiguity in the term inference. On the one hand, inference
may be taken in the sense of an inference pattern (German Schlussweise). Such
a pattern, or mode, of inference can be given by means of a schema I:

J1 J2 . . . Jk
J

,

where I deliberately have allowed more than the customary two premises
of traditional syllogisms. The mode I of inference corresponds to a rule of
inference according to which you have the right to make, that is, to know, the
judgment J , provided that you have already made, that is, provided that you
already know, the judgments J1, J2, . . . , Jk. On the other hand, inference
can also pertain to an act of inference, say, for instance, one made according
to the mode I. Such an act has, or perhaps better, proceeds according to, the
structure

|
J1

|
J2 . . .

|
J3

J
.9

The product of an act of inference, though, is not an act of inference—the
act, clearly, does not have itself as product—nor is it the mode of inference I,
according to which the act was carried out; on the contrary, it is the judgment
made J. The traditional diagram is accordingly in error when it puts (mental)
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inference in the product place of the act of inference (reasoning). What could
such a “mental inference” be? No suitable entity seems available for service
in the role. The inference mode is not an act of inference, nor a product of
such an act; it is a blueprint, or manual, for inference acts that have products.
An inference act is a mediate act of judgment, in which one judgment, the
conclusion, is known on the basis of certain other judgments, the premises,
being known. Thus, an act of inference is a particular kind of judging, whence
its (mental) product is a judgment made.

Already Kant famously reversed one of the above orders of priority, namely,
that between rows 1 and 2. Concepts are no longer held to be prior to judgments:
“We can reduce all actions of reason to judgements, so that reason generally
can be regarded as a capacity for judgement.”10 This reversal, in one form or
other, we shall encounter in most of the thinkers here considered. Also other
paradigm shifts in philosophy can be accounted for in terms of the traditional
diagram. The most original contribution of twentieth-century philosophy,
namely, the abolition of the primacy of the inner mental life that was effected by
Wittgenstein,11 can be seen as nothing but a reversal of the priorities between
the second and third columns. The outward sign is no longer conceptually
posterior to the inner product.

2. Speech Act Intermezzo: A Unified Linguistic Account
for Some Nineteenth-Century Changes

Traditionally, the linguistic counterpart to the mental judgment made is the
assertion. This term, in common with other English -ion words, exhibits a
process/product ambiguity.12 It may concern the act of asserting (judging) or
the product of such an act, the assertion (judgment) made. The appropriate
linguistic tool for assertion is the declarative sentence. In general, when S is a
declarative sentence the question

Is it true that S?

may legitimately be put. An assertion that snow is white is readily effected by
means of a single utterance of the declarative sentence

Snow is white.13

By convention, in the absence of counterindications that it should not be
so held, a single utterance of a declarative is an assertion. For instance, the
declarative S is not used assertorically in

Consider the example: S.

or

He claimed that S, but I don’t know whether it really constitutes so.14
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Not every use of a declarative sentence is assertoric, but assertoric uses can be
recognized as such since the counterquestions:

How do you know that S is true? What are your grounds?15

are a legitimate response to an assertoric use of S. The content of the assertion
effected by means of an assertoric utterance of the declarative

Snow is white,

that is, the assertion that snow is white, is given by means of a nominalized
that clause,

that snow is white.

In general, a single utterance of this clause alone will not serve to effect an
assertion that snow is white.16 To get back to a declarative, a single utterance
of which will so serve, one must either append

is true

or prefix
it is true

to the clause in question. Then we obtain, respectively,

that snow is white is true

and
it is true that snow is white,

single utterances, either of which do suffice for asserting that snow is white.
Note that the first of these two formulations admits of the prefix the content. It
then yields a yet fuller but still equivalent formulation of the judgment made:

The content that snow is white is true.

The second formulation, though, resists the corresponding interpolation, which
results in ungrammatical nonsense:

It is true the content that snow is white.

These considerations suggest that

judgable content A is true

is the proper form of judgment, when one prefers a unary form of judgment
that makes explicit the content judged in the judgment made.17 The content
in question will be given by a that-clause formed from a declarative S. The
judgment made in or by the act of judging that is made public through the
assertoric utterance of the declarative S accordingly, takes the form

that S is true.18
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It must be stressed, though, that this path to this unary, content-explicit
form of judgment is manifestly not language independent, because it draws
extensively on linguistic considerations, albeit very simple ones. As such, it
would be rejected out of hand by most major figures considered here, even
though the unary form of judgment itself is accepted. Different analyses
offered by various logicians reach the same result, but different routes are
taken. Nevertheless the speech act theory route to the unary form of judgment
constitutes as good an example as any of the characteristic—twentieth-century—
linguistic turn in philosophy that was inaugurated by Frege (1891): ontological
and epistemological questions are now answered (while recast in linguistic
form) via a detour through language.19 However, drawing on the traditional
conceptual link between judgment and assertion, namely, that between mental
object and exterior sign, the above exposition, in spite of its anachronistic
(twentieth-century) flavor, explains why the (nineteenth-century) unary form
of judgment has to take the form it has.

3. Revolution: Bolzano’s Annus Mirabilis
I postulated that 1837 was a crucial year for logic, no reason being given.
However, in this year the four hefty tomes of Bernard Bolzano’s Wissenschafts-
lehre made their weighty appearance.20 This event constitutes the greatest
revolution in logical theory since Aristotle, even though the Wissenschaftslehre
fell stillborn from the press, as far as near-time influence is concerned, owing
to clerical and political censorship. Indeed, in the preface to the second edition
of his main work (the first edition of which appeared in the year of Bolzano’s
birth) a very distinguished professor of philosophy could still write: “Since
Aristotle, [Logic] has not had to retreat a single step. Also remarkable is that
it has not been able to take a single step forward, and thus to all appearance
is closed and perfect,”21 which state of affairs continued until the coming of
the second nineteenth-century revolution in logic. Within logical theory, 1879,
the year of Quine’s choosing, is the counterpart to the second revolutionary
year 1848. Traditional logic was first and foremost a term logic, rather than a
propositional logic. In spite of the medieval scholastic achievements concerning
the theory of consequentiae, and the insights of the—much earlier—Stoic
logic, the syllogism, in one version or other, still ruled supreme, which cir-
cumstance renders Kant’s opinion considerably less farfetched than it might
seem today. For instance, his own conception of logic as set out in the Jäsche
Logik (whether it be truly Kantian or not) is cast entirely in the customary
traditional mold.22

Bolzano’s revolution with respect to the traditional picture is threefold.
First, the middle (“product”) column of the traditional schema is objectified.
The mental links are severed, and thus, in particular, the traditional notions
mental term (concept, idea) and mental proposition (judgment) are turned
into their ideal, or Platonist, counterparts idea-in-itself (Vorstellung an sich)
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and proposition-in-itself (Satz an sich).23 Second, the pivotal middle square of
the diagram is altered: The judgment made no longer takes the traditional (S is
P ) form. Logic is no longer term logic. Instead Bolzano uses the propositional,
unary form of judgment that was canvassed above, with his Sätze an sich
taking the role of judgable contents:

The Satz an sich S is true.24

Third, Bolzano bases his logical theory, not on inference (from judgments
known to judgment made), but on (logical) consequence between propositions.25

Judgment is dethroned and its content now holds pride of place in logical
theory.

Needless to say, Bolzano, a priest steeped in the tradition, does not jettison
everything traditional: A Satz an sich, that is, the judgable content, rather
than the judgment made, has (or can brought to) the canonical form

V1 has V2,

which is very close to the Aristotelian form

S is P .

Instead of the Aristotelian judgment

Man is mortal

we find the Bolzanian content

Man has mortality.

The precise reasons for this shift from the concrete mortal to the abstractum
mortality need not detain us here; in essence, Bolzano takes the Aristotelian
form of judgment and turns it into a form of content, where the contents
are objectified denizens of the ideal—Platonic—third realm.26 Bolzano’s key
notion is that of proposition-in-itself: The idea-in-itself is explained as a part
of a proposition-in-itself that is not a proposition-in-itself.

Bolzano’s logical objectivism is a Platonism: As already noted, his crucial
an sich notions are all ideal. We are not told very much about what ideal
means here. Instead, his manner of proceeding is that of a via negativa: a
list of nonapplicable attributes is offered. Thus, the ideal realm is character-
ized as atemporal, aspatial, inert, nonlinguistic, nonmental, unchangeable,
nongenerated. . . . Furthermore, the propositions-in-themselves serve in var-
ious logical roles, in particular as contents of mental acts and declarative
sentences.27

However, not only propositions and their parts are ideal an sich notions:
The truth of a true proposition-in-itself is truth-in-itself. Bolzano’s explanation
of truth is an interesting one. According to him, all propositions have or can be
brought to the logical form (V1 has V2), and so truth only has to be explained
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for propositions of this form:

The proposition (V1 has V2) is true if and only if V1 really (German
wirklich) has V2,

for instance,

the proposition-in-itself that snow has whiteness is true if and only
if snow really has whiteness.28

This, virtually “disquotationalist,” rendering is compatible with currently
fashionable “minimalist” positions concerning truth. Bolzano, however, was on
the road toward a more substantial notion of truth when he noted that the
following proportion holds concerning truth and a certain kind of existence,
namely, that of instantiation (German Gegenständlichkeit), that is, the higher-
order property of an idea-in-itself of being instantiated:

the similarity between this relation among propositions and . . . that
among ideas is obvious. Namely, what holds, concerning ideas, for
the circumstance whether indeed a certain object falls under them
or not, holds, concerning propositions, for the circumstance whether
truth pertains to them or not.29

In the form of a proportion:

proposition-in-itself
truth

=
idea-in-itself
instantiation

.

Thus, what it is for a proposition-in-itself to be true is what it is for an
idea-in-itself to have something falling under it. In other words, applied to my
(snow-bound) stock example:

the proposition-in-itself that snow is white is true (or has truth, in
the terminology preferred by Bolzano) precisely when the idea-in-
itself the whiteness of snow has nonemptiness, that is, when some
entity falls under the whiteness of snow.30

Bolzano here anticipates something of considerable importance for the analysis
of truth, and we shall have occasion to return to his comparison in the sequel.

Bolzano’s apparatus for logical analysis, comprising propositions, ideas, and
instantiation, is highly versatile.31 Thus, for instance, as Leibniz knew, the
four categorical Aristotelian judgments are readily cast in the required form.
For instance, an E judgment,

No V1 are V2,

is rendered

the Idea (in-itself) of a V1 that is V2 does not have existence
(Gegenständlichkeit).32
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The notion of truth in itself for propositions-in-themselves is bivalent:

For every proposition-in-itself A, A has truth or A has falsity, also
in-itself.

The an sich character of the truth of true propositions-in-themselves is one of
the pillars on which Bolzano’s logical realism rests.33 Another is the reduction
of epistemological matters to the Platonist an sich notions. The first instance
of this reduction concerns judgment: a judgment of the novel form, that is,

proposition-in-itself A is true

is correct (richtig) if A really is a truth-in-itself.34

This reduces the epistemic notion of the correctness for judgments to the
Platonist an sich notion of truth for propositional contents. Here Bolzano pays
a price—in my opinion too high a price—for his iron-hard realism in logic and
epistemology. Under the Bolzano reduction, a blind judgment, a mere guess,
without any trace of justification, is a piece of knowledge (an Erkenntnis).35

The only thing that matters is the an sich truth, whether knowable or not, of
the proposition-in-itself that serves as content of the judgment in question.36

Thus, for instance, according to Bolzano, if, independently of any counting, it
happens to hit bull’s eye, my unfounded claim that the City Hall at Leyden has
1234 window panes, is simply a piece of knowledge. In this I, for one, cannot
follow him. Bolzano deserves high praise for his lucid and uncompromising
realism. Also antirealists profit from reading him: His version of realism is one
of the very best on offer.37 Admitting blind judgments as pieces of knowledge,
however, is not just realism but realism run rampant.

Bolzano’s transformation of the third and final notion in the traditional
picture, namely, that of inference, makes an unmistakably modern impression.
The changed form of judgment transforms the inference schema I into I′:

A1 is true A2 is true . . . Ak is true
C is true

.

An inference according to I′ is valid if the proposition-in-itself C is a logical
consequence of the propositions-in-themselves A1, A2, . . . , Ak. Such a logische
Ableitbarkeit—Bolzano’s terminology—holds between the A’s and C when each
uniform variation V of all nonlogical ideas that makes all the A’s true also
makes C true.38 In other—more modern—words, C is a logical consequence of
A1, A2, . . . , Ak when the proposition-in-itself

(A1 &A2 & · · ·&Ak) ⊃ C
is not just true but logically true, that is, true under all uniform variations of
its nonlogical parts.39

The notion of an Ableitbarkeit provides yet another Bolzano reduction of
an epistemic notion to Platonist an sich notions. In the same fashion that
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Bolzano reduced the (epistemic) correctness (Richtigkeit) of the judgment
made to the an sich truth of its an sich content, the validity of an inference
is also reduced to, or in this case perhaps better, replaced by something on
the level of the Platonist contents of judgments. Indeed, the fourth chapter,
§§223–268, of the Wissenschaftslehre bears the title “Von den Schlüssen,” but
deals with Ableitbarkeiten among propositions-in-themselves, rather than with
judgments that are made on the basis of certain other judgments already having
been made.40 Thus the inference is valid or not, irrespective of whether it
transmits knowledge from premise judgments to the conclusion judgment, solely
depending on the an sich truth-behavior of the propositions-in-themselves that
serve as contents of the judgments in question, under all variations with respect
to suitable in-themselves parts of the relevant propositions. Bolzano’s position
is accordingly threatened not just by the phenomenon of blind knowledge.
Under his account also inference can be blindly valid, irrespective of whether
it preserves knowability from premise(s) to conclusion.

Logical consequence (logische Ableitbarkeit) is a relation that may obtain
between any propositions whatsoever, be they true or false. Bolzano also
studies another consequence relation among propositions, but now restricted
to the field of truths-in-themselves only, that he calls Abfolge (grounding).
The theory of Bolzano’s grounding relation is difficult and as yet not very
well explored; it can be seen as yet another reduction of epistemic notions to
Platonist ones. Consider the inference I′′:

A is true
B is true

.

When I′′ is valid, that is, preserves knowledge from premise to conclusion,
and the premise is known, the judgment A is true serves to ground the judgment
B is true. Then a certain relation obtains between the propositions A and B
that serve as contents of the judgments in question. Abfolge can be seen as a
“propositionalization” Abf(A,B) of that relation: The relation of grounding,
which holds in the first instance between pieces of knowledge, that is, between
judgments known, is turned into a propositional relation (“connective”) between
propositions, that is, contents of judgments. Every truth has a grounding tree
that is partially ordered according to the Abfolge relation.41 It can be seen as
an ideal proof that shows why the true proposition is true, somewhat along
the lines of Aristotelian demonstrations διοτι.42

In the light of Bolzano’s innovations and ensuing reductions, it is important
to distinguish between the holding of a consequence, that is, the preservation of
truth from antecedent propositions to consequent proposition, and the validity
of an inference figure, that is, the preservation of knowability from premise
judgments to conclusion judgment.43 This insight is lost to modern philosophy
of logic that largely accepts the Bolzano reduction to such an extent that
(validity of) inference and (logical holding of) consequence are identified.
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4. Revisionism; the “Novel” Contributions of Brentano
Franz Brentano, in lectures given at the Universities of Würzburg and Vienna,
from the early 1870s onward, proposed another revision of traditional doctrine.
Because of his distaste for all Platonist notions in logic, such as Bolzano’s
proposition-in-itself, Brentano rejected the single unary form of judgment that
ascribes truth to a Platonist content.44 Instead, he canvassed the use of two
unary forms of judgments, namely,

α IS (exists), in symbols α+,

and
α IS NOT (does not exist), in symbols α−,

where α is a (general) concept. Brentano, however, was not the first to note
this. Already Bolzano explicitly considered these forms, under the respective
guises of

α has Non-Emptiness (Gegenständlichkeit)

and
α has Emptiness,

and determined their most important properties. In particular, we already
noted, Bolzano knew that the four Aristotelian categorical judgments can be
dealt with using these two forms.45 Credibility might not be stretched to the
point of credulity if we surmise that this anticipation provides one of the reasons
for Brentano’s staggering lack of generosity toward the Great Bohemian:

When . . . I drew attention to Bolzano, this . . . in no way, was
intended to recommend Bolzano as a teacher and leader to the
young people. What they could learn from him, I dare say, they
could learn better from me. . . .

And . . . as I myself never took a single thesis from Bolzano, so I
was never able to convince my pupils that they would find there a
true enrichment of their philosophical knowledge.46

Under the circumstances, “methinks the learned Gentleman doth protest too
much!” However, it is not unlikely that also Bolzano’s logical objectivism dis-
qualified him as a “teacher and leader” in the eyes of Brentano, who distrusted
all kinds of logical Platonism.

Of more lasting value than Brentano’s employment—and alleged redis-
covery—of the Leibniz–Bolzano reductions are his views on the blind judg-
ment.47

These have profound consequences for his formulation of the traditional
laws of thought, such as noncontradiction and excluded third, as well as for
the relation between truth and evidence. Young man Brentano construed
evidence as “experience of truth” (German Erlebnis der Wahrheit—Husserl’s
terminology), whence the order of dependence goes from truth to evidence.48
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Later, under the pressure from the phenomenon of blind judgment, he reversed
this order of priority and held that truth (correctness, German Richtigkeit)
should be seen as possibility for evident judgment:

Truth pertains to the judgments of he who judges rightly, that is,
to the judgements of him who judges what someone would judge
who judged with evidence; that is, he who asserts what would be
asserted also by someone judging with evidence.49

Similarly he is led to a negative formulation of the law of excluded middle:

It is impossible that someone, who rejects something that is wrongly
accepted by someone else, rejects it wrongly, as well as that some-
one who accepts something, that is wrongly accepted by someone,
accepts it wrongly, presupposed . . . that both judge with the same
mode of representation and with the same mode of judgement.50

From an antirealist point of view, Brentano is certainly on the right track;
he refrains from asserting that a content must be either true or false, in entire
independence of whether it is known to be so. His formulation, though, is not
entirely correct. Brentano, the great crusader against the blind judgment, here
forgets to take it into account. Of course, it is possible that the object A is
wrongly accepted by P1, as well as wrongly rejected by P2, namely, when P1
and P2 both judge blindly, that is, without evidence. On the other hand, the
corresponding formulation of Noncontradiction is correct: It is impossible that
someone rightly rejects what is rightly accepted by someone else.

5. Functions Triumphant: Frege’s Account of Judgment
and Inference

Frege, pace Quine, is generally held to have inaugurated the revolution in logic.
From the present perspective though, his contribution is remarkably slender.
Logical objectivism, with its novel unary judgment, is present wholesale already
in Bolzano, where it is cast in a more perspicuous form. Frege, furthermore, does
not treat of logical consequence among propositions, or Thoughts, as he called
them. For better or worse, Bolzano, with his insistence on replacing inference
with the notion of consequence, makes a much more modern impression than
Frege, whose traditional views on inference have come in for much criticism.
We must not forget, however, that Frege was a mathematician and from the
outset his aims were those of a mathematician rather than of a philosopher. His
contributions to my topic are all subservient to the aim of providing a secure
foundation for mathematical analysis, very much in the style of traditional
Aristotelian foundationalism: One seeks a small number of primitive concepts,
and basic truths concerning those primitives, in terms of which, at least a very
sizable part and preferably all, of mathematics can be formulated, while its
truths can be derived by means of primitive inference steps, where the basic
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axioms and primitive inference steps are made evident from the concepts they
contain.51 In the Begriffschrift booklet from 1879 (what turns out to be) a pre-
liminary version of the formal language is given and the basic notions explained.
In the Grundlagen der Arithmetik from 1884 the program of securing the math-
ematical theorems by means of reducing the mathematical axioms to logical
theorems is spelled out informally. However, Frege was aware of the fact that
he had only made plausible the reduction of arithmetic to logic, since, possibly
at the instigation of the Brentanist Carl Stumpf, the Grundlagen development
was informal and not carried out in the begriffsschrift. Thus Frege could not
guarantee that his demonstration were really gap-free. The means of demon-
stration, whether logical or arithmetical, were not explicitly listed. Accordingly,
his inferences have not been made evident solely from the concepts employed in
them, and so the arithmetical edifice remains shaky. The (considerable) changes
in the begriffsschrift that were put into effect around 1890 served to make the
formal execution of the logicist program feasible; unfortunately, the project
failed owing to the emergence of the Zermelo–Russell paradox in Frege’s system.

Thus, when compared to Bolzano, Frege’s most important contribution
is his begriffsschrift.52 By creating this formal language, Frege provides a
partial realization of the Leibnizian calculus ratiocinator project. That an
inference step, or axiom, is valid depends on contentual aspects pertaining
to the notions from which the step, or axiom, in question has been built.53

However, once such a step has been explicitly formulated and validated in terms
of contents, it is mechanically recognizable as such. No further contentual,
“intuitive” considerations are required to determine whether the inference in
question is valid; being of the appropriate syntactic form suffices and that
form is mechanically, or “blindly,” recognizable.

As far as the theoretical framework is concerned, Frege’s one step over and
beyond Bolzano is minute but with enormous consequences. In both early
and mature formulations of his theory of judgment, Bolzano’s unary form of
judgment is retained:

The circumstance that S is a fact

and

a judgment is not the mere grasping of a Thought, but the acknowl-
edgment of its truth.54

Frege, however, by training and profession was a mathematician. His teaching
activity was mainly devoted to analytical geometry. Through his mentor Ernst
Abbe, one of Riemann’s few students, he also gained access to the latest
developments in the then emerging function theory, that is, that branch of
mathematical analysis that deals with analytic functions in the complex plane.
His logical revolution draws heavily on the notion of function: Instead of
Bolzano’s clumsy form of content “A has b”, Frege carves up his contents using
the versatile form

P (a),
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that is, function P applied to argument a. Frege’s logic is mathematized from
the outset. It is especially well suited for coping with Weierstraß’s rigorous
treatment of analysis; indeed, the notation could have been (and probably was)
invented for the very purpose.55 The familiar concepts of pointwise continuity,
and its refinement into uniform continuity, illustrate this:

(∀x ∈ I)(∀ε > 0)(∃δ > 0)(∀y ∈ I)(|x− y| < δ ⊃ |f(x)− f(y)| < ε)
and

(∀ε > 0)(∃δ > 0)(∀x ∈ I)(∀y ∈ I)(|x− y| < δ ⊃ |f(x)− f(y)| < ε).
These succinct formulations show how admirably the Fregean quantifier is
geared to expressing distinctions involving multiple generality.56 A verbal,
natural language treatment would be much harder to take in.

Frege’s function-theoretic conception of logic imposed an interesting bifur-
cation on his views on truth. Mathematicians speak of the value of a function
for a certain argument. For instance, 2 + 2 is the value of the function x+ 2 for
the argument 2. In the first instance, the plus-two function takes numbers into
numbers, but owing to Frege’s doctrine of universality, it has to be extended
into one defined for all objects. One then makes use of what Quine has called
a “don’t care” argument, for instance,

ξ + 2 =def

{
r + 2 if r is a number;
the Moon otherwise.

Adopting the same perspectives also at the level of sentences, from the complete
sentence

Caesar conquered Gaul,

we get the function
ξ conquered Gaul,

which must also be defined for all objects, including me, the Moon, and Louis
XIV, as well as the number of those grains of sand at Syracuse beach that were
not counted by Archimedes when writing the Sandreckoner, and plutonium, an
element unknown at the time of Frege. A value of the conquering Gaul function
will have to be something close to a judgable content, or Thought. It will not,
however, be a judgable content, because it is not invariant under different
descriptions of the argument. Frege’s by now notorious example concerning
the planet Venus makes this clear:

Venus = Venus, The Morning Star = Venus, and the Evening Star
= Venus

are three values of the function

ξ = Venus.
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Since in all three cases the argument—Venus = The Morning Star = The
Evening Star—is the same, the value has to be the same. The Thought
expressed is different in all three cases.57 Accordingly, the value of the function
for the argument Venus (under any description) is not a Thought. Instead
Frege avails himself of certain ideal objects, the True and the False, that are
known as “truth values,” and serve as appropriate function-values. By the
truth value of a sentence, Frege understands the circumstance that it is true
or that it is false.58 Thus, the common function-value in the three cases above
is the truth value the True. Sentences are then seen as truth value names.59 In
his elucidation of the revised begriffsschrift Frege lays down, for each regular
sentence, under what condition it is a name of the True. The sentence then
expresses, or has as its sense (Sinn), the Thought that this truth condition is
fulfilled.60 Frege’s theory of meaning is a bipartite mediation theory, very much
along the lines of early medieval theories of signification: The sign expresses
its sense that refers to an entity (called Bedeutung by Frege).

In Frege’s theory a number of themes are dealt with that were touched on
in the section 2. Frege deemed it necessary to include in his begriffsschrift a
specific symbol,

�
that makes explicit the assertoric force that the Kundgabe of a judgment made
carries. Frege’s view of inference has come in for much criticism; an inference
is an “act of judgement, which is made, according to logical laws, on the basis
of judgements already made.”61 On the symbolic level, this is reflected in the
omnipresence of the judgment stroke, both on premises and conclusion, in
Frege’s formal inference-figures in the Gg. Modus ponens, for instance, takes
the form

� A ⊃ B � A
� B .62

The sign “�” has changed its meaning and in the logic of today it is an ordi-
nary (meta)mathematical predicate applicable to certain (meta)mathematical
objects, namely wff’s, that is, elements of a free algebra of “expressions” gen-
erated over a certain “alphabet.” When ϕ ∈ wff, “� ϕ” has the meaning there
exists an inductively defined derivation-tree of wff’s with ϕ as end formula; in
particular, the Frege sign does no longer function as a force indicator, but can
be negated and occur in an antecedent of an implication.63 In Frege, however,
it is clear that it expresses assertoric force. Thus, both premises and conclusion
of inferences are known, since, as we remarked, assertions made do contain
claims to knowledge. The practice of drawing inferences from mere hypothesis,
however, in particular as embodied in the works of Gerhard Gentzen, is held
to refute Frege at this point.64

Frege was firmly committed to realism:

Being true (Wahrsein) is something different from being held true
(Fürwahrhalten), be it by one, be it by many, be it by all, and
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can in no way be reduced to it. It would be no contradiction that
something is true that is held false by all.65

This is a clear statement of one of the central roles of truth, namely, its
metaphysical role. By this I understand the task of truth to hold open the
possibility of making mistakes. It is a minimum requirement on any viable
epistemological position that it must allow for the possibility of mistaken acts
of knowledge: “What is true is independent of our acknowledgement. We can
make mistakes.”66

The opposite, “Protagorean” position would make man the measure of
all things and would equate truth with truth-for-us. It would constitute an
epistemological nihilism, where anything goes, along the lines of moral nihilism
within ethics: “If God is dead, everything is permitted.” Mistaken deeds, be
they logico-epistemic or ethical, presuppose a norm. Frege avails himself of
the required norm via the notion of truth for judgable contents. He then
reduces the rightness (Latin rectitudo) of epistemic acts, that is, the notion
that is needed, strictly speaking, to uphold metaphysical realism, to that of
the correctness of the judgment made in such an act, and that correctness
finally to the truth of the Thought that serves as content of the judgment
made. Truth for Thoughts, finally, is bivalent: Any Thought is either true or
false, come what may. Frege secures this via his doctrine of sharp concepts.
Thoughts are the result of applying concepts, that is, functions from objects
to truth values, to objects. Concepts have to be sharply defined on all objects:

The Law of Excluded Third is really the requirement that concepts
be sharply delineated in another guise. An arbitrary object Δ either
falls under the concept Φ, or it does not fall under it: tertium non
datur.67

Thus Frege, and before him Bolzano, secures the metaphysical role of truth,
namely, that of providing the notion of rightness for epistemic acts, via the
bivalence of truth for judgmental contents. This is not the only way to secure
the notion of rightness for acts; Brentano, for instance, rejected the notion
of proposition (Thought) and instead used product-correctness as the basic,
absolute notion. Wittgenstein, on the other hand, did not take propositional
truth as the basic notion, the way Frege and Bolzano did, but reduced it to
the ontological notion of obtaining with respect to states of affairs. One can
also take the notion of rightness as a primitive notion sui generis, which is my
own preferred option.68

Frege throughout his career held the view that truth (for propositions) is sui
generis and indefinable. Since the Thought that S is the same as the Thought
that it is true that S, every Thought contains (the notion of) truth and so
there is no neutral ground left from which to formulate a definition: Every
putative definiens irreducibly contains the definiendum in question. Frege’s
realism, just like Bolzano’s, is a logical one: There is no attempt at a further
ontological reduction of propositional truth. For Frege, a fact is nothing but



280 The Development of Modern Logic

a true Thought and correspondence theories of truth are firmly rejected.69

His ontology is very sparse: objects, functions, and that is all—no facts, no
states of affairs, no tropes, or what have you. Frege held the wheel at the
first bend of the linguistic turn. His only category distinction is that between
saturated and unsaturated entities, and this ontological distinction draws on
the linguistic distinction between expressions with and without gaps into which
other expression may be fitted.

In spite of his thoroughgoing realism, Frege appears committed to the view
that every true proposition can be known as such:

The most secure demonstration is obviously the purely logical,
which, abstracting from the particular character of the things, rests
only on the laws on which all knowledge depends. We then divide
all truths that require a justification into two kinds, in that for the
one, the demonstration can proceed purely logically, for the other
has to be based on facts of experience.70

Truths are then divided into those that need justifications and those that do
not; the former are split into those that have purely logical demonstrations and
those whose demonstrations rest on experiential facts. Thus, in either case, it
appears that if the truth is one that stands in need of justification, then there
is a demonstration. Thus all truths can be known: If it needs no justification,
it can be known from itself, whereas truths that do need justification can be
known through a demonstration, be it logical or empirical.

6. Truth Made: The Correspondence Theory
Strikes Back

Half a decade after Frege’s Hochleistungen, G. E. Moore inaugurated his
realist apostasy from the Hegelianism of his philosophical apprenticeship by
adopting something very much like Bolzano’s theory of propositions with an
an sich notion of simple truth. In this he was soon followed by Bertrand
Russell.71 Russell and Moore were not crystal clear (to put it mildly). The best
formulation of their novel theory was offered by a staunch upholder of the old
order, the idealist H. H. Joachim, whose aptly titled (1906) book The Nature
of Truth has a chapter Truth as a Quality of Independent Entities.
His characterization of the an sich theory of truth is a powerful one:

“Truth” and “Falsity,” in the only strict sense of the terms, are
characteristics of “Propositions.” Every Proposition, in itself in an
entire independence of mind, is true or false; and only Propositions
can be true or false. The truth or falsity of a Proposition is, so to
say, its flavor, which we must recognize, if we recognize it at all,
immediately: much as we appreciate the flavor of pineapple or the
taste of gorgonzola.72
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Joachim also articulated clearly the possibility of unknowable truths on the
an sich reading of truth: “The independent truth will be and remain entirely
in itself, unknown and unknowable.”73 In an oblique way Russell had already
admitted of the possibility of unknowable truths:

Now, for my part, I see no possible way of deciding whether propo-
sitions of infinite complexity are possible or not; but this at least is
clear, that all the propositions known to us (and it would seem, all
propositions that we can know) are of finite complexity.74

In philosophy, claims that something cannot be done are dangerous and
invariably tend to provoke attempts to achieve what has been denied. Frege’s
view that truth is sui generis and cannot be defined was challenged even
before it had been published:75 After yet another decade of logico-semantical
soul-searching Moore and Russell were veering toward the correspondence
theory of truth.76 Both gave reductions of truth in ontological terms by means
of a truth-maker77 analysis in the form

proposition A is true = there exists a truth-maker for A.

In a truth-maker analysis, to each proposition there is related a suitable
notion of truth-maker and also a suitable notion of existence with respect to
such truth-makers. Moore chose “facts” as his truth-makers and Russell used
“complexes.” For Moore, a proposition is true if it corresponds to an existing
fact, and for Russell it is true if the complex to which it corresponds exists.
The intricacies of their respective ontologies of facts and complexes need not
detain us here; both were superseded by Wittgenstein’s Tractatus and are now
merely of historical interest.

The Tractatus rests on three main pillars, to wit (i) Wittgenstein’s famous
picture theory of linguistic representation; (ii) the doctrine of logical atomism,
according to which every proposition is a truth-function of elementary propo-
sitions; and (iii) the Saying/showing doctrine. Of these the picture theory
serves to structure the work.78 In a brief attempt at an exposition, I treat the
proposition

(∗) Peter is the father of John

as if it were a Tractarian elementary proposition.79 Thus, our example (∗) is
an elementary proposition of the form

aRb.

Hence, it must (?) immediately (?) strike us as a picture and indeed even one
that obviously resembles its subject matter (4.12). How can we make sense of
this?

On the ontological side, in the world, we have the state of affairs that
Peter and John stand in the father-son relation. We now have to construe
the propositional sign used to express the proposition (∗) as a fact that



282 The Development of Modern Logic

serves to present this state of affairs. The two structures—linguistic and
ontological—have to be, in mathematical parlance, isomorphic.

Language World

“Peter” Peter
“John” John
Q(a, b) father-son relation
Q(“Peter”, “John”) Peter and John’s standing in the father-son relation

Our task to ensure isomorphism between language and world amounts to
finding an appropriate Q-relation. Obviously the field of such a relation must
consist of expressions and this is the key to Wittgenstein’s solution:

Q(α, β) =def the expressions α and β stand, respectively, immedi-
ately to the left and to the right of the sign-array “is the father of.”80

Hence, “that ‘Peter’ stands in a certain relation, namely the Q-relation, to
‘John’, says that Peter and John stand in the father-son relation” (3.1432).
Using the Q-relation, the sentence-sign (∗) is (or can be viewed as) a fact,
since the two proper names do stand in the Q-relation. This syntactic fact
in turn serves to present the state of affairs that Peter is the father of John.
When this state of affairs exists (or obtains), it is a fact, and the proposition
is true. In this case the proposition is a picture of the fact.

According to the picture theory, every atomic, or elementary, proposition
E presents a state of affairs (Sachverhalt) SE that may or may not obtain
(4.21).81 Accordingly, if the presented state of affairs SE obtains the elementary
proposition is true and depicts (what is then) the fact SE (4.25, 2). States
of affairs are logically independent of each other; from the obtaining of one
nothing can be concluded about the obtaining of another (2.062). A point
(Wahrheitsmöglichkeit) v in logical space LS is an assignment of + (obtains)
and − (does not obtain) to each state of affairs (4.3); in other words, a
point in logical space is a function v from states of affairs to {+,−}. Thus,
LS = {+,−}SV , that is, the collection of functions from the collection SV of
Sachverhalte to {+,−}.

A situation (Sachlage) σ in logical space is a partition of LS into two parts σ+

and σ− (2.11). Points in the positive part σ+ are compatible and those in the
negative part σ− are incompatible with σ. A proposition A is a truth-functional
combination of elementary propositions (5).82 The truth-functional composition
of the proposition A determines whether A is true or false with respect to or
at a point v in LS . A point v ∈ LS induces a {T(rue),F(alse)}-valuation v
on truth-functional propositions in the following way:

For an elementary proposition E,

v(E) = T if v(SE) = +;
v(E) = F if v(SE) = −.
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Thus, an elementary proposition is true at a point v if v is compatible with
the state of affairs that the elementary proposition presents.

For the proposition A = N(ξ),

v(A) = T if v(B) = F for every proposition B in the range ξ;83

v(A) = F otherwise.

Thus, a generalized (joint) negation is true only if all the negated propositions
are true (6, 5.5ff.). A proposition C is a logical consequence of a class Γ of
propositions if for every v ∈ LS such that v(A) = T for every A ∈ Γ also
v(C) = T (5.11, 512).

Because every proposition is obtained through repeated applications of the
N-operation to (suitably presented) ranges of propositions, the explanation
determines fully whether a proposition is true or false at a point in logical
space (5.501–3). The sense (Sinn) of the proposition A is a certain Sachlage
σA in LS (4.021, 4.2).84 The positive part of the sense of A is given by
{ v ∈ LS | v(A) = T }, and similarly for the negative part, of course. The
thesis of truth-functionality then ensures that the Sachlage σA , that is, the
sense of A can be “computed” from the symbol A.

From this epitome it should be clear that the Tractarian logical theory is a
realism of the kind that was inaugurated by Bolzano.85 However, Wittgenstein
carries the logical realism of Bolzano and Frege to a fitting conclusion: The
logical realism of Bolzano is here replaced by an ontological realism. Proposi-
tional truth, the primitive an sich notion of logical realism, is reduced one step
further to a prior ontological notion, namely, the obtaining of states of affairs.
Neither Bolzano nor Frege ignored epistemological issues; in fact, they were of
an all-encompassing importance for Frege’s logicist project. Wittgenstein, on
the other hand, deliberately eschews epistemic concerns in logic, for instance,
the Frege–Russell assertion sign (4.442). Also the epistemic notion of inference
is eliminated in favor of logical consequence by means of the Bolzano reduction
(5.132).

Nevertheless, concerning the deployment of logic, Wittgenstein held that it
must be possible to compute mechanically from the symbols alone whether
one proposition follows from another (5.13, 6.126, 6.1262). He was wrong in
this. In general, the “computation” cannot be executed, owing to its infinitary
character. When he wrote the Tractatus, Wittgenstein was not aware of the
unsolvability of the general Entscheidungsproblem for the predicate calculus. It
was discovered—by Church and Turing—only in 1936, and poses an insuperable
technical obstacle for the Tractarian philosophy of logic and language. Thus,
Wittgenstein’s vision that everything important concerning logic could be read
off mechanically am Symbol allein was rendered illusory.

Wittgenstein was certainly aware of the fact that reasoning presupposes a
correctness norm, because otherwise correct (right) and correct-for-me coincide,
in which case there is no possibility for mistakes anymore. However, rather
than taking rightness (rectitudo) of acts as a primitive notion, he adopts an
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ontological reduction of rightness. The order of explanation runs as follows:
The rightness of the act of inference is reduced to the correctness of the product
of the act, that is the judgment made, or knowledge obtained, which notion,
in its turn, is reduced to the truth of the content. The truth of the content,
finally, is reduced to an ontological notion, namely, that of the obtaining of
states of affairs.86 If objectivity is guaranteed at that level, say, in the form
of bivalence for states of affairs—a state of affairs either obtains or does not
obtain—it can be exported back to other levels, whence the possibility for
mistakes is held open. In diagram form:

The truth-maker reduction in Wittgenstein’s TRACTATUS

(4)
(2) {content of object} ← act of knowledge

↓
SC obtains ↔ [{Proposition C} is true]

↑ ↑
(1) state of affairs [object of the act] (3)

= [asserted statement, statement known].

From an epistemological point of view, the rightness notion for acts of knowl-
edge is the most crucial one. It is enough to uphold the difference between
appearance and reality, and, as such, constitutes the minimum requirement on
a viable epistemology.87

The need for an ultimate correctness-norm for acts of knowledge, Wittgen-
stein certainly knew and accepted. Whereas I prefer to take it as primitive,
Wittgenstein in the Tractatus reduces the rightness of the act to the correct-
ness of the assertion made, and that in turn to the truth of the propositional
content, which, finally, is reduced to the obtaining (and nonobtaining) of the
corresponding state of affairs. Committed realists, when challenged, often
reduce the norm of rightness one step further, from the notion of obtaining for
states of affairs, to “reality itself,” which accordingly has to provide for the
obtaining and nonobtaining of states of affairs. When this reduction is coupled
with the idea that “reality itself” is the sum total of all (material) objects and
the wish to treat also reality itself as a material object, conceptual confusion
results. However, without being a transcendent notion, reality cannot fulfill
its required role as norm. It certainly cannot be subject to contingent facts
the way material objects are, because such facts are responsible to the norm,
whence it cannot be a material object. Wittgenstein had thought harder about
these issues than most and such confusion is certainly avoided in the Tractatus:
“Reality is the obtaining and non-obtaining of states of affairs” (2.06). On
such a view, the notion of obtaining (and nonobtaining) of states of affairs
can (pleaonastically) be reduced to reality itself. On the other had, “reality
itself” thus construed is in no way less transcendent a notion than that of the
obtaining of states of affairs.
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7. Constructive Proofs of Propositions, the Traditional
Form of Judgment Resurfaces

Moore and Russell continue, or perhaps rediscover, the realist stance in logic
that had been advocated by Bolzano. Classical, bivalent logic is upheld for an
sich bearers of truth—the “propositions”—either by means of a primitive sui
generis notion of an sich truth (Bolzano, Frege) or by means of an ontological
reduction of truth via a truth-maker analysis (Moore, Russell, Wittgenstein).
One would not expect such metaphysical generosity concerning truth to come
cheap. The currency in which the price has to be paid is, however, episte-
mological rather than metaphysical: Unknowable truths cannot be ruled out.
The issue is by now a familiar one, owing to the works of Michael Dummett,
who has challenged realist accounts of truth on meaning-theoretical grounds:
Bivalent truth cannot serve as a key concept in an adequate theory of meaning,
owing to the occurrence of propositions with undecidable truth-conditions.88

However, Dummett was not the first to challenge unreflective realism. Already
in the 1880s, the Berlin mathematician Leopold Kronecker and his pupils,
among whom was Jules Molk, challenged the automatic use of realist logic:

Definitions should be algebraic and not merely logical. It is not
enough just to say: “something either is or is not.” Being and non-
being have to be set forth with respect to the particular domain
within which we operate. Only in this way do we take a step forward.
If we define, for instance, an irreducible function as a function that
is not reducible, that is to say, that is not decomposable into other
functions of a fixed kind, we do not give an algebraic definition
at all, we only enunciate what is but a simple logical truth. In
Algebra, for it to be rightful to give this definition, it must be
preceded by the indication of a method that permits one, with the
aid of finitely many rational operations, to obtain the factors of a
reducible function. Such a method only confers an algebraic sense
on the words reducible and irreducible.89

In other words, the following “definition” is not a permissible one:

f(x) =def

{
1 if the Riemann hypothesis is true;
0 if the Riemann hypothesis is false.

When the definition is read classically (or “logically”), the function f is constant
and therefore, trivially, a computable function. However, at the moment of
writing, we are unable to compute the “computable” function in question. On
the “logical” view, f(14), say, is a natural number, but its numerical value
cannot be ascertained. Definitions by means of undecided cases do not admit
the effective substitution of definiens for definiendum. They contravene the
canon for definitions that has been with us for three centuries, ever since
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Pascal.90 This is the price that a mathematician has to pay for unrestricted
use of classical logic. His language will then contain nonprimitive terms that
cannot be eliminated in favor of primitive vocabulary: Accordingly, there is no
guarantee that meaning has been conferred on the terms in question.

The Kronecker criticism, in my opinion rightly, rules out definition of
functions by means of undecidable separation of cases. Possibly a classical
mathematician could live happily without these contrived functions. However,
Dirichlet’s famous definition of the function that is 1 on rational real numbers
and 0 on irrational real numbers provoked a change in the conception of
what a function is and can hardly be dismissed for want of mathematical
interest. It also proceeds by an undecided separation of cases. Many proofs
in classical analysis make use of this method. For instance, the standard
“bisection of intervals” proof of the Bolzano–Weierstraß theorem that every
bounded infinite set of real numbers has an accumulation point proceeds in
exactly this fashion.91 Again, these are mathematical matters and perhaps the
classical logician, rather than the classical mathematician, need not be worried.
Alas, this hope turns out to be forlorn: We only have to notice that Frege’s
explanation of the classical quantifier is cast in the form of an undecided
separation of cases for matters to become more serious. Quantifier(phrase)s
are function(expression)s that take (expressions for) propositional functions
and yield (expressions for) propositions. Propositions, for the mature Frege,
are ways of specifying truth values, and it seems advisable to make explicit
also the relevant domain of quantification.92 Accordingly, we consider a truth
value valued function

A[x] ∈ {The True,The False}, provided that x ∈ D.

Frege then defines the universal quantifier by means of the following
explanation:

(∀x ∈ D)A[x] =def

{
The True, if A[a/x] = The True, provided a ∈ D;
The False, otherwise.

However, when the domain D is infinite, unsharp, or otherwise undecidable,
the separation of cases cannot be carried out and the defined quantifier
cannot be eliminated. Uncharitably put “the classical logician literally does
not know what he is talking about.” To my mind, this is the strongest way
to marshal undecidability considerations against classical logic. The law of
excluded middle is not the real issue.93 Already the classical rules of quantifier
formation are unsound: They do not guarantee that “propositions” formed
accordingly actually do have content.

Until 1930, content was a very live issue. Work on the foundations of
mathematics was dominated by the wish to secure a foundation for the practice
of mathematical analysis after the ε-δ fashion of Weierstraß that satisfies the
following conditions:
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(Ai) a formal system is given, in a syntactically precise way,
(Aii) with meaning explanations that endow the well-formed expression of

its formal language with content,
(Aiii) in such a way that its axioms and rules of inference are made evident,

and
(B) classical logic is validated.

Frege’s GGA was the first substantial attempt to meet the double desiderata
of contentual formalization (A) and classical logic (B), but it foundered
on the Zermelo–Russell paradox: Somewhere in Frege’s §§29–31 there is an
error, since otherwise every regular expression would have a Bedeutung and
every derivable expression would be a name of the True. Whitehead and
Russell also failed in their attempted Principia Mathematica execution of
the foundationalist program: Their meaning explanations do not suffice to
make evident the “Axioms” of Infinity, Choice, and Reducibility. Similarly,
Wittgenstein’s Tractatus provides (an attempt at) a semantic superstructure for
the formal languages designed by Frege and Peano (as modified by Whitehead
and Russell), as does the work of Frank Ramsey (1926). By 1930, faith in the
project is waning: Carnap (1931) represents logicism’s last stand.

The metamathematical Hilbert program (1926) was an attempt to secure
the unlimited use of classical logic, at the price of giving up content, by means
of an application of positivist philosophy of science to mathematics. The
use of classical logic and impredicative methods are all fine as long as “the
verifiable consequences,” that is, those theorems that do have content, actually
“check out.”94 Passing content by, this means that every free-variable equation
between numerical terms that is derivable using also ideal axioms without
content has to be correct, when read with content. Hilbert discovered that
this holds if the ideal system is consistent, that is, does not derive, say, the
formula 0 = 1. In a way, this would have been an ideal approach to the
foundations of mathematics for the working mathematician. The conceptual
analysis required for foundational work, at which a mathematician does not
necessarily excel, is replaced by a clear-cut mathematical issue, to be resolved
by a (meta)mathematical proof, just like any other mathematical problem.
Alas, it was too good to be true: With the appearance of Gödel (1931) all
hope ended here, but the mathematical study of languages without content,
which Hilbert had introduced in pursuit of a certain philosophical program,
stayed on as an mathematical research program even when the philosophical
position had collapsed.

Shortly after 1930, the first wave of (meta)mathematical results come in:
Tarski and Lukasiewicz (1930), the already mentioned Gödel (1931), and Tarski
(1933a, 1933b). Under the influence of these (meta)mathematical successes,
even Carnap, the last logicist diehard, jettisons content and anything goes:

Up to now, in constructing a language the procedure has usually
been, first assign a meaning to the fundamental mathematico-logical
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symbols, and then to consider what sentences and inferences are
seen to be logically correct in accordance with this meaning. . . .

The connection will only become clear when approached from the
opposite direction: let any postulates and rules be chosen arbitrarily;
then this choice, whatever it may be, will determine what meaning
is to be assigned to the fundamental logical symbols.95

The weakness of the position to which Carnap converted is obvious: If anything
goes, what guarantee is there that content can be assigned? After all, there
had been a few attempts at securing analysis already, meaning explanations
and all, that had foundered on inconsistencies in the underlying formalisms. In
such a calculus, demonstrably, no content can be had. Carnap’s novel gospel
is an extremely liberal one:

Principle of Tolerance. It is not our business to set up prohibitions,
but to arrive at conventions. . . .

In logic, there are no morals. Everyone is at liberty to build up
his own logic . . . as he wishes.96

A quarter of a century earlier, at the same time when, in Cambridge,
Russell and Moore bit the bullet of unknowable truths, Carnapian licentious-
ness was rejected on the other side of the North Sea in the (1907) doctoral
dissertation of a young Amsterdam mathematician who took over the torch
of mathematical constructivism from Kronecker. L. E. J. (“Bertus”) Brouwer
(1881–1966) claimed that language use was responsible to the mathematical
deed of construction and not the other way round:

In the edifice of mathematical thought thus erected, language plays
no part other than that of an efficient, but never infallible or
exact, technique for memorizing mathematical constructions, and
for communicating them to others so that mathematical language
by itself can never create new mathematical systems. But because
of the highly logical nature of mathematical language the following
question naturally presents itself. Suppose that, in mathematical
language, trying to deal with an intuitionist mathematical operation,
the figure of an application of one of the principles of classical logic
is, for once, blindly formulated. Does this figure of language then
accompany an actual languageless mathematical procedure in the
actual mathematical system concerned?97

In particular, laws of whatever theoretical logic have no validity on their
own, but have to be applied in such a fashion that they do ensure proper
content. A year after his thesis, Brouwer reaches the conclusion that the law
of excluded middle cannot guarantee that the required deed of construction
can be executed, whence it has to be rejected not as false but as unfounded.98

Thus he refrains from asserting that “A ∨ ¬A is true.”99 Also the method
of proofs by means of nonconstructive dilemma that proceeds by obtaining
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the conclusion that C is true from both the assumption that A is true as
well as from the opposite assumption that A is false and concludes that C is
true, is rejected, as is the method of indirect (or apagogic) proof, when one
assumes a negative claim, obtains a contradiction and concludes a positive
claim from this contradiction. Reductio ad absurdum proofs, on the other
hand, are perfectly acceptable to constructivists: In these one proves a negative
claim from a positive assumption that yields a contradiction. Here a method
is provided for obtaining a contradiction from an assumption that constitutes
a construction for the negation.

Mere formulation or postulation does not automatically confer validity on
the rules in question. Formulation alone is not enough to secure preservation
of content at the level of the mathematical deed of construction. In this,
surprisingly enough, Brouwer resembles Frege who, at roughly the same time,
severely criticized formalist accounts of mathematics for their lack of content.100

For Frege, however, it was a commonplace that the contents expressed by
declaratives have to be bivalent propositions, tertium non datur. Frege hoped
to secure this by making the bond between propositions and truth values
a tight one: A proposition is a means of presenting a truth value. Owing
to lack of effectiveness in some of the chosen means of presentation, for
example, quantification with respect to an infinite domain via an undecidable
separation of cases, an operational want of content is the result. Accordingly,
Brouwer, as well as other mathematical constructivists who insist on the
constructional deed in mathematics, will have to provide for another notion
of proposition than that of (a mode of presentation of) a truth value, if the
formal logical calculi shall not be void of content. This Brouwer did only by
precept in his mathematical work: With a lifelong love-hate relationship to
language, he never took to formalization and the emerging symbolic calculi
of logic.101

It was left to others, to wit Hermann Weyl, one of few first-rate mathemati-
cians with a sympathy for intuitionism, and Brouwer’s pupil Arend Heyting,
to formulate the required notions explicitly. Brouwer’s style of exposition
in his intuitionistic writings was not to everybody’s taste and Weyl, who
deftly wielded a polemical pen, took over the early propaganda work, at which
he excelled. From his study at Göttingen, Weyl had firsthand knowledge of
Husserl’s phenomenology, and this influence can be seen in his writings around
1920.102 It was left to him, possibly drawing on work of Schlick and Pfänder, to
formulate explicitly the required notion of constructive existence to be applied
in a constructive truth-maker analysis:

An existential proposition—for instance, “there is an even number”
—is not at all a proper judgement that expresses a state of affairs;
existential states of affairs are an empty invention of logicians. “2
is an even number”: that is a real judgement that expresses a state
of affairs; “there is an even number” is only a judgement-abstract
that has been obtained from this judgement.103
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Here we have a novel form of judgment, namely,

α exists,

where α is a general concept. Its assertion condition is given by the rule

a is an α
α exists

,

whence one is entitled to assert that α exists only if one already knows an α.104

The contribution of Heyting is twofold. First, he gave an explicit formulation
of the proper intuitionistic rules of logic.105 Second, he intervened decisively
in a confused debate whether logic according to intuitionists would need a
third truth value: true, false, and undefined, thereby leading to a law of
the “excluded fourth,” and so on.106 In his intervention Heyting formulated
explicitly a constructivist notion of proposition that admits of a truth-maker
analysis:

A proposition p, for example, “Euler’s constant is rational” expresses
a problem, or better still, a certain expectation (that of finding
two integers a and b such that C = a/b) that may be realized or
disappointed.107

Here the intuitionistic novelty is introduced: proofs of propositions, that is,
judgable contents, rather than judgments. All previous proving in the history
of logic and mathematics had been at the level of judgment and not at that of
their contents. These proofs of propositions are not epistemic but ontological
in character; inspection of the examples given by Heyting and Brouwer reveals
that they are common or garden mathematical objects: functions, ordered
pairs, and so on. A proposition A is given by a certain set Proof(A) of proof-
objects for the proposition in question. Many alternative formulations have
been offered:

Proposition Proof Heyting (1934)
Intention
Expectation Fulfillment Heyting (1930), (1931)

Problem Solution Heyting (1930), Kolmogorov (1932)
Type Object Howard (1980)
Set Element Martin-Löf (1982)
Specification Program Martin-Löf (1982)

The explanation of the standard logical constants then take the following form:

⊥ There are no proofs for ⊥.

& When a is a proof for A and b is a proof for B, 〈a, b〉 is a proof for A&B.

∨ When a is a proof for A, i(a) is a proof for A ∨B.
When b is a proof for B, j(a) is a proof for A ∨B.



A Century of Judgment and Inference, 1837–1936 291

⊃ When b is a proof for B, provided x is a proof for A, λx.b is a proof for
A ⊃ B.

∀ When D is a set, P is a proposition, when x ∈ D, and b is a proof for P ,
when x ∈ D, λx.b is a proof for (∀x ∈ D)P .

∃ When D is a set, a ∈ D, P is a proposition, when x ∈ D, and b is a proof
for P [a/x], 〈a, b〉 is a proof for (∃x ∈ D)P .108

The constructivist truth-maker analysis then takes the form

proposition A is true = Proof(A) exists,

where the notion of existence is the constructive (Brouwer–)Weyl existence
already explained.109 The wheel has come full circle: A judgment made that
ascribes truth to a proposition is elliptic for another judgment in the fully
explicit form: a is a Proof(A), which is nothing but a judgment of the traditional
form: S is P .110

Transformation of the form of judgment

Traditional binary form
S is P

Existential unary forms
Brentano ±

Concept α IS (exists)

Bolzano 1837 unary form
Prop. A is true

Frege 1879
Prop. P (A) is true

Russell, Moore, 1910
Truth-maker analysis

Prop. A is true =
The concept Truth-maker [A] exists

Realist: Constructive:

Tractatus 1921
Elementary prop. A is true =

Sachverhalt SA obtains

Heyting 1930
Prop. A is true =
Proof(A) exists

Weyl 1921
Constructive existence

p is a Proof(A)
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8. Inference versus Consequence: How Gentzen Had It
Both Ways

The interpreted formal systems of Frege, Whitehead and Russell, and Heyting
were all axiomatic. These systems (are meant to) have an intended interpre-
tation in terms of the respective meaning explanations. In such systems, a
formal derivation is or can be read as a proof that shows that its conclusion
formula, when read according to its interpretation, does express a truth. In the
modern metamathematical systems of propositional and predicate logic, on the
other hand, the end-formula has no intended interpretation, but has to be true
under any truth value assignment or set-theoretic interpretation, respectively.
Frege, furthermore, explicitly held that one can only draw inferences from
known premises. This claim has been controverted, most famously by Gentzen,
who created another kind of formalism in his 1933 Göttingen dissertation.111

The derivable objects are still formulae, but may depend on assumptions,
and several rules serve to discharge open assumptions. A derivation takes the
general form:

(D)

A1, A2, . . . , Ak
. .
. .
.
C

where A1, . . . , Ak are the undischarged assumption on which the end-formula
C depends. The rules of inference are divided into two groups of introduction
and elimination rules. The conjunction introduction rule (&I), say, allows
you to proceed to the conclusion A & B, given two derivations of A and B,
respectively, that depend on open assumptions in the lists Γ and Δ, respectively.
The derivation of A&B depends on open assumptions in the joint list Γ, Δ.
The rule (&E) of conjunction elimination, on the other hand, allows you to
obtain the conclusion A from the premise A&B, and also the conclusion B
from the same premise, while the open assumptions remain unchanged. The
rule (⊃I) of implication introduction allows one to proceed to A ⊃ B from
the premise B that has been derived from assumption formulae in the list Γ,
while discharging as many premises of the form A as one wants—one, many,
or none. The derivation of A ⊃ B depends on assumptions in the list Γ1,
where Γ1 coincides with Γ, except possibly for some deleted occurrences of
the assumption formula A. The system is convenient to work with when one
actually has to find the derivations in question.

Michael Dummett put the case for Gentzen’s natural deduction as follows:

Frege’s account of inference allows no place for a[n] . . . act of sup-
position. Gentzen later had the highly successful idea of formalizing
inference so as to leave a place for the introduction of hypotheses.
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Indeed, “it can be said of Gentzen that it was he who showed how proof
theory should be done.”112 However, Dummett’s comparison between Frege
and Gentzen is not entirely fair, since it does not take the metamathematical
paradigm shift into account. For Frege, the formal system was a tool in the
epistemological analysis of mathematics: it was actually used for for proving
theorems. For Gentzen, (meta)mathematician, or Beweistheoretiker, the formal
system was Hilbertian, that is, an object of study, without content, about
which one proves (meta)mathematical theorems, such as, for instance, his
famous (1936, 1938) consistency theorem by means of ε0-induction. For a fair
comparison, the respective formal systems of Frege and Gentzen accordingly
have to be placed on an equal footing: We either divest Frege systems of
their content and treat them as if they were metamathematical, or we sup-
ply meaning explanations for the key notions in Gentzen’s systems, so as to
endow its object “language” with content. The present chapter is devoted
to the notion of judgment, and an inference is nothing but a judgment of
a particular (mediate) kind. However, without content no judgment, so it
is to the second of these alternatives that we have to turn. Our task is to
give a reformulation, call it Gentzen, of Gentzen, at the same level of in-
terpretation as that provided by Frege. The early stages of the conversion
present no difficulties: It is clear that the wff’s in the formal language, say,
of first-order arithmetic, can be interpreted as propositions. The syntactic
terms are readily turned into numerical expressions, and the predicates <
and = obviously lend themselves for interpretation as the computable nu-
merical relations less than and identity, respectively. So far so good; with
respect to elementary syntax and semantics, Frege and Gentzen march in
step.

The difficulties arise when we turn to the pragmatic dimension that is
involved in Frege’s use of the turnstile as an assertion sign, that is, as an
explicit force indicator. Gentzen does not use a turnstile, but if he had it
would undoubtedly have been used as a Kleene–Rosser theorem predicate;
Gentzen was a (meta)mathematician. Here we see a first difficulty for Gentzen:
Gentzen (and with him other metamathematicans) used his wff’s in two
roles. Wff’s are fed to connectives, that is, Frege’s Gedankengefüge, to build
other, more complex wff’s: Accordingly, for Gentzen they are propositions.
On the other hand, Gentzen also used wff’s as end formulae of derivation
trees: Accordingly, for Gentzen, the wff’s also have to be turned into theorems,
that is, assertions (judgments made) that propositions are true. Here Gentzen
confronts a potentially damaging ambiguity. However, we must allow him the
same leeway as that offered to Frege: He can make use of the turnstile as an
assertion sign, and also other force indicators, should he want to do so. The
obvious option for Gentzen is to use two force indicators, one for assertion
(�) and another for assumption (�). Finally, Gentzen also has to interpret the
derivation trees of Gentzen. The Gentzen derivation D will be interpreted by
means of the following procedure:
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i. Append “is true” to each wff that stands on its own at a node in D
(rather than as part of another wff);

ii. prefix transformed wff’s “A is true” of assumption formulae by the
assumption sign “�” and prefix transformed “A is true” of conclusion
formulae by the assertion sign “�”;

iii. interpret all wff’s in D as propositions.

The result is the tree D′′:

(D′′)

� A1 is true, � A2 is true, . . . , � Ak is true,
. .

. .
.

� C is true.

We may have some hope thatD′′ will serve as a flow-chart for a proof-act that
yields the knowledge that proposition C is true. However, this simpleminded
approach does not work: The interaction of the two kinds of force—assumption
and assertion—is more involved. Consideration of an example, in which proof-
theoretical experts will recognize one of Dag Prawitz’s reduction figures, makes
this clear:113

(d)

[A]
|
B |
A ⊃ B A

B

This tree is dressed according to the procedure and transformed into the tree

(d′)

� A is true (1)

|
B is true (2) |

� A ⊃ B is true (3) � A is true (4)

� B is true (5)

The force apparatus is almost equal to its task: the proposition A occurs as
part of an assertion (4), of an assumption (1), and as an unasserted part of an
assertion (3). The notation is rich enough to distinguish these cases clearly.
With respect to the proposition B matters are less fortunate, though. For the
proposition B, assertion (5) and unasserted part (3) are coped with, in the
same way as for the proposition A. The premise that B is true of the (⊃I) rule
(2), however, is neither assumed nor asserted, and its force cannot be expressed
with the two force indicators at hand. There one asserts that the proposition B
is true, provided that the proposition A is true.114 One must note, though,
that it is not the assertion that is hypothetical or conditional; the assertion
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is categorical, whereas the notion of truth has been made conditional. We no
longer ascribe outright truth to the proposition B, but only the constrained
notion

. . . is true, provided that A is true.

Thus we have an unconditional, categorical assertion that conditional truth
pertains to the proposition B. Strictly speaking, this is a novel form of judgment.
The derivation tree D′ above, where the assumptions

A1 is true, A2 is true, . . . , Ak is true

are still open, or undischarged, does not allow for the ascription of outright
truth to the proposition C, but only of truth on condition that A1 is true, A2
is true, . . . , Ak is true. The general case of the weakened, conditional truth in
question will then be:

. . . is true (A1 is true, A2 is true, . . . , Ak is true).

Accordingly nodes in derivation trees are not covered with statements of the
form

A is true,

but with statements of the conditional form. Effecting this transformation, the
derivation tree D ultimately takes the form D′′′:

(D′′′)

A1 is true (A1 is true), A2 is true (A2 is true), . . . , Ak is true (Ak is true)
. .

. .
.

C is true (A1 is true, A2 is true, . . . , Ak is true).

The relevant notion of assertion is still categorical, but the truth that is
asserted of various proposition may be weakened. We must distinguish between
the two statements:

i. proposition A ⊃ B is true,

ii. B is true, provided that A is true, or its (synonymous) variant,

ii′. if A is true, then B is true.

The statement (i) is explained classically via truth-making of atomic propo-
sitions and then inductively via the truth tables, say, and constructively in
terms of an assertion-condition demanding a (canonical) proof-object, as in
section 7.

From the constructive point of view, an assertion of the final statement in
D′′′, that is,

(∗) C is true (A1 is true, . . . , Ak is true),
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demands a dependent proof-object:

(∗∗) c is a proof of C, provided that
x1 is a proof of A1, . . . , xk is a proof of Ak.

Accordingly, the conditional statement (∗) represents a novel form of judg-
ment, with the assertion condition (∗∗). This suggests how natural deduc-
tion derivations should be interpreted: They are notations for dependent
proof-objects.

Gentzen did not have only one format for natural deduction derivations
but two. Sometimes they are considered as mere notational variants.115 In the
present context their differences are significant. In 1936 he used a sequential
format for the derivations.116 The derivable objects are no longer well-formed
formulae, but sequents. A sequent

A1, A2, . . . , Ak ⇒ C
lists all the open assumptions on which C depends. Derivations have no
assumptions, but axioms only of the form

A⇒ A,
with the Gentzen interpretation

A is true, provided that A is true,

indeed, something undeniably correct, albeit not very enlightening. Consid-
eration of the tree D′′′ shows that its top formulae are axioms of this kind
and that the conditional statements at the nodes in the tree are nothing but
sequents in another notation.

Because there are no acts of assumption, no discharge of assumptions takes
place, but antecedent (assumption-)formulae can get struck out; for instance,
the rule (⊃I) takes the form

A,Γ ⇒ B
Γ ⇒ A ⊃ B .

Conjunction introduction (&I) will be

Γ ⇒ A Δ ⇒ B
Γ,Δ ⇒ A&B

.

On the Gentzen interpretation the sequent A1, . . . , Ak ⇒ C is interpreted as

C is true, on condition that A1 is true, . . . , Ak is true,

and the Gentzen sequent should properly include the truth ascriptions:

A1 is true, . . . , Ak is true ⇒ C is true.
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Derivations in the sequential format of natural deduction describe, or are,
blueprints for proof-acts that certain propositions are conditionally true. Prop-
erly speaking, we have here a treatment of consequence relations among
propositions: The consequent proposition is true when the antecedents are all
true. One should also note that the statement

proposition C is true

is a special case of the sequent, when the number k of antecedent propositions
= 0.

The sequents can also be read as closed sequents

(A1, . . . , Ak) ⇒ C.117

Just as the Gentzen sequents represent a novel form of judgment, so do these
closed sequents, and their Gentzen interpretation should be

the sequent (A1, . . . , Ak) ⇒ C holds.

To have the right to assert that a closed sequent holds we must give a verifying
object. This is a function f that takes proofs a1, . . . , ak of the antecedent
propositions into a proof

f(a1, . . . , ak) of the consequent proposition C.

We must distinguish between three equiassertible statements:

the proposition A ⊃ B is true
(demands a proof of A ⊃ B);

the conditional statement (open sequent) A true ⇒ B true
(demands a dependent proof b of B, provided that x is a proof of A);

the closed sequent (A) ⇒ B holds
(demands a function from Proof(A) into Proof(B)).

The assertion condition is different in all three cases, but one can be met
only if the other two can also be met. Furthermore, one reason that these
notions are not always kept apart is that all three are refutable by the same
counterinstance, namely, a proof-object a of A and a dependent proof-object c
for the open sequent B true ⇒ ⊥ true.

With this distinction, my treatment of the sequent calculus comes to an end.
At the level of assertion, there is apparently little to choose between Gentzen
and Frege.

It only seems fair to let Frege have the last word: The repeated Frege
conditional

. . . C
Ak
...
A1
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is commonly read as the implication

(A1 ⊃ (A2 ⊃ (· · · ⊃ (Ak ⊃ C) · · · ))).
However, rotating the Frege conditional 90° clockwise, while altering the
notation only slightly, produces another familiar result as the late Pavel Tichý
(1988, pp. 248–252) observed, namely

A1, A2, . . . , Ak ⇒ C.118

The correspondence between the calculi of Frege and Gentzen operates even
with respect to the fine structure of the rules, sometimes even exhibiting a
surprising(?) resemblance of terminology. Thus, the following question acquires
some urgency: Did Gentzen read Frege’s Grundgesetze prior to 1933, the year
in which his dissertation was composed?119

Be that as it may. Bolzano gave us a coherent theory of (logical) consequence
between propositions. Frege was more right about inference from judgments
made to judgment than he is given credit for. However, only in Gentzen’s se-
quential natural deduction do we have a theory that treats of both consequence
as well as inference.

Brief Biographical Notes
1. Bernard Bolzano, 1781–1848120 A Bohemian priest of Italian origin, who
held the chair of Philosophy of Religion at the Charles University in Prague
from 1805 until 1820, when he was summarily dismissed, as well as barred from
public teaching and preaching, for holding too liberal views concerning matters
both spiritual and temporal, gave fundamental contributions to mathematical
analysis (“Bolzano–Weierstraß theorem”). A wholly admirable man, he led a
retiring life with friends in the Bohemian countryside, devoting himself to logical
and mathematical researches. The magnitude of Bolzano’s contribution to
logical theory, as well as to philosophy in general, can hardly be overestimated.
Being censored, it was left unrecognised, thereby retarding logical progress
by half a century. Appreciation is mounting with the growing volume of the
Gesamtausgabe, and Bolzano might yet receive the credit that is so amply his
due: “the greatest philosopher of the nineteenth century, bar none.”121

2. Franz Brentano, 1838–1917 Brentano belonged to a prominent German
cultural family. Ordained a priest, he held, after impressive Aristotle studies, a
(Catholic) extraordinary chair in Philosophy at Würzburg. Misgivings over the
definition of Papal Infallibility in 1870 led him to renounce the priesthood and
change his chair for one in Vienna, where his lectures aquired cult status as
society happenings. The Concordat between Austria and the Vatican allegedly
forbade Austrian ex-priests to marry and led him to resign also this chair
and his Austrian citizenship in 1880; having taken Saxon citizenship he then
married, confidently expecting reappoinment. This never happened, reputedly
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at the personal instigation of the emperor; after 15 years as Privatdozent,
the former Professor Brentano left Austria and settled in Florence. Blindness
darkened his last decade, to which belong important brief essays on truth as
well as a wide-ranging correspondence with utterly devoted pupils. Italy’s entry
into World War I forced a final move to Switzerland, where Brentano died in
1917. Brentano, an outstandingly successful lecturer and supervisor, though
not devoid of dictatorial leanings, had highly able doctoral students, who
bitterly disappointed him by not speaking in unison with their master’s voice.
Nevertheless, his influence ranges wide, not only among devoted Brentanists,
but also in two major schools of twentieth-century philosophy, to wit, the Lvow-
Warsaw school under Twardowski, the first to introduce analytical techniques,
and Husserl’s phenomenology.

3. Gottlob Frege, 1848–1925 A German mathematician at Jena who taught
(mainly) analytical geometry several hours a week, never reached the rank
of Ordinarius but gave fundamental contributions to the foundations of logic
and mathematics. In the Begriffsschrift and Die Grundlagen der Arithmetik
the program of reducing arithmetic to logic, as well as the logic to which
it was to be reduced, are set out with great lucidity. His attempt at a fully
rigorous execution of his foundationalist program, in the Grundgesetze der
Arithmetik, proved to be irredeemably flawed owing to the emergence of the
Zermelo–Russell paradox within the system. Three important essays from the
early 1890s provide a philosophical underpinning for the Grundgesetze. Of
these, Über Sinn und Bedeutung is commonly regarded as the origin of modern
philosophy of language. Frege founded no school, and, for a long time was only
known through and for his influence on major figures such as Russell, Carnap,
and Wittgenstein. A deeply conservative man in matters cultural and political,
Frege died forgotten in the Weimar Republic to which he could not relate. His
contributions to logic, its philosophy, and the philosophies of mathematics and
language are now recognized in their own right, and not only as an influence
on others, whereby Frege rightly emerges as a major thinker of the nineteenth
century.

4. Ludwig Wittgenstein, 1889–1951 The youngest son of Karl Wittgenstein,
a main architect of the Industrial Revolution in Austria, as well as one the
wealthiest men in Europe, was educated at the Oberrealshule in Linz, where
Adolf Hitler was a fellow pupil, and subsequently at the Technische Hochschule,
Berlin-Charlottenburg, and Manchester University, prior to settling at Cam-
bridge, where his work on the foundations of logic ripened in close contact
with Bertrand Russell, in relation to whom Wittgenstein went through the
stages of pupil, co-worker, and implacable critic. At the outbreak of World
War I, Wittgenstein volunteered for the Austrian army, and during the war he
refined and deepened his views on logic that were published in the aphoris-
tic Logisch-Philosophische Abhandlung, now universally known as Tractatus
(Logico-Philosophicus). After the Great War, Wittgenstein gave away his in-
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herited fortune and became a schoolteacher in the hinterlands of lower Austria.
A Vienna lecture by L. E. J. Brouwer, March 1928, rekindled his interest in
philosophy, and led him to return to England. Keynes wrote to his wife: “God
is in England. I met him at the 5.15 train.” Elected a fellow of Trinity, and
from 1939 professor in succession to G. E. Moore, Wittgenstein developed an
entirely novel conception of philosophy, on which he published nothing. A
stern man, more unsparing of himself than of others, Wittgenstein died in
1951, his last words being: “Tell them I have had a wonderful life.”

Notes
1. Barnes (1988, p. 48). I am indebted to my Leyden colleague Dr. J. van Ophuijsen

for drawing my attention to this marvelous passage.
2. (1950), p. vii.
3. Putnam (1982), Boolos (1994). Boolos also canvasses 1858, the year in which

Dedekind cut the rationals, as a candidate.
4. I have argued as much, in and out of print, since 1988 (p. 4).
5. Thus texts would comprise three main parts, or “books”: Of Terms, Of Judge-

ment, and Of Reasoning, and possibly a final part treating Of Method. Kant’s Jäsche
Logik is a good case in point.

6. The diagram draws on a similar one in Maritain (1946, p. 6) but is reasonably
standard. Maritain’s source, and also that of virtually all other neo-Thomists, is the
splendid Ars Logica by John of St. Thomas.

7. Fichte (1797) (which bears the title Wissenschaftslehre). The convenient
representation of the act/object distinction was introduced in Martin-Löf (1987).

8. A committed anti-antirealist, or the unbiased reader, might prefer the less
pejorative realist for the other alternative.

9. Here the vertical bars above the judgments J1, J2, . . . , Jk represent acts that
yield, respectively, the judgment in question.

10. KdrV, A69. “Wir können alle Handlungen des Verstandes auf Urteile zurück-
führen, so daß der Ve r s t a n d überhaupt als ein Ve r m ö g e n z u u r t e i l e n
vorgestellt werden kann.”

11. And by Heidegger, or so I have been told.
12. As does judgment: act of judging versus judgment made.
13. Recent scholarly tradition associates this familiar example with Tarski (1944).

It is, nevertheless, considerably older than so. We find it in Boole (1854, p. 52), as
well as in Hilbert and Ackermann (1928, p. 4) (who undoubtedly have it from Boole).
The latter is cited by Tarski in Der Wahrheitsbegriff. However, the ultimate source
for the present-day logical obsession with arctic meteorology might well be Aristotle’s
Prior Analytics, Book A, ch. iv, where we find a discussion of things—among them
snow—that admit the predication of “white.”

14. Here the letter S serves as a schematic letter for declaratives.
15. For lack of space, in what is after all an inquiry into the recent history of

logic, I must here leave well-known (spät) Wittgensteinian claims to the contrary
without due consideration. I simply register my conviction that they do not present
an insurmountable obstacle, and that my view as given in the text is essentially
correct.
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16. Sometimes a single utterance of the nominalization will, nevertheless, effect
the required assertion, for example, when responding to the question: “Which of the
two alternatives is the true one?”

17. The apt term judgable content we owe to Frege’s Bs. His beurtheilbarer Inhalt
has been variously rendered into English as (i) possible content of judgment (Geach),
(ii) content that can be judged (Van Heijenoort), (iii) judicable content (Jourdain),
and (iv) judgable content (Dummett). Of these, the last deserves preference over
the second for the sake of brevity, while the first is likely to cause serious confusion,
owing to its pointing in the direction of modal logic.

18. This is not the full story. The right to ask for grounds, when faced with an
assertion made, shows that there is an implicit claim to knowledge contained in the
assertoric force with which the sentence has been uttered, and which sometimes
comes to the fore, for instance, in Moore’s paradoxical assertion of

It is raining but I do not believe it.

Thus,
I know that snow is white,

which is in the performative first person, might have been a more felicitous form to
use for the assertion made by means of my assertoric utterance of the declarative
“Snow is white,” were it not for the fact that it is prone to be conflated with the
third-person use of the first person, which, when applied to me, is synonymous with

Göran Sundholm knows that snow is white.

19. This linguistic turn in philosophy was so named by Gustav Bergmann (1964,
p. 177). The term gained wide currency after Richard Rorty (1967) chose it for his
title.

20. Weighty in every sense of the word; its four volumes add up to a total of close
to 2500 pages.

21. Kant, KdrV, B VIII (my translation).
22. The Kantian authority for Jäsche’s text is not undisputed, see Boswell (1988).
23. The English rendering of Bolzano’s Satz an sich is a matter of some delicacy.

The modern, Moore-Russell notion of proposition, being an English counterpart
of the Fregean Thought (German Gedanke), really is an an sich notion, and, for
our purposes, essentially the same as Bolzano’s Satz an sich. Thus, proposition-in-
itself is pleonastic: The in-itself component is already included in the proposition.
Furthermore, the mental propositions and their linguistic signs, that is, written or
spoken propositions, as explained, carry assertoric force, whereas Bolzano’s Sätze
an sich manifestly do not, serving, as they do, in the role of judgmental content.
Accordingly, it might be better to use Sentence in itself, which does not seem to
carry the presumption of assertoric force. However, as Ockham and other medieval
thinkers noted, the propositio mentalis, and its matching exterior signs, can be further
analyzed into propositio judicationis, which does carry assertoric force, and propositio
apprehensionis, which does not. Ockham has Quodlibetal Questions with congenial
titles: Questio V:vi “Is an act of apprehending really distinct from an act of judging?”
and Q iv:16 “Does every act of assenting presuppose an act of apprehending with
respect to the same object?” So from this point of view, Bolzano’s proposition-in-itself
is obtained by severing the (mental) links that tie the propositio apprehensionis to
its mental origin and its linguistic signs.
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24. WL, §34.
25. Occasionally I shall permit myself to drop the “in-itself” idiom in the interest

of perspicuity and readability and speak just of “propositions.”
26. Contrary to a common misapprehension, Frege, who employed the term

third realm in 1918, is not its progenitor. It was in general use in neo-Kantian
circles. Gottfried Gabriel’s lemma Reich, drittes in the Historisches Wörterbuch der
Philosophie tells the full story.

27. In some theories, for instance, that of Frege, propositions (thoughts) are
explained as the meanings of declarative sentences. This is not Bolzano’s way of
proceeding, the sui generis, absolutely mind- and language-independent propositions-
in-themselves, are there in their own right, so to say, and they are capable of fulfilling
various logical offices, among them that of serving as sentence meanings.

28. The reader will please note long shadows being cast forward toward Tarski
(1944). Bolzano (§28) has a discussion of whether really is really necessary in the
right side of this explanation.

29. WL, §154 (4). “Auch leuchtete jedem die Ähnlichkeit ein, die zwischen diesem
Verhältnisse unter den Sätzen und zwischen jenem, welches . . . unter Vorstellungen
. . . obwaltet. Was nähmlich bei Vorstellungen den Umstand gilt, ob ein gewisser
Gegenstand durch sie in der Tat vorgestellt werde, das gilt bei Sätzen der Umstand,
ob ihnen Wahrheit zukomme oder nicht.”

30. When snow is white, the idea-in-itself the whiteness of snow is instantiated
and the idea the blackness of snow is not.

31. Sebestik (1992) offers a beautiful précis of Bolzano’s framework.
32. WL, §138. The categorical judgments of the A and I forms and O are treated

of, respectively, at §225 Anmerkung, and §171. The treatment of an O judgment
(Some α is not β) follows the pattern of the I judgments: The idea-in-itself of an α
that is not β has Gegenständlichkeit.

33. The falsity of false propositions-in-themselves is also an sich.
34. WL, §34. The status of my chosen form of judgment [A is true] is very delicate

with respect to Bolzano’s system. On the one hand, it has to be a proposition-in-itself,
since the iteration of . . . is true is the key step in Bolzano’s non-apagogic “proof”
that there are infinitely many true propositions-in-themselves (WL, §32). On the
other hand, propositions-in-themselves are supposed to be sentence meanings, as well
as the bearers of truth and falsity, as is clearly documented by the following passage
(cited from Mark Textor [1996], p. 10) in Bolzano’s Von der mathematischen Lehrart
(my translation): “not what grammarians call a proposition, namely the linguistic
expression, but rather the sense of this expression, that must always be only one
of true or false, is for me a proposition in itself or an objective proposition.” The
sense (Sinn) of the declarative sentence (grammatical proposition) “Snow is white” is
that snow is white. Furthermore, that-clauses are what yield grammatical declarative
sentences when saturated with “is true” or “is false.” Accordingly, that-clauses seem
to be the appropriate linguistic counterparts to propositions-in-themselves. But then,
the ascription of truth to a proposition-in-itself is not a proposition-in-itself, since the
declarative “the proposition-in-itself A is true” isn’t a that-clause, that is, does not
have the required form for being (the linguistic counterpart of) a proposition-in-itself.
This note attempts to answer Wolfgang Künne, who objected, after my Cracow
lecture, that for Bolzano, [A is true] is just another proposition-in-itself, but not
a judgment. In spite of the considerations, on balance, I am inclined to think that
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this might be an instance where I let my systematic preferences override historical
subtleties, and that some injustice is done to Bolzano.

35. Franz Brentano, for whom the problem of the blind judgment became a
major issue, and whose views will be considered in the sequel, propagated this
apt terminology. As Per Martin-Löf has pointed out to me, the notion and term
might ultimately derive back to Plato, The Republic, 506c: “opinions divorced from
knowledge, are ugly things[.] The best of them are blind. Or do you think that those
who hold some correct opinion without evidence differ appreciably from blind men
who go the right way?”

36. WL, §36. Fairness bids me to report that Bolzano was aware of a certain
awkwardness in his doctrine at this point. In WL, §314, with the telling title “Are
there Definite Limits to Our Capacity for Knowledge?,” he notes:

For since every judgment that agrees with the truth is a piece of knowl-
edge, even if that agreement is only accidental and had come about only
by way of previous errors, it can very well be seen that the limits of
our capacity for knowledge, if we were able to abide by such a broad
definition, would fluctuate everywhere, since mere chance and even a
mistake could contribute to its enlargement.

In this connection we should further note that according to Bolzano, every truth is
knowable, since God knows the truth of every true proposition-in-itself, whence it
can be known: ab esse ad posse valet illatio.

37. In much the same way, Bolzano profited immeasurably from having Kant, the
foremost idealist of the age, as his main target. That can be seen by comparing the
pristine clarity of Bolzano’s work with the murkiness of early Moore and Russell 60
years later. Their realism was the result of an apostasy from and battle with a much
inferior version of idealism, namely the British Hegelianism of Bradley, Green, and
Bosanquet. Another example of the same phenomenon is provided by Wittgenstein,
who, according to Geach (1977, vi), held Frege’s Der Gedanke in low esteem: “it
attacked idealism on its weak side, whereas a worthwhile criticism of idealism would
attack it just where it was strongest.” The destructive side of a philosophical position
seems to gain in quality with the target it attacks.

38. Apparently Bolzano was unable to give a material criterion for what it is to
be a (non)logical idea, but then so were his successors, who offered virtually identical
accounts of logical truth and consequence a century later.

39. The foregoing brief formulations do not do perfect justice to Bolzano on
a number of scores. (i) Logical consequence (in the modern sense) is a two-place
relation between antecedent and succedent propositions, whereas Ableitbarkeit, be it
logical or not, is a three-place relation between antecedent proposition(s), consequent
proposition(s), and idea(s) (that occur in at least one antecedent or consequent
proposition), where the ideas indicate the places where the variation takes place.
Logical Ableitbarkeit considers variation with respect to the collection of all nonlogical
ideas that occur in the antecedent and consequent propositions. As a limiting case
(possibly one rejected by Bolzano) one might consider merely material Ableitbarkeit
that consists in the preservation of truth under variation with respect to no ideas,
and which holds between A1, A2, . . . , Ak and C, when the implication

(A1 &A2 & · · ·&Ak) ⊃ C
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is just true, but not necessarily logically true. (ii) With respect to the consequence
(or sequent in the terminology of Hertz and Gentzen)

A1, A2, . . . , Ak ⇒ B1, B2, . . . , Bm,

Bolzano demands that the A’s and the B’s be compatible, that is, there must be
some suitable variation that makes them all true. Furthermore (iii), modern theory
holds that the multiple-succedent sequent should be read as

A1 &A2 & · · ·&Ak ⊃ B1 ∨B2 ∨ · · · ∨Bm;

the sequent is valid when this implication is a logical truth. Bolzano, however, uses
another meaning for the sequent, namely,

A1 &A2 & · · ·&Ak ⊃ B1 &B2 & · · ·&Bm;

according to Bolzano an Ableitbarkeit with many succedent propositions holds when
every variation that makes all antecedent propositions true also makes every (and
not just at least one) succedent proposition true.

In Siebel (1996) Bolzano’s theory of Ableitbarkeit is studied in depth and related
(with due consideration for significant differences) to a number of well-known modern
topics, such as Russell’s theory of propositional functions, the Quine-Ajdukiewicz-
Tarski account of logical truth and consequence, and the relevance logic of Anderson
and Belnap. Nevertheless, in spite of the sometimes considerable differences, it is
proper to regard Bolzano as the founder of the modern theory of (logical) consequence
among propositions; he is the first to reduce the validity of inference (from judgment
to judgment) to a matching relation among propositions (-in-themselves) that serve
as contents of the relevant premise and conclusion judgments, respectively.

40. In WL, part III (“Erkenntnislehre”), ch. II (“Von den Urtheilen”), §300
(“mediation of a judgement through other judgements”), Bolzano considers also
inferences proper, that is, mediate acts of judgments, and not only their Platonist
simulacra, namely, consequence relations (Ableitbarkeiten) among the respective
judgmental contents. Lack of space prevents me from developing this theme any
further.

41. A true proposition-in-itself can stand in the relation of Abfolge to more than
one grounding proposition.

42. WL, §220. See Aristotle, An. Post., I:13.
43. Validity of an inference figure must be distinguished from that of validity

(rightness) of an act of inference. An act of inference, that is, a mediate act of judgment,
is valid (right, real, or true) if its axioms, that is, according to Frege’s GLA, §3, p. 4,
characterization, judgments neither capable of nor in need of demonstration, really
are correct, and the inference-figures employed therein really are valid, that is, do
preserve knowability.

44. Compare, for instance, the fragments reprinted in part III and appendix 2 of
Brentano (1930), with titles such as “Against so-called Judgmental Contents” and
“On the Origin of the Erroneous Doctrine of the entia irrealia.”

45. Furthermore, these reductions were well known already to Leibniz, for instance
in the General Inquisitions, §§146–151. Franz Schmidt provides a list of 28 (!) different
Leibnizian reductions of the four categorical judgments in Leibniz (1960, pp. 524–
529). For instance, the singular affirmative judgment “Some A are B” is rendered
alternatively as “AB is,” “AB is a thing,” and “AB has existence,” by reductions 17,
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22, and 27. Here Bolzano’s German hat Gegenständlichkeit is matched by Leibniz’s
Latin est or est Ens.

46. Letter from Brentano to Hugo Bergmann, June 1, 1909, quoted from Bergmann
(1968, pp. 307–308) (my translation).

Wenn ich . . . auf Bolzano aufmerksam machte, so geschah dies, . . . ,
keineswegs, um den jungen Leuten Bolzano als Lehrer und Führer zu
empfehlen. Was sie von ihm, das dürfte ich mich sagen, konnten sie besser
von mir lernen. . . .

Und wie gesagt, wie ich selbst von Bolzano nie auch nur einen einzigen
Satz entnommen habe, so habe ich auch niemals meinen Schülern glaub-
haft gemacht, daß sie dort eine wahre Bereicherung ihrer philosophischen
Erkenntnis gewinnen würden.

47. Brentano (1889, Anm. 27, pp. 64–72) and the fragments in Brentano (1930,
part IV) are important here. Also relevant is his Versuch über die Erkenntnis, that
is, Brentano’s (1903) attempt at an Essay on human knowledge after the fashion of
Locke and Leibniz. For instance, its first part bears the grandiloquent title: Destroy

prejudice! An appeal to the contemporary age, that it free itself, in

the spirit of Bacon and Descartes, from all blind Apriori.

48. Note that this use of the term evidence is different from its use within current
analytical philosophy of science and the Anglo-Saxon common-law legal systems.
(“My lord, I beg leave to enter exhibit 4 into evidence.”) There one is concerned
with supporting evidence for a claim. Brentano’s use is concerned with that which is
evident (known). Evidence is the quality that pertains to what is evident.

49. Brentano (1930, p. 139).
50. Brentano (1956, p. 175, §39). According to the editor, this negative formulation

of the Law of Excluded Third derives from an unpublished fragment “Über unsere
Axiome” from 16.2.1916.

51. Scholz (1930) remains the standard treatment of Aristotelian foundationalism.
52. Frege (1879) is a book with the title Begriffsschrift, whereas “begriffsschrift”

is an English (loan-)word for the eponymous formal language developed in that
work. This is not an ideal solution to the title/notion ambiguity of the German term.
Using either of the two standard English renderings—ideography and concept(ual )
notation—seems a worse option, though.

53. This is how it ought to be; regarding Frege, his GGA axiom 5 concerning
Werthverläufe and the use of classical second-order impredicative quantification
remain unjustified. In place of notions we could speak of terms or concepts here.
Either choice runs the risk of being taken in too narrow a sense, though. Today a
term is a syntactic entity only, often associated with the formation rules of first-order
predicate calculus, whereas for Frege a concept is confined to a certain kind of
function.

54. The first formulation combines passages from (1879, pp. 2, 4): “Der Umstand,
dass. . .” and “. . .ist eine Thatsache.” Apparently the form of judgment is (. . .ist eine
Thatsache), where the blank has to be filled with an “Umstand.” Accordingly the
form of the judgment made through an assertoric utterance of “Snow is white” is:

The circumstance that snow is white is a fact
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In place of circumstance, Frege also allows for “Satz.” In (1918, p. 74, n. 8) he
identifies fact with true Thought, which yields the final reformulation:

The proposition that snow is white is true.

The second formulation is taken from 1892 (p. 34, n. 7):

Ein Urteil ist mir nicht das bloße Fassen eines Gedankens, sondern die
Anerkennung seiner Wahrheit.

55. Frege (1880/81, pp. 36 ff.) attempts to sell his begriffsschrift to the mathe-
maticians by treating of the standard notions pertaining to continuity, but to no
avail, alas. The mathematicians, and among them to his shame Felix Klein, did not
rise to the occasion and the paper was rejected by, for instance, the Mathematische
Annalen. In desperation, Frege sought refuge with the philosophers at the Zeitschrift
für Philosophie und philosophische Kritik, but they proved equally cold-hearted. In
spite of it being unpublished, Frege’s piece must be give full evidentiary value since
it was written for publication and repeatedly submitted. Later Frege established very
good relations with the Zeitschrift where some of this very best papers appeared, in
1882 and 1892.

56. That is, iterated combinations of “for all/there is” and “there is/for all.”
The passage from continuity to uniform continuity provides a clear example of the
shift from “∀∃” to “∃∀”. The (linear) logical notation employed here is reasonably
standard, using inverted A and E for Alle (all) and Es gibt (there is). It is due
to Gerhard Gentzen (1934–35), but derives in essence from Peano, via mediation
through Whitehead. Frege’s own begriffsschrift is two-dimensional and has great
versatility, as well as a strange beauty of its own. It was never able, however, to gain
proselytes, and so it perished with its progenitor in the early stages of the mounting
metamathematical revolution in the late 1920s.

57. Frege’s checkered struggle toward an identity criterion for propositions (his
Thoughts) is long and fascinating; see Sundholm (1994c).

58. Frege (1892, p. 34): “Ich verstehe unter dem Wahrheitswerte eines Satzes den
Umstand, daß er wahr ist oder daß er falsch ist.”

59. Frege’s notion of a proper name (Eigenname), following the German translation
of John Stuart Mill’s System of Logic, comprises not just grammatical proper names
but singular terms in general.

60. GGA, I, §32. Note that this formulation admit the equation of proposition
(Thought) with truth-condition,

the Thought that snow is white = the Thought expressed in “snow is
white” = the truth-condition of “snow is white,”

whence for a declarative sentence S:

S = that S is true = the truth-condition of “S” is fulfilled = the
proposition expressed in “S” is true.

Thus also,

the Thought that S = the thought that the truth-condition of “S” is
fulfilled.
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61. Frege (1906b, II, p. 387): “eine Urteilsfällung, die auf Grund schon früher
gefällter Urteile nach logischen Gesetzen vollzogen wird.”

62. Bs, §6, and GGA, I, §14. The change from Frege’s two-dimensional notation
to a one-dimensional Gentzen notation is not always anodyne, but here, where the
concern is assertoric force, rather than the specific contents, it seems innocent enough.

63. The ins and outs of Frege’s assertion sign are treated very well in Stepanians
(1998, chs. 1–5). Concerning the origin of its use as a theorem predicate, see Kleene
(1952, p. 88, p. 526).

64. Dummett (1973, p. 309, p. 435). I beg to differ and will return to the issue in
section 8.

65. GGA, I, preface, pp. xv–xvi:

Wahrsein ist etwas anderes als Fürwahrgehalten werden, sei es von Einem,
sei es von Vielen, sei es von Allen, und es ist in keiner Weise darauf
zurückzuführen. Es ist kein Widerspruch, dass etwas wahr ist, was von
Allen für falsch gehalten wird.

This marvelous credo is embedded in a passage pp. xv–xvii that is highly germane
to the realism issue.

66. Nachlass, p. 2. (The Logik of the 80s): “Was wahr ist, ist unabhängig von
unser Anerkennung. Wir können irren.” It is not required that there be mistaken
acts of knowledge, but only that their possibility is not ruled out.

67. GGA, II, p. 69:

Das Gesetz des ausgeschlossenen Dritten ist ja eigentlich nur in anderer
Form die Forderung, dass der Begriff scharf begrenzt sei. Ein beliebiger
Gegenstand Δ fällt entweder unter den Begriff Φ, oder er fällt nich unter
ihn: tertium non datur.

68. The crucial primacy of the sui generis notion of rightness was noted by
Martin-Löf (1987, 1991). In the light of this, Sundholm (2004) spells out various
interrelations between different roles of truth.

69. Locus classicus: “Der Gedanke” (1918).
70. Bs, preface, p. IX:

Die festeste Beweisführung ist offenbar der rein logische, welche, von
der besonderen Beschaffenheit der Dinge absehend, sich allein auf die
Gesetze gründet, auf denen alle Erkenntnis beruht. Wir theilen danach
alle Wahrheiten, die einer Begründung bedürfen, in zwei Arten, idem der
Beweis bei den einen rein logisch vorgehen kann, bei den andern sich auf
Erfahrungsthatsachen stützen muss.

GLA, §§3–4, contains a further elaboration of this theme into an account of the
distinctions analytic/synthetic, a priori/a posteriori. Frege’s considerations here,
successively stepping from a known truth to its grounds seeking the ultimate laws of
justifications, are strongly reminiscent of Bolzano’s use of his grounding trees with
respect to Abfolge.

71. Moore (1898, 1902) and Russell (1903, appendix A, §477, 1904). Cartwright
(1987) treats of their early theory in some depth. The notion of proposition is here
essentially the same as in Bolzano, and, to some extent, Frege. The grave responsibility
for mistranslating the Fregean Gedanke (Thought) into proposition rests on Moore
and Russell: Moore (1898, p. 179) introduced the terminology: “We have approached
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the nature of the proposition or judgment. A proposition is composed not of words,
nor yet of thoughts, but of concepts.” Russell (1903, appendix A, §477) completes
the error by coupling Frege’s Gedanke with his own proposition. Through PM this
misidentification eventually became standard throughout all of modern logic. In its
original sense from the tradition, a proposition was either the (mental) judgment
made, or its outward announcement in language, whereas after Russell and Moore it
is turned into the content of a proposition in the original sense.

72. Joachim (1906, p. 37), who apparently wrote this marvelous passage in
ignorance of Bolzano, drawing only on what he could find in Russell and Moore, for
instance:

[There] is no problem at all in truth or falsehood; that some propositions
are true and some false, just as some roses are red and some white;
that belief is a certain attitude towards propositions, which is called
knowledge when they are true, error when they are false. (Russell 1904,
p. 523)

Note how Russell adheres to the Bolzano reduction of knowledge to the mere truth
of its content. Wittgenstein (Tractatus 6.111) also took notice of this passage from
Russell.

73. Joachim (1906, p. 39). Russell and Moore both responded to Joachim’s book
in Mind. Moore’s response is particularly interesting: “That some facts are facts, and
some truths true, which never have been, are not now, and never will be experiences
at all, and which are not timelessly expressed either” (1907, p. 231). What Moore
countenances here are propositions that will remain unknown at all times; that,
though, does not make them unknowable. The opposite view presupposes what
Lovejoy (1936) called the principle of Plenitude, namely, that all potentialities will
eventually become actual. (Martin-Löf 1991 rejects the application of Plenitude to
knowability: what is knowable need never be known.) Only a year later did Moore
commit himself in a review of William James: “It seems to me, then, that very often
we have true ideas which we cannot verify; true ideas, which in all probability no
man will ever be able to verify” (Moore 1907–08, p. 103).

74. Russell (1903, p. 145). (I am indebted to Prof. Peter Hylton for drawing
my attention to this passage.) Since infinitely complex propositions have to be
unknowable, one way of deciding the issue concerning their existence is to deny that
there are unknowable propositions. Because Russell is unable to pronounce on the
issue, this means that he does not want to rule out unknowable truths. Also this
passage was noticed by Wittgenstein, see Tractatus 4.2211. Russell’s is the earliest
position (known to me) that allows for unknowable truths. Frege, as we saw, rejects
them; every truth either is knowable in itself or has a Begründung, that is, a proof.

75. The undefinability of truth was claimed in print only in Der Gedanke (1918,
p. 60). In Nachlass, p. 140 (Logik 1897), Frege had made the same points almost
verbatim. They in turn go back in nuce to the Logik of the 80s.

76. Moore in the lecture course from 1910–11 that was published later (1953).
Russell in a number of places, for example, 1912 (p. 74) and PM, p. 43.

77. The notion was explicitly formulated by Mulligan, Simons, and Smith (1984).
78. The classic Stenius (1960) remains eminently readable. Hacker (1981) offers

the best presentation of the theory and its difficulties.
79. It most certainly is not; Peter and John, assuming they are empirical subjects,

are complexes (5.541–5.421) composed of thoughts (3), that is, picture-facts (2.16),
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and will be analyzed in terms of the propositions that describe the complexes in
question (3.24). The transcendent subject (5.63–5.641), on the other hand, “thinks
out” the sentence-senses, which constitute the method of projection to the world
(3.11–3.13), whereas the empirical subject is composed of sentential signs, that is,
thought-facts.

80. The definition of the Q-relation reminds one of the ways that Frege formed
unsaturated expressions. It is clear, I think, that this is one of very many places
where the influence of “the great works” of Frege (see the preface to the Tractatus)
can be felt.

81. In the next few paragraphs I use expository devices from the metatheory of
the propostional calculus to survey the logico-semantical doctrines of the Tractatus.
References to the Tractatus are by thesis number. Enderton (1972) contains the
relevant model theory.

82. Wittgenstein’s notion of proposition (Satz) is not that of Bolzano–Frege–
Russell (Satz an sich/Gedanke/proposition). In the Tractatus a proposition is a
meaningful sentence in use and the Sätze might well better be rendered sentences in
English translation.

83. Here N is Wittgenstein’s generalized Sheffer-stroke that negates every member
of the range ξ of propositions.

84. The Fregean proposition is a sense, whereas the Tractarian proposition
(sentence) has sense.

85. Jan Sebestik (1990) suggests that Robert Zimmerman’s Gymnasium textbook
Philosophische Propädeutik, which is replete to the point of plagiarism with material
taken from Bolzano’s Wissenschaftslehre, might be the missing link between Bolzano
and Wittgenstein.

86. After the metamathematical revolution around 1930, Wittgenstein’s ontological
notion, obtaining of the states of affairs makes the elementary proposition true, is
transformed into the model-theoretic:

A |= ϕ,
that is, the set-theoretical structure A satisfies the wff ϕ (Tarski and Vaught 1957).
See also Sundholm (1994b).

87. The crucial epistemological role of rightness in upholding the distinction
between appearance and reality was noted and stressed by Martin-Löf (1987).

88. Dummett (1976) is the locus classicus, while Dummett (1991) offers a book-
length treatment. The secondary literature on Dummett’s argument has reached
the proportions of an avalanche. Sundholm (1986) is an early survey, and Sund-
holm (1994a) approaches Dummett’s position from a more severely constructivist
standpoint.

89. Molk (1885, p. 8):

Les définitions devront être algébraiques et non pas logiques seulement.
Il ne suffit pas de dire: “Une chose est ou et non pas.” Il faut montrer ce
ques veut dire être et ne pas être, dans le domaine particulier dans lequel
nous nous mouvons. Alors, seulement nouns faisons un pas en avant.
Si nous définissions, par exemple, une fonction irréductible comme une
fonction qui n’est pas réductible, c’est a dire quie n’est pas décomposable
en d’autres fonctions d’une nature déterminée, nous ne donnons point
de définition algébraique, nous n’énonçons qu’une simple vérité logique.
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Pour qu’en Algèbre, nous soyons en droit de donner cette définition, il
faut qu’elle soit précédé de l’exposé d’une méthode nous permettant
d’obtenir a l’aide d’un nombre fini d’operations rationelles, les facteurs
d’une fonction réductible. Seule cette méthode donne aux mots réductible
et irréductible.

90. See the Port-Royal Logic, Arnauld and Nicole (1662, part IV, ch. III).
91. The ∞ set D ⊆ 	, being bounded, is contained in a closed real interval I.

Define

I0 =def I =def [a0, b0]
Ik+1 =def [ak, ak + bk/2] if this left half of Ik contains ∞ many points from D;
Ik+1 =def [ak + bk/2, bk] otherwise.

(NB. Here we cannot decide whether a half has ∞
many points from D.)

Hence, each of the nested intervals Ik contains ∞ many points from D, and length
(Ik)→ 0, when k →∞. Thus,

⋂
k
Ik contains exactly one point that is the required

accumulation point for D.
92. Frege does not include the set D, the domain of quantification, since he

quantifies over all individual objects.
93. Martin-Löf (1983, p. 33) hints at this way of understanding Brouwer’s criticism.

It was noted explicitly by Aarne Ranta (1994, p. 38). See also Sundholm (1998),
where also Poincaré’s criticism of impredicability is cast in the same mold.

The law of excluded middle does not only serve as a principle of reasoning. It is
also used meaning-theoretically to delimit the notion of proposition. Thus, for Frege,
a proposition is a method for determining one of the truth values True and False.
Similarly, every proposition implies itself and something which is not a proposition
implies nothing, Russell (1903, §16) notes, and goes on to use “P ⊃ P” as an
explanation of what it is for something P to be a proposition. But an assertion that
P ⊃ Q is true is equivalent to is an assertion that P is false or Q is true. Thus
an assertion that P is a proposition amounts to an assertion that P is false or P
is true. The issue resurfaces in the Cambridge Letter R 12 from Wittgenstein to
Russell, June 1913, where “ ‘aRb.v.∼aRb’ must follow directly without the use of any
other premiss.” Also Cantor’s explanation of a well-defined set (1882, p. 114) makes
meaning-theoretical use of the law of excluded middle.

94. Appropriately enough, free-variable equations between computable terms,
with only true numerical substitution instances, are called verifizierbar (verifiable)
in the canonical exposition Hilbert and Bernays (1934, p. 237).

95. Carnap (1934, p. xv).
96. Carnap (1934, pp. 51–52).
97. Brouwer (1981, p. 5). This formulation, albeit late, expresses Brouwer’s lifelong

view.
98. Brouwer (1908).
99. One does not, of course, claim that A ∨ ¬A is false, that is, that ¬(A ∨ ¬A)

is true, because the latter claim is refutable outright: Assume that ¬(A ∨ ¬A) is
true. Assume further that A is true. Under this assumption, A ∨ ¬A is also true.
Therefore, the assumption that A is true leads to a contradiction. Therefore, A is
false, now only under the sole assumption that ¬(A ∨ ¬A) is true. Hence ¬A is true,
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still under the same assumption. But then, under the same assumption, also A ∨ ¬A
is true. Thus the assumption that ¬(A ∨ ¬A) is true leads to the conclusion that
also A∨¬A is true, which is a contradiction. Therefore the assumption is wrong and
¬(A ∨ ¬A) is false. Thus, ¬¬(A ∨ ¬A) is true.

100. GGA, II, §§87–147, as well as his undignified diatribes (1906a) and (1906b),
(1908), against Korselt and Thomae, respectively. The need for content in mathe-
matical sign-languages is a theme that Frege pursued from his earliest writings; see
for instance, the long Nachlass paper on Boole’s logic and his own begriffsschrift
(1880/81) and above all (1882).

101. Even after World War II—Brouwer lectured regularly at Cambridge from
1946 to 1951—he would proclaim, apparently with a deadpan face, that “Absurdity
of absurdity of absurdity is equivalent to absurdity,” rather than use the pellucid
¬¬¬A↔ ¬A. See Brouwer (1981, p. 12).

102. Most clearly perhaps in the introduction to Weyl (1918a), but also in the
treatment of logic in (1918b).

103. Weyl (1921, p. 54):

Ein Existentialsatz—etwa “es gibt eine gerade Zahl”—ist überhaupt kein
Urteil im eigentlichen Sinne, das einen Sachverhalt behauptet; Existential-
Sachverhalte sind eine leere Erfindung der Logiker. “2 ist eine gerade
Zahl”: das ist ein wirkliches, einem Sachverhalt Ausdruck gebendes Urteil;
“es gibt eine gerade Zahl” ist nur ein aus diesem Urteil gewonnenes
Urteilsabstrakt.

104. The novel form of judgment and the explicit formulation of the rule that
provides its assertion-condition are both due to Per Martin-Löf (1994).

105. Heyting (1930a).
106. The debate in question is treated in Thiel (1988) and Franchella (1994).
107. Heyting (1930b, p. 958):

Une proposition p, comme, par example, “la constante d’Euler est ra-
tionelle”; exprime un problème, ou mieux encore une certaine attente
(celle de trouver deux entiers a et b tels que C = a/b), qui pourra être
réalisée ou déçue.

108. This table is based on a streamlined formulation offered by Per Martin-
Löf (1984), and, in each case, lays down what a canonical proof-object is for the
proposition in question. For the significance of canonical in this context, see Sundholm
(1997), where a full exposition of the intuitionistic meaning explanations is offered.

109. It should be stressed that these meaning explanations for the logical constants,
and the ensuing truth-definition, are neutral with respect to the underlying logic; in
fact the framework can be viewed as a Tarskian truth definition—another neutral
account. If we allow nonconstructive existence claims, also classical logic holds under
the proof-object semantics.

We have to show, reasoning nonconstructively, that Proof(A ∨ ¬A) = ∅.
Assume that Proof(A) = ∅. Let a ∈ Proof(A); then i(a) ∈ Proof(A ∨ ¬A).
Assume that Proof(A) = ∅. Then λx.x ∈ Proof(A) → Proof(⊥) = Proof(¬A),

and so j(λx.x) ∈ Proof(A ∨ ¬A).
Hence, in either case, Proof(A ∨ ¬A) = ∅, so the proposition A ∨ ¬A is true.

Q.E.D.
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110. In Martin-Löf’s constructive type theory (1982, 1984) the elliptic form of
judgment A is true is replaced by the explicit p is a Proof(A); Martin-Löf (1983)
makes clear that this constitutes a return to the traditional S is P form of judgment.

111. Published as Gentzen (1934–35).
112. Dummett (1973, p. 309, and p. 435, respectively).
113. Prawitz (1965, p. 37). Prawitz prefers the opposite order between the two

premises of the (⊃I) rule, but this is of no importance for the present point.
114. Provided that, given that, on condition that, under the assumption that,

under the hypothesis that. . . . Many variations in the wording are possible here.
115. For instance by Prawitz (1971, remark 1.6, p. 243), Dummett (1977, pp. 121–

122, and 1991, p. 248), as well as Sundholm (1983).
116. The sequential form of natural deduction uses both introduction rules and

elimination rules. It must not be confused with the sequent calculus of Gentzen
(1934–35) that uses no elimination rules but has both left and right introduction
rules, on both sides of the sequent arrow.

117. Gentzen did not consider closed sequents; the exploration of their theory is
due to Peter Schroeder-Heister (1981, 1984, 1987), half a century after Gentzen.

118. Kutschera (1996) and Schroeder-Heister (1999) both discuss the matter in
apparent unawareness of Tichý’s explicit treatment. Tichý’s remarkable chapter 13—
Inference—merits attention, as does his paper “On Inference” (1999).

119. The Übersicht (1934–35, p. 176) does mention Frege, Russell, and Hilbert as
particularly important for the formalization of logical inference, but the remark does
not presuppose familiarity with the details of Frege’s formalization. The introduction
to Hilbert and Ackermann (1928, p. 2), which Gentzen did know, makes similar
mention of the same authors.

120. Full biographies are available for a number of authors treated of in the present
chapter: Frege (Kreiser 2001), Wittgenstein (McGuinness 1988; Monk 1990), Brouwer
(Van Dalen 1999), and Gentzen (Menzler-Trott 2001).

121. Simons (1999, p. 115).
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The Development
of Mathematical Logic
from Russell to Tarski, 1900–1935
Paolo Mancosu, Richard Zach, and Calixto Badesa

The following nine itineraries in the history of mathematical logic do not
aim at a complete account of the history of mathematical logic during the
period 1900–1935. For one thing, we had to limit our ambition to the technical
developments without attempting a detailed discussion of issues such as what
conceptions of logic were being held during the period. This also means that
we have not engaged in detail with historiographical debates which are quite
lively today, such as those on the universality of logic, conceptions of truth,
the nature of logic itself, and so on. While of extreme interest, these themes
cannot be properly dealt with in a short space, as they often require extensive
exegetical work. We therefore merely point out in the text or in appropriate
notes how the reader can pursue the connection between the material we treat
and the secondary literature on these debates. Second, we have not treated
some important developments. While we have not aimed at completeness, our
hope has been that by focusing on a narrower range of topics our treatment will
improve on the existing literature on the history of logic. There are excellent
accounts of the history of mathematical logic available, such as, to name a
few, Kneale and Kneale (1962), Dumitriu (1977), and Mangione and Bozzi
(1993). We have kept the secondary literature quite present in that we also
wanted to write an essay that would strike a balance between covering material
that was adequately discussed in the secondary literature and presenting new
lines of investigation. This explains, for instance, why the reader will find a
long and precise exposition of Löwenheim’s (1915) theorem but only a short
one on Gödel’s incompleteness theorem: Whereas there is hitherto no precise
presentation of the first result, accounts of the second result abound. Finally,
the treatment of the foundations of mathematics is quite restricted, and it is
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ancillary to the exposition of the history of mathematical logic. Thus, it is not
meant to be the main focus of our exposition.1

Page references in citations are to the English translations, if available, or
to the reprint edition, if listed in the bibliography. All translations are the
authors’, unless an English translation is listed in the references.

1. Itinerary I. Metatheoretical Properties
of Axiomatic Systems

1.1. Introduction
The two most important meetings in philosophy and mathematics in 1900
took place in Paris. The First International Congress of Philosophy met in
August and so did, soon after, the Second International Congress of Mathe-
maticians. As symbolic, or mathematical, logic has traditionally been part of
both mathematics and philosophy, a glimpse at the contributions in mathe-
matical logic at these two events will give us a representative selection of the
state of mathematical logic at the beginning of the twentieth century. At the
International Congress of Mathematicians, Hilbert presented his famous list
of problems (Hilbert 1900a), some of which became central to mathematical
logic, such as the continuum problem, the consistency proof for the system of
real numbers, and the decision problem for Diophantine equations (Hilbert’s
tenth problem). However, despite the attendance of remarkable logicians like
Schröder, Peano, and Whitehead in the audience, the only other contributions
that could be classified as pertaining to mathematical logic were two talks given
by Alessandro Padoa on the axiomatizations of the integers and of geometry,
respectively.

The third section of the International Congress of Philosophy was devoted
to logic and history of the sciences (Lovett 1900–1901). Among the contributors
of papers in logic we find Russell, MacColl, Peano, Burali-Forti, Padoa, Pieri,
Poretsky, Schröder, and Johnson. Of these, MacColl, Poretsky, Schröder, and
Johnson read papers that belong squarely to the algebra of logic tradition.
Russell read a paper on the application of the theory of relations to the
problem of order and absolute position in space and time. Finally, the Italian
school of Peano and his disciples—Burali-Forti, Padoa, and Pieri—contributed
papers on the logical analysis of mathematics. Peano and Burali-Forti spoke on
definitions, Padoa read his famous essay containing the “logical introduction
to any theory whatever,” and Pieri spoke on geometry considered as a purely
logical system. Although there are certainly points of contact between the first
group of logicians and the second group, already at that time it was obvious
that two different approaches to mathematical logic were at play.

Whereas the algebra of logic tradition was considered to be mainly an
application of mathematics to logic, the other tradition was concerned more
with an analysis of mathematics by logical means. In a course given in 1908 in
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Göttingen, Zermelo captured the double meaning of mathematical logic in the
period by reference to the two schools:

The word “mathematical logic” can be used with two different
meanings. On the one hand one can treat logic mathematically, as
it was done for instance by Schröder in his Algebra of Logic; on
the other hand, one can also investigate scientifically the logical
components of mathematics. (Zermelo 1908a, 1)2

The first approach is tied to the names of Boole and Schröder, the second
was represented by Frege, Peano, and Russell.3 We will begin by focusing on
mathematical logic as the logical analysis of mathematical theories, but we
will return later (see itinerary IV) to the other tradition.

1.2. Peano’s School on the Logical Structure of Theories
We have mentioned the importance of the logical analysis of mathematics as
one of the central motivating factors in the work of Peano and his school on
mathematical logic. First of all, Peano was instrumental in emphasizing the
importance of mathematical logic as an artificial language that would remove
the ambiguities of natural language, thereby allowing a precise analysis of
mathematics. In the words of Pieri, an appropriate ideographical algorithm
is useful as “an instrument appropriate to guide and discipline thought, to
exclude ambiguities, implicit assumptions, mental restrictions, insinuations
and other shortcomings, almost inseparable from ordinary language, written
as well as spoken, which are so damaging to speculative research” (Pieri 1901,
381). Moreover, he compared mathematical logic to “a microscope which is
appropriate for observing the smallest difference of ideas, differences that are
made imperceptible by the defects of ordinary language in the absence of some
instrument that magnifies them” (382). It was by using this “microscope” that
Peano was able, for instance, to clarify the distinction between an element
and a class containing only that element and the related distinction between
membership and inclusion.4

The clarification of mathematics, however, also meant accounting for what
was emerging as a central field for mathematical logic: the formal analysis
of mathematical theories. The previous two decades had in fact seen much
activity in the axiomatization of particular branches of mathematics, includ-
ing arithmetic, algebra of logic, plane geometry, and projective geometry.
This culminated in the explicit characterization of a number of formal con-
ditions for which axiomatized mathematical theories should strive. Let us
consider first Pieri’s description of his work on the axiomatization of geometry,
which had been carried out independently of Hilbert’s famous Foundations
of Geometry (1899). In his presentation to the International Congress of Phi-
losophy in 1900, Pieri emphasized that the study of geometry is following
arithmetic in becoming more and more “the study of a certain order of log-
ical relations; in freeing itself little by little from the bonds which still keep
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it tied (although weakly) to intuition, and in displaying consequently the
form and quality of purely deductive, abstract and ideal science” (Pieri 1901,
368). Pieri saw in this abstraction from concrete interpretations a unifying
thread running through the development of arithmetic, analysis, and geom-
etry in the nineteenth century. This led him to a conception of geometry as
a hypothetical discipline (he coined the term “hypothetico-deductive”). In
fact he goes on to assert that the primitive notions of any deductive system
whatsoever “must be capable of arbitrary interpretations in certain limits
assigned by the primitive propositions,” subject only to the restriction that the
primitive propositions must be satisfied by the particular interpretation. The
analysis of a hypothetico-deductive system begins then with the distinction
between primitive notions and primitive propositions. In the logical analysis
of a hypothetico-deductive system it is important not only to distinguish the
derived theorems from the basic propositions (definitions and axioms) but
also to isolate the primitive notions, from which all the others are defined. An
ideal to strive for is that of a system whose primitive ideas are irreducible,
that is, such that none of the primitive ideas can be defined by means of the
others through logical operations. Logic is here taken to include notions such
as, among others, “individual,” “class,” “membership,” “inclusion,” “repre-
sentation,” and “negation” (383). Moreover, the postulates, or axioms, of the
system must be independent, that is, none of the postulates can be derived
from the others.

According to Pieri, there are two main advantages to proceeding in such an
orderly way. First of all, keeping a distinction between primitive notions and
derived notions makes it possible to compare different hypothetico-deductive
systems as to logical equivalence. Two systems turn out to be equivalent if for
every primitive notion of one we can find an explicit definition in the second
one such that all primitive propositions of the first system become theorems
of the second system, and vice versa. The second advantage consists in the
possibility of abstracting from the meaning of the primitive notions and thus
operate symbolically on expressions which admit of different interpretations,
thereby encompassing in a general and abstract system several concrete and
specific instances satisfying the relations stated by the postulates. Pieri is
well known for his clever application of these methodological principles to
geometrical systems (see Freguglia 1985; Marchisotto 1995). Pieri refers to
Padoa’s articles for a more detailed analysis of the properties connected to
axiomatic systems.

Alessandro Padoa was another member of the group around Peano. Indeed,
of that group, he is the only one whose name has remained attached to a specific
result in mathematical logic, that is, Padoa’s method for proving indefinability
(see the following). The result was stated in the talks Padoa gave in 1900
at the two meetings mentioned at the outset (Padoa 1901, 1902). We will
follow the “Essai d’une théorie algébrique des nombre entiers, précédé d’une
introduction logique a une théorie déductive quelconque.” In the Avant-Propos
(not translated in van Heijenoort 1967a) Padoa lists a number of notions that
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he considers as belonging to general logic such as class (“which corresponds
to the words: terminus of the scholastics, set of the mathematicians, common
noun of ordinary language”). The notion of class is not defined but assumed
with its informal meaning. Extensionality for classes is also assumed: “a class
is completely known when one knows which individuals belong to it.” However,
the notion of ordered class he considers as lying outside of general logic.
Padoa then states that all symbolic definitions have the form of an equality
y = b where y is the new symbol and b is a combination of symbols already
known. This is illustrated with the property of being a class with one element.
Disjunction and negation are given with their class interpretation. The notions
“there is” and “there is not” are also claimed to be reducible to the notions
already previously introduced. For instance, Padoa explains that given a class
a to say “there is no a” means that the class not-a contains everything, that
is, not-a = (a or not-a). Consequently, “there are a[’s]” means: not-a �= (a or
not-a). The notion of transformation is also taken as belonging to logic. If a
and b are classes and if for any x in a, ux is in b, then u is a transformation
from a into b. An obvious principle for transformations u is: if x = y then
ux = uy. The converse, Padoa points out, does not follow.

This much was a preliminary to the section of Padoa’s paper titled “Intro-
duction logique a une théorie déductive quelconque.” Padoa makes a distinction
between general logic and specific deductive theories. General logic is presup-
posed in the development of any specific deductive theory. What characterizes
a specific deductive theory is its set of primitive symbols and primitive propo-
sitions. By means of these, one defines new notions and proves theorems of
the system. Thus, when one speaks of indefinability or unprovability, one must
always keep in mind that these notions are relative to a specific system and
make no sense independently of a specific system. Restating his notion of defi-
nition he also claims that definitions are eliminable and thus inessential. Just
like Pieri, Padoa also speaks of systems of postulates as a pure formal system
on which one can reason without being anchored to a specific interpretation,
“for what is necessary to the logical development of a deductive theory is not
the empirical knowledge of the properties of things, but the formal knowledge
of relations between symbols” (1901, 121). It is possible, Padoa continues, that
there are several, possibly infinite, interpretations of the system of undefined
symbols which verify the system of basic propositions and thus all the theorems
of a theory. He then adds:

The system of undefined symbols can then be regarded as the
abstraction obtained from all these interpretations, and the generic
theory can then be regarded as the abstraction obtained from
the specialized theories that result when in the generic theory the
system of undefined symbols is successively replaced by each of the
interpretations of this theory. Thus, by means of just one argument
that proves a proposition of the generic theory we prove implicitly
a proposition in each of the specialized theories. (1901, 121)5
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In contemporary model theory, we think of an interpretation as specifying a
domain of individuals with relations on them satisfying the propositions of the
system, by means of an appropriate function sending individual constants to
objects and relation symbols to subsets of the domain (or Cartesian products
of the same). It is important to remark that in Padoa’s notion of interpretation
something else is going on. An interpretation of a generic system is given by a
concrete set of propositions with meaning. In this sense the abstract theory
captures all of the individual theories, just as the expression x + y = y + x
captures all the particular expressions of the form 2 + 3 = 3 + 2, 5 + 7 = 7 + 5,
and so on.

Moving now to definitions, Padoa states that when we define a notion in an
abstract system we give conditions which the defined notion must satisfy. In
each particular interpretation the defined notion becomes individualized, that
is, it obtains a meaning that depends on the particular interpretation. At this
point Padoa states a general result about definability. Assume that we have
a general deductive system in which all the basic propositions are stated by
means of undefined symbols:

We say that the system of undefined symbols is irreducible with
respect to the system of unproved propositions when no symbolic
definition of any undefined symbol can be deduced from the system
of unproved propositions, that is, when we cannot deduce from the
system a relation of the form x = a, where x is one of the undefined
symbols and a is a sequence of other such symbols (and logical
symbols). (1901, 122)

How can such a result be established? Clearly one cannot adduce the failure
of repeated attempts at defining the symbol; for such a task, a method for
demonstrating the irreducibility is required. The result is stated by Padoa as
follows:

To prove that the system of undefined symbols is irreducible with
respect to the system of unproved propositions it is necessary and
sufficient to find, for any undefined symbol, an interpretation of the
system of undefined symbols that verifies the system of unproved
propositions and that continues to do so if we suitably change the
meaning of only the symbol considered. (1901, 122)6

Padoa (1902) covers the same ground more concisely but also adds the criterion
of compatibility for a set of postulates: “To prove the compatibility of a set
of postulates one needs to find an interpretation of the undefined symbols
which verifies simultaneously all the postulates” (1902, 249). Padoa applied his
criteria to showing that his axiomatization of the theory of integers satisfied
the condition of compatibility and irreducibility for the primitive symbols and
postulates.

We thus see that for Padoa the study of the formal structure of an arbitrary
deductive theory was seen as a task of general logic. What can be said about
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these metatheoretical results in comparison to the later developments? We
have already pointed out the different notion of interpretation which informs
the treatment. Moreover, the system of logic in the background is never fully
spelled out, and in any case it would be a logic containing a good amount
of set-theoretic notions. For this reason, some results are taken as obvious
that would actually need to be justified. For instance, Padoa claims that if an
interpretation satisfies the postulates of an abstract theory, then the theorems
obtained from the postulates are also satisfied in the interpretation. This is a
soundness principle, which nowadays must be shown to hold for the system
of derivation and the semantics specified for the system. For similar reasons
the main result by Padoa on the indefinability of primitive notions does not
satisfy current standards of rigor. Thus, a formal proof of Padoa’s definability
theorem had to wait until the works of Tarski (1934–1935) for the theory of
types and Beth (1953) for first-order logic (see van Heijenoort 1967a, 118–119,
for further details).

1.3. Hilbert on Axiomatization
In light of the importance of the work of Peano and his school on the foundations
of geometry, it is quite surprising that Hilbert did not acknowledge their work
in the Foundations of Geometry. Although it is not quite clear to what extent
Hilbert was familiar with the work of the Italian school in the last decade of
the nineteenth century (Toepell 1986), he certainly could not ignore their work
after the 1900 International Congress in Mathematics. In many ways Hilbert’s
work on axiomatization resembles the level of abstractness also emphasized by
Peano, Padoa, and Pieri. The goal of Foundations of Geometry (1899) is to
investigate geometry axiomatically.7 At the outset we are asked to give up the
intuitive understanding of notions like point, line, or plane and consider any
three system of objects and three sorts of relations between these objects (lies
on, between, congruent). The axioms only state how these properties relate
the objects in question. They are divided into five groups: axioms of incidence,
axioms of order, axioms of congruence, axiom of parallels, and axioms of
continuity.

Hilbert emphasizes that an axiomatization of geometry must be complete
and as simple as possible.8 He does not make explicit what he means by
completeness, but the most likely interpretation of the condition is that the
axiomatic system must be able to capture the extent of the ordinary body
of geometry. The requirement of simplicity includes, among other things,
reducing the number of axioms to a finite set and showing their independence.
Another important requirement for axiomatics is showing the consistency
of the axioms of the system. This was unnecessary for the old axiomatic
approaches to geometry (such as Euclid’s) because one always began with the
assumption that the axioms were true of some reality and thus consistency
was not an issue. But in the new conception of axiomatics, the axioms do not
express truths but only postulates whose consistency must be investigated.



The Development of Mathematical Logic from Russell to Tarski, 1900–1935 325

Hilbert shows that the basic axioms of his axiomatization are independent
by displaying interpretations in which all of the axioms except one are true.9
Here we must point to a small difference with the notion of interpretation
we have seen in Pieri and Padoa. Hilbert defines an interpretation by first
specifying what the set of objects consists in. Then a set of relations among
the objects is specified in such a way that consistency or independence is
shown. For instance, for showing the consistency of his axioms, he considers
a domain given by the subset of algebraic numbers of the form

√
1 + ω2 and

then specifies the relations as being sets of ordered pairs and ordered triples
of the domain. The consistency of the geometrical system is thus discharged
on the new arithmetical system: “From these considerations it follows that
every contradiction resulting from our system of axioms must also appear in
the arithmetic defined above” (29).

Hilbert had already applied the axiomatic approach to the arithmetic of
real numbers. Just as in the case of geometry, the axiomatic approach to the
real numbers is conceived in terms of “a framework of concepts to which we
are led of course only by means of intuition; we can nonetheless operate with
this framework without having recourse to intuition.” The consistency problem
for the system of real numbers was one of the problems that Hilbert stated at
the International Congress in 1900:

But above all I wish to designate the following as the most important
among the numerous questions which can be asked with regard to
the axioms: To prove that they are not contradictory, that is, that
a finite number of logical steps based upon them can never lead to
contradictory results. (1900a, 1104)

In the case of geometry, consistency is obtained by “constructing an appropriate
domain of numbers such that to the geometrical axioms correspond analogous
relations among the objects of this domain.” For the axioms of arithmetic,
however, Hilbert required a direct proof, which he conjectured could be obtained
by a modification of the arguments already used in “the theory of irrational
numbers.”10 We do not know what Hilbert had in mind, but in any case, in his
new approach to the problem (1905b), Hilbert made considerable progress in
conceiving how a direct proof of consistency for arithmetic might proceed. We
will postpone treatment of this issue to later (see itinerary VI) and go back to
specify what other metatheoretical properties of axiomatic systems were being
discussed in these years. By way of introduction to the next section, something
should be said here about one of the axioms, which Hilbert in his Paris lecture
calls axiom of integrity and later completeness axiom. The axiom says that the
(real) numbers form a system of objects which cannot be extended (Hilbert
1900b, 1094). This axiom is in effect a metatheoretical statement about the
possible interpretations of the axiom system.11 In the second and later editions
of the Foundations of Geometry, the same axiom is also stated for points,
straight lines and planes:
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(Axiom of completeness) It is not possible to add new elements to
a system of points, straight lines, and planes in such a way that
the system thus generalized will form a new geometry obeying all
the five groups of axioms. In other words, the elements of geometry
form a system which is incapable of being extended, provided that
we regard the five groups of axioms as valid. (Hilbert 1902, 25)

Hilbert commented that the axiom was needed to guarantee that his geometry
turn out to be identical to Cartesian geometry. Awodey and Reck (2002) write,
“what this last axiom does, against the background of the others, is to make
the whole system of axioms categorical. . . . He does not state a theorem that
establishes, even implicitly, that his axioms are categorical; he leaves it . . .
without proofs” (11). The notion of categoricity was made explicit in the
important work of the “postulate theorists,” to which we now turn.

1.4. Completeness and Categoricity in the Work of Veblen
and Huntington

A few metatheoretical notions that foreshadow later developments emerged
during the early years of the twentieth century in the writings of Huntington
and Veblen. Huntington and Veblen are part of a group of mathematicians
known as the American postulate theorists (Scanlan 1991, 2003). Huntington
was concerned with providing “complete” axiomatizations of various mathemat-
ical systems, such as the theory of absolute continuous magnitudes (positive
real numbers) (1902) and the theory of the algebra of logic (1905). For instance,
in 1902 he presented six postulates for the theory of absolute continuous mag-
nitudes, which he claims to form a complete set. A complete set of postulates
is characterized by the following properties:

1. The postulates are consistent;
2. They are sufficient;
3. They are independent (or irreducible).

By consistency he means that there exists an interpretation satisfying the
postulates. Condition 2 asserts that there is essentially only one such interpre-
tation possible. Condition 3 says that none of the postulates is a “consequence”
of the other five.

A system satisfying the conditions (1) and (2) we would nowadays call
“categorical” rather than “complete.” Indeed, the word “categoricity” was
introduced in this context by Veblen in a paper on the axiomatization of
geometry (1904). Veblen credits Huntington with the idea and Dewey for
having suggested the word “categoricity.” The description of the property is
interesting:

Inasmuch as the terms point and order are undefined one has
a right, in thinking of the propositions, to apply the terms in
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connection with any class of objects of which the axioms are valid
propositions. It is part of our purpose however to show that there
is essentially only one class of which the twelve axioms are valid.
In more exact language, any two classes K and K ′ of objects that
satisfy the twelve axioms are capable of a one-one correspondence
such that if any three elements A, B, C of K are in the order
ABC, the corresponding elements of K ′ are also in the order ABC.
Consequently any proposition which can be made in terms of points
and order either is in contradiction with our axioms or is equally
true of all classes that verify our axioms. The validity of any possible
statement in these terms is therefore completely determined by
the axioms; and so any further axiom would have to be considered
redundant. [Note: Even were it not deducible from the axioms by a
finite set of syllogisms] Thus, if our axioms are valid geometrical
propositions, they are sufficient for the complete determination of
Euclidean geometry.

A system of axioms such as we have described is called categorical,
whereas one to which it is possible to add independent axioms (and
which therefore leaves more than one possibility open) is called
disjunctive. (Veblen 1904, 346)

A number of things are striking about the passage just quoted. First of
all, we are used to define categoricity by appealing directly to the notion
of isomorphism.12 What Veblen does is equivalent to specifying the notion
of isomorphism for structures satisfying his 12 axioms. However, the fact
that he does not make use of the word “isomorphism” is remarkable, as the
expression was common currency in group theory already in the nineteenth
century. The word “isomorphism” is brought to bear for the first time in
the definition of categoricity in Huntington (1906–1907). There he says that
“special attention may be called to the discussion of the notion of isomorphism
between two systems, and the notion of a sufficient, or categorical, set of
postulates.” Indeed, on p. 26 (1906–1907), the notion of two systems being
isomorphic with respect to addition and multiplication is introduced. We are
now very close to the general notion of isomorphism between arbitrary systems
satisfying the same set of axioms. The first use of the notion of isomorphism
between arbitrary systems we have been able to find is Bôcher (1904, 128),
who claims to have generalized the notion of isomorphism familiar in group
theory. Weyl (1910) also gives the definition of isomorphism between systems
in full generality.

Second, there is a certain ambiguity between defining categoricity as the
property of admitting only one model (up to isomorphism) and conflating the
notion with a consequence of it, namely, what we would now call semantical
completeness.13 Veblen, however, rightly states that in the case of a categorical
theory, further axioms would be redundant even if they were not deducible
from the axioms by a finite number of inferences.
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Third, the distinction hinted at between what is derivable in a finite number
of steps and what follows logically displays a certain awareness of the differ-
ence between a semantical notion of consequence and a syntactical notion of
derivability and that the two might come apart. However, Veblen does not
elaborate on the issue.

Finally, later in the section Veblen claims that the notion of categoricity is
also expressed by Hilbert’s axiom of completeness as well as by Huntington’s
notion of sufficiency. In this he reveals an inaccurate understanding of Hilbert’s
completeness axiom and of its consequences. Baldus (1928) is devoted to show-
ing the noncategoricity of Hilbert’s axioms for absolute geometry even when
the completeness axiom is added. It is, however, true that in the presence of all
the other axioms, the system of geometry presented by Hilbert is categorical
(see Awodey and Reck 2002).

1.5. Truth in a Structure
These developments have relevance also for the discussion of the notion of truth
in a structure. In his influential paper (1986), Hodges raises several historical
issues concerning the notion of truth in a structure, which can now be made
more precise. Hodges is led to investigate some of the early conceptions of
structure and interpretation with the aim of finding out why Tarski did not
define truth in a structure in his early articles. He rightly points out that
algebraists and geometers had been studying “Systeme von Dingen” (systems
of objects), that is, what we would call structures or models (on the emergence
of the terminology, see itinerary VIII). Thus, for instance, Huntington in
(1906–1907) describes the work of the postulate theorist in algebra as being
the study of all the systems of objects satisfying certain general laws: “From
this point of view our work becomes, in reality, much more general than a
study of the system of numbers; it is a study of any system which satisfies the
conditions laid down in the general laws of §1.”14 Hodges then pays attention
to the terminology used by mathematicians of the time to express that a
structure A obeys some laws and quotes Skolem (1933) as one of the earliest
occurrences where the expression “true in a structure” appears.15

However, here we should point out that the notion of a proposition being
true in a system is not unusual during the period. For instance, in Weyl’s
(1910) definition of isomorphism, we read that if there is an isomorphism
between two systems, “there is also such a unique correlation between the
propositions true with respect to one system and those true with respect to
the other, and we can, without falling into error, identify the two systems
outright” (Weyl 1910, 301). Moreover, although it is usual in Peano’s school
and among the American postulate theorists to talk about a set of postulates
being “satisfied” or “verified” in a system (or by an interpretation), without
any further comments, sometimes we are also given a clarification that shows
that they were willing to use the notion of truth in a structure. A few examples
will suffice.
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Let us look at what might be the first application of the method for providing
proofs of independence. Peano in “Principii di geometria logicamente esposti”
(1889) has two signs, 1 (for point) and c ε ab (c is a point internal to the
segment ab). Then he considers three categories of entities with a relation
defined between them. Finally he adds:

Depending on the meaning given to the undefined signs 1 and
c ε ab, the axioms might or might not be satisfied. If a certain group
of axioms is verified, then all the propositions that are deduced
from them will also be true, since the latter propositions are only
transformations of those axioms and of those definitions. (Peano
1889, 77–78)

In 1900, Pieri explains that

the postulates, just like all conditional propositions are neither
true nor false: they only express conditions that can sometimes
be verified and sometimes not. Thus for instance, the equality
(x+ y)2 = x2 + 2xy + y2 is true, if x and y are real numbers and
false in the case of quaternions (giving for each hypothesis the usual
meaning to +, ×, etc.). (Pieri 1901, 388–389)

In 1906, Huntington:

The only way to avoid this danger [of using more than is stated in
the axioms] is to think of our fundamental laws, not as axiomatic
propositions about numbers, but as blank forms in which the letters
a, b, c, etc. may denote any objects we please and the symbols +
and × any rules of combination; such a blank form will become a
proposition only when a definite interpretation is given to the letters
and symbols—indeed a true proposition for some interpretations
and a false proposition for others. . . From this point of view our
work becomes, in reality, much more general than a study of the
system of numbers; it is a study of any system which satisfies
the conditions laid down in the general laws of §1. (Huntington
1906–1907, 2–3)16

In short, it seems that the expression “a system of objects verifies a certain
proposition or a set of axioms” is considered to be unproblematic at the
time, and it is often read as shorthand for a sentence, or a set of sentences,
being true in a system. Of course, this is not to deny that in light of the
philosophical discussion emerging from non-Euclidean geometries, a certain
care was exercised in talking about “truth” in mathematics, but the issue is
resolved exactly by the distinction between axioms and postulates. Whereas
the former had been taken to be true tout court, the postulates only make a
demand, which might be satisfied or not by particular system of objects (see
also on the distinction, Huntington 1911, 171–172).
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2. Itinerary II. Bertrand Russell’s Mathematical Logic

2.1. From the Paris Congress to the Principles of Mathematics
1900–1903

At the time of the Paris congress, Russell was mainly familiar with the algebra of
logic tradition. He certainly knew the works of Boole, Schröder, and Whitehead.
Indeed, the earliest drafts of The Principles of Mathematics (1903; POM for
short) are based on a logic of part-whole relationship that was closely related
to Boole’s logical calculus. He also had already realized the importance of
relations and the limitations of a subject-predicate approach to the analysis of
sentences. This change was a central one in his abandonment of Hegelianism17

and also led him to the defense of absolute position in space and time against
the Leibnizian thesis of the relativity of motion and position, which was the
subject of his talk at the International Congress of Philosophy, held in Paris
in 1900. However, he had not yet read the works of the Italian school. The
encounter with Peano and his school in Paris was of momentous importance
for Russell. He had been struggling with the problems of the foundation of
mathematics for a number of years and thought that Peano’s system had
finally shown him the way. After returning from the Paris congress, Russell
familiarized himself with the publications of Peano and his school, and it
became clear to him that “[Peano’s] notation afforded an instrument of logical
analysis such as I had been seeking for years” (Russell 1967, 218). In Russell’s
autobiography, he claims that “the most important year of my intellectual life
was the year 1900 and the most important event in this year was my visit to
the International Congress of Philosophy in Paris” (1989, 12). One of the first
things Russell did was to extend Peano’s calculus with a worked-out theory
of relations and this allowed him to develop a large part of Cantor’s work
in the new system. This he pursued in his first substantial contribution to
logic (Russell 1901b, 1902b), which constitutes a bridge between the theory
of relations developed by Peirce and Schröder and Peano’s formalization of
mathematics. At this stage Russell thinks of relations intensionally, that is,
he does not identify them with sets of pairs. The notion of relation is taken
as primitive. Then the notion of the domain and co-domain of a relation,
among others, are introduced. Finally, the axioms of his theory of relations
state, among other things, closure properties with respect to the converse, the
complement, the relative product, the union, and the intersection (of relations
or classes thereof). He also defines the notion of function in terms of that of
relation (however, in POM they are both taken as primitive). In this work,
Russell treats natural numbers as definable, which stands in stark contrast to
his previous view of number as an indefinable primitive. This led him to the
famous definition of “the cardinal number of a class u” as “the class of classes
similar to u.” Russell arrived at it independently of Frege, whose definition
was similar, but he was apparently influenced by Peano, who discussed such a
definition in 1901 without, however, endorsing it. In any case, Peano’s influence
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is noticeable in Russell’s abandonment of the Boolean leanings of his previous
logic in favor of Peano’s mathematical logic. Russell now accepted, except
for a few changes, Peano’s symbolism. One of Peano’s advances had been a
clear distinction between sentences such as “Socrates is mortal” and “All men
are mortal,” which were previously conflated as being of the same structure.
Despite the similar surface structure, the first one indicates a membership
relation between Socrates and the class of mortals, whereas the second indicates
an inclusion between classes. In Peano’s symbolism we have s ε φ(x) for the
first and φ(x) ⊃x ψ(x) for the second. With this distinction Peano was able to
define the relation of subsumption between two classes by means of implication.
In a letter to Jourdain in 1910, Russell writes:

Until I got hold of Peano, it had never struck me that Symbolic Logic
would be any use for the Principles of mathematics, because I knew
the Boolean stuff and found it useless. It was Peano’s ε, together
with the discovery that relations could be fitted into his system,
that led me to adopt Symbolic Logic. (Grattan-Guinness 1977, 133)

What Peano had opened for Russell was the possibility of considering the
mathematical concepts as definable in terms of logical concepts. In particular,
an analysis in terms of membership and implication is instrumental in account-
ing for the generality of mathematical propositions. Russell’s logicism finds its
first formulation in a popular article written in 1901 where he claims that all
the indefinables and indemonstrables in pure mathematics stem from general
logic: “All pure mathematics—Arithmetic, Analysis, and Geometry—is built
up of the primitive ideas of logic, and its propositions are deduced from the
general axioms of logic” (1901a, 367).

This is the project that informed the Principles of Mathematics (1903).
The construction of mathematics out of logic is carried out by first developing
arithmetic through the definition of the cardinal number of a class as the class
of classes similar to it. Then the development of analysis is carried out by
defining real numbers as sets of rationals satisfying appropriate conditions.
(For a detailed reconstruction see, among others, Vuillemin 1968, Rodriguez-
Consuegra 1991, Landini 1998, Grattan-Guinness 2000.) The main difficulty
in reconstructing Russell’s logic at this stage consists in the presence of logical
notions mixed with linguistic and ontological categories (denotation, definition).
Moreover, Russell does not present his logic by means of a formal language.

After Russell finished preparing POM, he also began studying Frege with
care (around June 1902). Under his influence, Russell began to notice the limita-
tions in Peano’s treatment of symbolic logic, such as the lack of different symbols
for class union and the disjunction of propositions, or material implication and
class inclusion. Moreover, he changed his symbolism for universal and existential
quantification to (x)f(x) and (Ex)f(x). He adopted from Frege the symbol �
for the assertion of a proposition. His letter to Frege of June 16, 1902, contained
the famous paradox, which had devastating consequences for Frege’s system:
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Let w be the predicate: to be a predicate that cannot be predicated
of itself. Can w be predicated of itself? From each answer its opposite
follows. Therefore we must conclude that w is not a predicate.
Likewise there is no class (as a totality) of those classes which,
each taken as a totality, do not belong to themselves. From this I
conclude that under certain circumstances a definable collection
does not form a totality. (Russell 1902a, 125)

The first paradox does not involve the notion of class but only that of predicate.
Let Imp(w) stand for “w cannot be predicated of itself,” that is, ∼w(w). Now
we ask: Is Imp(Imp) true or ∼Imp(Imp)? From either one of the possibilities the
opposite follows. However, what is known as Russell’s paradox is the second one
offered in the letter to Frege. In his work Grundgesetzte der Arithmetik (Frege
1893, 1903), Frege had developed a logicist project that aimed at reconstructing
arithmetic and analysis out of general logical laws. One of the basic assumptions
made by Frege (Basic Law V) implies that every propositional function has
an extension, where extensions are a kind of object. In modern terms we could
say that Frege’s Basic Law V implies that for any property F (x) there exists a
set y = {x : F (x) }. Russell’s paradox consists in noticing that for the specific
F (x) given by x /∈ x, Frege’s principle leads to asserting the existence of the set
y = {x : x /∈ x }. Now if one asks whether y ∈ y or y /∈ y from either one of the
assumptions one derives the opposite conclusion. The consequences of Russell’s
paradox for Frege’s logicism and Frege’s attempts to cope with it are well known,
and we will not recount them here (see Garciadiego 1992). Frege’s proposed
emendation to his Basic Law V, while consistent, turns out to be inconsistent
as soon as one postulates that there are at least two objects (Quine 1955a).18

Extensive research on the development that led to Russell’s paradox has
shown that Russell already obtained the essentials of his paradox in the first
half of 1901 (Garciadiego 1992; Moore 1994) while working on Cantor’s set the-
ory. Indeed, Cantor himself already noticed that treating the cardinal numbers
(resp., ordinal numbers) as a completed totality would lead to contradictions.
This led him to distinguish, in letters to Dedekind, between “consistent multi-
plicities,” that is, classes that can be considered as completed totalities, from
“inconsistent multiplicities,” that is, classes that cannot, on pain of contradic-
tion, be considered as completed totalities. Unaware of Cantor’s distinction
between consistent and inconsistent multiplicities Russell in 1901 convinced
himself that Cantor had “been guilty of a very subtle fallacy” (1901a, 375).
His reasoning was that the number of all things is the greatest of all cardinal
numbers. However, Cantor proved that for every cardinal number there is a
cardinal number strictly bigger than it. Within a few months this conundrum
led to Russell’s paradox. In POM we find, in addition to the two paradoxes
we have discussed, also a discussion of what is now known as Burali-Forti’s
paradox (Moore and Garciadiego 1981).

In POM Russell offered a tentative solution to the paradoxes: the theory
of types. The theory of types contained in POM is a version of what is now
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called the simple theory of types, whereas the one offered in Russell (1908)
(and Principia Mathematica, Whitehead and Russell 1910, 1913) is called the
ramified theory of types (on the origin of these terms, see Grattan-Guinness
2000, 496). Russell’s exposition of the theory of types (in 1903 as well as later)
is far from perspicuous, and we will simply give the gist of it. The basic idea
is that every propositional function φ(x) has a range of significance, that is, a
range of values of x for which it can be meaningfully said to be true or false:

Every propositional function φ(x)—so it is contended—has, in
addition to its range of truth, a range of significance, i.e., a range
within which x must lie if φ(x) is to be a proposition at all, whether
true or false. This is the first point in the theory of types; the second
point is that ranges of significance form types, i.e., if x belongs to
the range of significance of φ(x), then there is a class of objects, the
type of x, all of which must also belong to the range of significance
of φ(x), however φ may be varied. (Russell 1903, 523)

The lowest type, type 0, is the type of all individuals (objects which are not
“ranges”). Then we construct the class of all classes of individuals, namely,
type 1. Type 2 is the class of all classes of classes of type 1, and so on. This
gives an infinite hierarchy of types for which Russell specifies that “in x ε u the
u must always be of a type higher by one than x” (517). In this way x ε x and
its negation are meaningless and thus it is not possible for Russell’s paradox
to arise, as there are no ranges of significance, that is, types, for meaningless
propositions. The other paradoxes considered by Russell are also blocked by
the postulated criteria of meaningfulness. The presentation of the theory in
POM is vastly complicated by the need to take into account relations and by a
number of assumptions which go against the grain of the theory, for instance,
that “x ε x is sometimes significant” (525).

Russell, however, abandoned this version of the theory of types and returned
to the theory of types only after trying a number of different theories. His
abandonment of this theory is explained by the fact that the theory does not
assign types to propositions and thus, as Russell pointed out to Frege (letter
of September 29, 1902), this allows for the generation of a paradox through a
diagonal argument applied to classes of propositions. His search for a solution
to the paradoxes played a central role in his debate with Poincaré concerning
impredicative definitions, to which we now turn.

2.2. Russell and Poincaré on Predicativity
In the wake of Russell’s paradoxes, many more paradoxes were brought to
light,19 the most famous being Berry’s paradox concerning the least ordinal
number not definable in a finite number of words, Richard’s paradox (see
following discussion), and the König–Zermelo contradiction. The latter con-
cerned a contradiction between König’s “proof” that the continuum cannot be
well ordered and Zermelo’s (1904) proof that every set can be well ordered.
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Many more were added, and one finds a long list of paradoxes in the opening
pages of Russell (1908). What the paradoxes had brought to light was that
not every propositional function defines a class. Russell’s paradox, for instance,
shows that there is a propositional function, or “norm,” φ(x) for which we
cannot assume the existence of {x : φ(x) }. When trying to spell out which
propositional functions define classes and which do not, Russell proposed in
1906 the distinction between predicative and nonpredicative norms:

We have thus reached the conclusion that some norms (if not all)
are not entities which can be considered independently of their
arguments, and that some norms (if not all) do not define classes.
Norms (containing one variable) which do not define classes I
propose to call non-predicative; those which do define classes I shall
call predicative. (Russell 1906b, 141)

At the time Russell was considering various theories as possible solutions to the
paradoxes and in the 1906 article he mentions three of them: the “no-classes”
theory, the “zig-zag” theory, and the “limitation of size” theory. Accordingly,
the Russellian distinction between predicative and nonpredicative norms gives
rise to extensionally different characterizations depending on the theory under
consideration. Russell mentions “simplicity” as the criterion for predicativity in
the “zig-zag” theory, and “limitation of size” in the “limitation of size” theory.
In the case of the “no-classes” theory, no propositional function is predicative
as classes are eliminated through contextual definitions. However, it is only
with Poincaré’s reply to Russell that we encounter the notion of predicativity
that was at the center of their later debate.20 Poincaré’s discussion also takes
its start from the paradoxes but rejects Russell’s suggestion as to what should
count as a predicative propositional function, on account of the vagueness of
Russell’s proposal. Poincaré suggested that nonpredicative classes are those
that contain a vicious circle. Poincaré did not provide a general account, but
he clarified the proposal through a discussion of Richard’s paradox (Richard
1905). Richard’s paradox takes its start by a consideration of the set E of all
numbers that can be defined by using expressions of finite length over a finite
vocabulary. By a diagonal process one then defines (by appealing explicitly
to E) a new number N which is not in the list. As the definition of N is given
by a finite expression using exactly the same alphabet used to generate E, it
follows that N is in E. But by construction N is not in E. Thus N is and
is not in E. Poincaré’s way out was to claim that in defining N one is not
allowed to appeal to E, as N would be defined in terms of the totality to
which it belongs. Thus, according to Poincaré, reference to infinite totalities is
the source of the nonpredicativity:

It is the belief in the existence of actual infinity that has given
birth to these non-predicative definitions. I must explain myself. In
these definitions we find the word all, as we saw in the examples
quoted above. The word all has a very precise meaning when it
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is a question of a finite number of objects; but for it still to have
a precise meaning when the number of the objects is infinite, it
is necessary that there should exist an actual infinity. Otherwise
all these objects cannot be conceived as existing prior to their
definition, and then, if the definition of a notion N depends on all
the objects A, it may be tainted with the vicious circle, if among
the objects A there is one that cannot be defined without bringing
in the notion N itself. (Poincaré 1906, 194)

Poincaré was appealing to two different criteria in his diagnosis. On the one
hand he considered a definition to be nonpredicative if the definiendum in
some way involves the object being defined. The second criterion asserts the
illegitimacy of quantifying over infinite sets.21

Russell, in “Les Paradoxes de la Logique” (1906a), agreed with Poincaré’s
diagnosis that a vicious circle was involved in the paradoxes, but he found
Poincaré’s solution to lack the appropriate generality:

I recognize, however, that the clue to the paradoxes is to be found
in the vicious-circle suggestion; I recognize further this element of
truth in M. Poincaré’s objection to totality, that whatever in any
way concerns all or any or some (undetermined) of the members
of a class must not be itself one of the members of a class. In M.
Peano’s language, the principle I want to advocate may be stated:
“Whatever involves an apparent variable must not be among the
possible values of that variable.” (Russell 1973, 198)

Russell’s objection to Poincaré was essentially that Poincaré’s proposal was not
supported by a general theory and thus seemed ad hoc. Moreover, he pointed out
that in many paradoxes infinite totalities play no role and thus he concluded
that “the contradictions have no essential reference to infinity.” Russell’s
position brought to light the coexistence of different criteria in Poincaré’s
notion of predicativity. However, what exactly the vicious circle principle
amounted to remained vague also in Russell’s work, which displayed several
nonequivalent versions of the principle. We resume discussion of predicative
mathematics in the section on set theory, and we move now to a discussion of
the last element we need to discuss the ramified theory of types—the theory
of denoting.

2.3. On Denoting
One of the key elements in the formalization of mathematics given in Principia
is the contextual definition of some of the concepts appearing in mathematics.
In other words, not every single mathematical concept is individually defined.
Rather, there are concepts that receive a definition only in the context of
a proposition in which they appear. The philosophical and technical tools
for dealing with contextual definitions was given by the theory of denoting
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(Russell 1905; see de Rouilhan 1996; Hylton 1990). The theory of denoting
allowed Russell to account for denoting phrases without having to assume
that denoting phrases necessarily refer to an object. A denoting phrase is
given by a list of examples. The examples include “a man, some man, any
man, every man, all men, the present King of England, the present King of
France.” Whether a phrase is denoting depends solely on its form. However,
whether a denoting phrase successfully denotes something does not depend
merely on its form. Indeed, although “the present King of England” and “the
present King of France” have the same form, only the first one denotes an
object (at the time Russell is writing). Expressions of the form “the so-and-
so,” a very important subclass of denoting expressions, are called definite
descriptions. Russell’s theory consisted in parsing a definite description such
as “the present King of France is bald” as “there exists a unique x such that
x is King of France and x is bald.” In this way “the so-and-so” is meaningful
only in the context of a sentence and does not have meaning independently:
“According to the view which I advocate, a denoting phrase is essentially part
of a sentence, and does not, like most single words, have any significance on
its own account” (Russell 1905, 1973, 113). It is hard to overestimate the
importance of this analysis for the foundations of mathematics, as denoting
phrases, and definite descriptions in particular, are ubiquitous in mathematical
practice. In Principia, Russell and Whitehead will talk of “incomplete symbols”
which do not have an independent definition but only a “definition in use,”
which determines their meaning only in relation to the context in which they
appear. We are now ready to discuss the basic structure of the ramified theory
of types.

2.4. Russell’s Ramified Type Theory
Poincaré’s criticism of impredicative definitions forced Russell and Whitehead
to reconsider some of the work they had previously carried out. In particular,
Poincaré had criticized the proof of mathematical induction (due to Russell)
presented in Whitehead (1902). Poincaré found the definition of an inductive
number as the intersection of all recurrent classes (i.e., a class containing zero
and closed under successor) to be impredicative. Russell agreed with Poincaré’s
claim that a vicious circle is present in impredicative definitions and, as we
mentioned, presented several theories as possible solutions for the problems
raised by the paradoxes (Russell 1906b). Among the theories developed in this
period, the substitutional theory (an implementation of the no-classes theory)
has been recently subjected to detailed scrutiny (see de Rouilhan 1996, Landini
1998). However, these theories were eventually abandoned and it was the
theory of types, as presented in (1908) and (1910), that became Russell’s final
choice for a solution to the paradoxes. Let us follow the exposition of Russell
(1908) to convey the basic ideas of ramified type theory. Russell begins with a
long list of paradoxes: Epimenides (“the liar paradox”), Russell’s paradox for
classes, Russell’s paradox for relations, Berry’s paradox on “the least integer not



The Development of Mathematical Logic from Russell to Tarski, 1900–1935 337

nameable in less than nineteen syllables,” the paradox of “the least undefinable
ordinal,” Richard’s paradox, and Burali-Forti’s contradiction. Russell detects
a common feature to all these paradoxes, which consists in the occurrence of a
certain “self-reference or reflexiveness”: “Thus all our contradictions have in
common the assumption of a totality such that, if it were legitimate, it would
at once be enlarged by new members defined in terms of itself” (Russell 1908,
155). Thus, the rule adopted by Russell for avoiding the paradoxes, known as
the vicious circle principle, reads: “whatever involves all of a collection must
not be one of a collection.” Russell gives several formulations of the principle.
A different formulation reads: “If, provided a certain collection had a total,
it would have members only definable in terms of that total, then the said
collection has no total” (Russell 1908, 155).22

Notice that the vicious circle principle implies that “no totality can contain
members defined in terms of itself.” This excludes impredicative definitions.
However, Russell insists that the principle is purely negative and that a satis-
factory solution to the paradoxes must be the result of a positive development
of logic. This development of logic is the ramified theory of types. The second
remark concerns the issue of when collections can be considered as having a
total. By claiming that a collection has no total, Russell means that state-
ments about all its members are nonsense. This leads Russell to a lengthy
analysis of the difference between “any” and “all.” For him, the condition of
possibility for saying something about all objects of a collection rests on the
members of that collection as being of the same type. The partition of the
universe into types rests on the intuition that to make a collection, the objects
collected must be logically homogeneous. The distinction between “all” and
“any” is expressed, roughly, by the use of a universally bound variable—which
ranges over a type—versus a free variable, whose range is not bounded by a
type.

In this way we arrive at the core of the ramified theory of types. Unfor-
tunately, the exposition of the theory, both in 1908 and in Principia, suffers
from the lack of a clear presentation.23 We will not give a detailed technical
exposition here, but only try to convey the gist of the theory with refer-
ence to the effect of the theory on the structuring of the universe into types.
The distinction into types, however, can also be applied to propositions and
propositional functions.

A type is defined by Russell as “the range of significance of a propositional
function, that is, as the collection of arguments for which the said function has
values” (Russell 1908, 163). We begin with the lowest type, which is simply
the class of individuals. In 1908 the individuals are characterized negatively as
being devoid of logical complexity, and hence as different from propositions
and propositional functions. This is important to exclude the possibility that
quantification over individuals might already involve a vicious circle. Type 1
will contain all the (definable) classes of individuals; type 2 all the (definable)
classes of classes of individuals; and so on. What we have described is a form
of the simple theory of types. This theory already takes care of some of the
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paradoxes. For instance, if x is an object of type n and y an object of type
n+ 1 it makes sense to write x ∈ y, but it makes no sense to write x ∈ x. Thus,
in terms of class existence we already exclude the formation of problematic
classes at the syntactic level by declaring that expressions of the form x ∈ y
are significant only if x is of type n, for some n, and y is of type n+ 1. This
significantly restricts the classes that can be formed.

However, the simple theory of types is not enough to guarantee that the
vicious circle principle is satisfied. The complication arises due to the following
possibility. One might define a class of a certain type, say, n, by quantifying, in
the propositional function defining the class, over collections of objects which
might be of higher type than the one being defined. It is thus essential to
keep track of the way classes are defined and not only, so to speak, of their
ontological complexity.24 This leads to a generalized notion of type (boldface,
to distinguish it from type as in the simple theory) for the ramified theory.
Rather than giving the formal apparatus for capturing the theory, we will
exemplify the main intuition by considering a few examples.

Type 0: the totality of individuals.
Type 1.0: the totality of classes of individuals that can be defined using

only quantifiers ranging over individuals (type 0).
Type 2.0: the totality of classes of classes of individuals that can be defined

by using only quantifiers ranging over objects of type 1.0 and type 0.
Type 2.1.0: the totality of classes of classes of individuals of type 1.0 that

can be defined using only quantifiers ranging over elements in type 1.0 and in
type 0

And so on. Let us say that type 0 corresponds to order 0, type 1.0 to
order 1, and that type 2.1.0 and type 2.0 are of order 2.

This system of types satisfies the vicious circle principle, as defining an
object by quantifying over a previously given totality will automatically give a
class of higher type. But this also implies that the development of mathematics
in the ramified theory becomes unnatural. In particular, real numbers will
appear at different stages of definition. For instance, given a class of real
numbers bounded above, the least upper bound principle will, in general,
generate a real number of higher type (as the definition of the least upper
bound requires a quantification over classes containing the given class of
reals). To provide a workable foundation for analysis, Russell is then forced
to postulate the so-called axiom of reducibility. For its statement we need
the notion of a predicative propositional function (notice that this notion of
predicative is not to be confused with that which is at stake in impredicative
definitions). A propositional function φ(x) is predicative if its order is one
higher than that of its argument. To use the foregoing examples, type 1.0 and
type 2.1.0 are predicative, but type 2.0 is not. The axiom of reducibility says
that each propositional function is extensionally equivalent to a predicative
function. Since predicative functions occupy a well-specified place in the
hierarchy of types, the axiom has the consequence of rendering many of the
types redundant, at least extensionally. Thus, to go back to our example, the
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axiom implies that all classes of type 2.0 are all extensionally equivalent to
classes in type 1.0. The net effect of the axiom for the foundations of the real
numbers is that it reestablishes the possibility of treating the reals as being all
at the same level. In particular, the least upper bound of a class of reals will
also be given, extensionally, at the same level as the class used in generating
it. However, it has been often observed (most notably in Ramsey 1925), that
the axiom of reducibility defeats the purpose of having a ramified hierarchy in
the first place. Indeed, with the axiom of reducibility, the ramified theory is
equivalent to a form of simple type theory.

2.5. The Logic of Principia
Russell and Whitehead’s project consisted in showing that all of mathematics
could be developed through appropriate definitions in the system of logic
defined in Principia. One must distinguish here between the development of
arithmetic, analysis, and set theory on the one hand and the development
of geometry on the other hand. Indeed, for the former theories the axioms of
the theory are supposed to come out to be logical theorems of the system
of logic, thereby showing that arithmetic, analysis, and set theory are basically
developments of pure logic. However, the logicist reconstruction of these
branches of mathematics could only be carried out by assuming the axioms
of choice (“the multiplicative axiom”), infinity, and reducibility among the
available “logical” principles. This is one of the major reasons for the worries
about the prospects of logicism in the twenties and thirties (see Grattan-
Guinness 2000).

The situation for geometry, whose development was planned for the fourth
volume of Principia (never published), is different. The approach there would
have been a conditional one. The development of geometry in the system of
logic given in Principia would have shown that the theorems of geometry can
be obtained in the system of Principia under the assumption of the axioms
of geometry. As these axioms say something about certain specific types of
relations holding for the geometrical spaces in question, the development of
geometry would result in conditional theorems of the logic of Principia with
the form “if A then p,” where A expresses the set of geometrical axioms in
question and p is a theorem of geometry.

In both cases, the inferential patterns must be regulated by a specific set of
inferential rules. The development of mathematical logic presented in part I of
Principia (85–326) divides the treatment into three sections. Section A deals
with the theory of deduction and develops the propositional calculus. Section B
treats the theory of apparent variables (i.e., quantificational logic for types)
and sections C, D, and E the logic of classes and relations. While the treatment
is supposed to present the whole of logic, its organization already permits
one to isolate interesting fragments of the logic presented. In particular, the
axiomatization of propositional logic presented in section A of part I is the
basis of much later logical work. Russell and Whitehead take the notion of
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negation and disjunction as basic. They define material implication, A ⊃ B,
as ∼A ∨B. The axioms for the calculus of propositions are:

1. Anything implied by a true premiss is true.

2. � :p ∨ p. ⊃ .p ∨ q
3. � :q. ⊃ .p ∨ q
4. � :p ∨ q. ⊃ .q ∨ p
5. � :p ∨ (q ∨ r). ⊃ .q ∨ (p ∨ r)
6. � :.q ⊃ r. ⊃ :p ∨ q. ⊃ .p ∨ r

The sign “�” is the sign of assertibility (taken from Frege), and the dotted
notation (due to Peano) is used instead of the now common parentheses. The
only rule of inference is modus ponens; later Bernays pointed out the need
to make explicit the rule of substitution, used but not explicitly stated in
Principia. The quantificational part cannot be formalized as easily due to the
need to specify in detail the type theoretic structure. This also requires checking
that the propositional axioms presented remain valid when the propositions
contain apparent variables (see Landini 1998 for a careful treatment).

Among the primitive propositions of quantificational logic is the following:

(9.1) � :φx. ⊃ .(∃z).φz
About it, Russell and Whitehead say that “practically, the above primitive
proposition gives the only method of proving ‘existence-theorems’: to prove
such theorems, it is necessary (and sufficient) to find some instance in which
an object possesses the property in question” (1910, 131). This is, however,
wrong and it will be a source of confusion in later debates (see Mancosu 2002).

2.6. Further Developments
The present itinerary on Russell does not aim at providing a full overview of
either Russell’s development in the period in question nor of the later discussion
on the nature of logicism. The incredible complexity of Russell’s system and the
wealth of still unpublished material make the first aim impossible to achieve
here. As evidenced by the citations throughout this itinerary (limited to the
major recent books), in the past decade there has been an explosion of scholarly
work on Russell’s contributions to logic and mathematical philosophy. Moreover,
the history of logicism as a program in the foundations of mathematics in the
1920s would require a book on its own.25 We thus conclude with a general
reflection on the importance of Principia for the development of mathematical
logic proper.

It is hard to overestimate the importance of Principia as the first worked-out
example of how to reconstruct in detail from a limited number of basic principles
the main body of mathematics (even though Principia, despite its length, does



The Development of Mathematical Logic from Russell to Tarski, 1900–1935 341

not even manage to treat the calculus in full detail). However, it became
evident that a number of problematic principles—such as infinity, choice, and
reducibility—were needed to carry out the reconstruction of mathematics
within logic. These existential principles were not obviously logical, and in the
case of reducibility seemed rather ad hoc. The further development of logicism in
the twenties can be seen as an attempt to work out a solution to such problems.
One possible solution was to simply reject the axiom of reducibility and accept
that not all of classical mathematics could be obtained in the ramified theory of
types. This was the strategy pursued by Chwistek in a number of articles from
the early twenties. A second solution was offered by Ramsey’s radical rethinking
of the logicist project. Ramsey (1925) distinguished between mathematical and
semantical antinomies. The former have to do with concepts of mathematics,
which are purely extensional whereas the latter involve intensional notions,
like definability, which do not belong to mathematics. By refusing to consider
the semantical antinomies of relevance to mathematics, Ramsey was able to
propose a simple theory of types that could account for classical mathematics
and which he claimed took care of all the mathematical antinomies. This,
however, came at the cost of excluding intensional notions from the realm of
logic.

However, it can be said that despite their interest for the history of logicism,
these developments did not, properly speaking, affect the development of
mathematical logic for the period we are considering. What was the influence
of Principia for developments in mathematical logic in the 1910s?

First of all, we have a number of investigations related to the propositional
part of Principia. Among the results to be mentioned are Sheffer’s (re)discovery
(1913) of the possibility of defining all Boolean propositional connectives start-
ing from the notion of incompatibility (Sheffer’s stroke). Using Sheffer’s stroke,
Nicod (1916–1919) was able to provide an axiomatization of the propositional
calculus with only one axiom. This work was generalized in the early twenties
in Göttingen by extending it to the quantificational part of the calculus. This
development also marks the beginning of combinatory logic. A systematic
analysis of the propositional part of Principia was also carried out in Bernays’s
Habilitationsschrift (1918). Much of this work required a metamathematical
approach to logic, which was absent from Principia (on all this, see itineraries
V and VIII).26 Principia was also influential in the development of systems of
logic that were strongly opposed to some of the major assumptions therein
contained. In the 1910s the most important work in this direction was Lewis’s
development of systems of strict implication (Lewis 1918).

However, the major influence of Principia might simply be that of having
established higher-order logic as the paradigm of logic for the next two decades.
While it is true that first-order logic emerges as a (more or less) natural
fragment of Principia (see itinerary IV) most logicians well into the thirties
(Carnap, Gödel, Tarski, Hilbert–Ackermann) still considered higher-order logic
the appropriate logic for formalizing mathematical theories (see Ferreiros 2001
for extensive treatment).
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3. Itinerary III. Zermelo’s Axiomatization of Set Theory
and Related Foundational Issues

The history of set theory during the first three decades of the twentieth century
has been extensively researched. One area of investigation is the history of
set theory as a mathematical discipline and its influence on other areas of
mathematics. A second important topic is the relationship between logic and
set theory. Finally, much attention has been devoted to the axiomatizations of
set theory, and even to the pluralities of set theories (naive set theory, Zermelo,
von Neumann, intuitionistic set theory, etc.). Here we focus on Zermelo’s
axiomatization.

3.1. The Debate on the Axiom of Choice
At the beginning of the century, set theory had already established itself
both as an independent mathematical theory as well as in its applications to
other branches of mathematics, in particular analysis.27 In his address to the
mathematical congress in Paris, Hilbert singled out the continuum problem
as one of the major problems for twentieth-century mathematics. One of the
problems that had occupied Cantor, which he was never able to solve, was
that of whether every set is an aleph, or equivalently, whether every set can be
well ordered. Julius König (1904) presented a proof at the third International
Congress of Mathematicians in Heidelberg claiming that the continuum cannot
be well ordered. A key step of the proof made use of a result by Felix Bernstein
claiming that ℵℵβα = 2ℵβℵα. But after scrutinizing Bernstein’s result in the
wake of König’s talk, Hausdorff (1904) showed that it holds only when α is
a successor ordinal. Soon thereafter, Zermelo showed that every set can be
well ordered (Zermelo 1904).28 Let us recall that an ordered set F is well
ordered if and only if every nonempty subset of it has a least element (under
the ordering). Zermelo’s proof appealed to

the assumption that coverings γ actually do exist, hence upon the
principle that even for an infinite totality of sets there are always
mappings that associate with every set one of its elements, or,
expressed formally, that the product of an infinite totality of sets,
each containing at least one element, itself differs from zero. This
logical principle cannot, to be sure, be reduced to a still simpler
one, but is applied without hesitation everywhere in mathematical
deduction. (Zermelo 1904, 141)29

Let M be the arbitrary set for which a well ordering needs to be established.
A covering γ for M in Zermelo’s proof is what we would call a choice function,
which for an arbitrary subset M ′ of a set M yields an element γ(M ′) of M ,
called the distinguished element of M ′. It is under the assumption of existence
of such a covering that Zermelo establishes the existence of special sets called
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γ-sets. A γ-set is a set Mγ included in M which is well ordered and such that
if a ∈Mγ and if A = {x : x ∈Mγ and x < a in the well ordering ofMγ }, then
a is the distinguished element of M −A according to the covering γ. Zermelo
then shows that the union of all γ-sets, Lγ , is a γ-set and that Lγ =M . Thus
M can be well ordered.

Zermelo’s proof immediately gave rise to a major philosophical and math-
ematical discussion.30 The main exchange was published by the Bulletin de
la Société Mathématique de France in 1905 and consisted of five letters ex-
changed among Baire, Borel, Lebesgue, and Hadamard (1905). Baire, Borel,
and Lebesgue shared certain constructivist tendencies, which led them to
object to Zermelo’s use of the principle of choice, although in their actual
mathematical practice they often made use (implicitly or explicitly) of Canto-
rian assumptions, including the principle of choice. For instance, Lebesgue’s
proof of the countable additivity of the measurable subsets of the real line
relies on the principle of choice for countable collections of sets. Hadamard
took a more liberal stand.

The debate began with an article by Borel, which appeared in Mathematische
Annalen (Borel 1905). Borel claimed that Zermelo’s proof had only shown
the equivalence between the well-ordering problem for an arbitrary set M
and the problem of choosing an arbitrary element from each subset of M .
However, Borel did not accept this as a solution to the first problem, for the
postulation of a choice function required by Zermelo was, if anything, even
more problematic than the problem one began with. He found the application
of the principle to uncountably many sets particularly problematic, but allowed
for the possibility that the principle might be acceptable when we are dealing
with countable collections of sets. Hadamard’s reply to Borel’s article defended
Zermelo’s principle. In the process of defending Zermelo’s application of the
principle, Hadamard also drew a few important distinctions. For instance,
he distinguished between reasonings in which each choice depends on the
previous ones (dependent choice) from Zermelo’s principle, which postulated
simultaneous independent choices. Moreover, he objected to Borel that he saw
no essential difference between postulating the principle for a countable or an
uncountable collection of sets. Finally, he also pointed at the fact that one
had to distinguish between whether the choice could be made “effectively” or
simply postulated to exist. He emphasized the essential difference between
showing that an object (say, a function) exists, without however specifying the
object, and actually providing a unique specification of the object. Hadamard
claimed that whether one raises the first or the second problem essentially
changes the nature of the mathematical question being investigated. The most
radical position was taken by Baire, who defended a strong finitism and refused
to accept one of the basic principles underlying Zermelo’s proof. Indeed, he
claimed that if a set A is given it does not follow that the set of its subsets
can also be considered as given. And thus, he rejected that part of Zermelo’s
argument that allowed him to pick an element from every subset of the given
set. Baire claimed that Zermelo’s principle was consistent but that it simply
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lacked mathematical meaning. Lebesgue’s point of view also emphasized the
issue of definability of mathematical objects. He asked: “Can one prove the
existence of a mathematical object without defining it?” He also defended a
constructivist attitude and claimed that the only true claim of existence in
mathematics must be obtained by defining the object uniquely. In the last
of the five letters, Hadamard rejected the constructivist positions of Baire,
Borel, and Lebesgue and claimed that mathematical existence does not have
to rely on unique definability. He clearly set out the two different conceptions
of mathematics that were at the source of the debate. On one conception,
the constructivist one, mathematical objects are said to exist if they can be
defined or constructed. On the other conception, mathematical existence is not
dependent on our abilities to either construct or define the object in question.
While allowing the reasonableness of the constructivist position, Hadamard
considered it to rely on psychological and subjective considerations that were
foreign to the true nature of mathematics.

The debate focused attention not only on the major underlying philosophical
issues but also on the important distinctions that one could draw between
different forms of the principle of choice. The positions of Baire, Borel, and
Lebesgue on definability remained vague but influenced later work by Weyl,
Skolem, and others.

Zermelo’s proof was widely discussed and criticized. In the article “A new
proof of the possibility of a well-ordering” (1908b), Zermelo gave a new proof
of the well-ordering theorem, by relying on a generalization of Dedekind’s
chains, and gave a full reply to the criticism that had been raised against his
previous proof (by, among others, Borel, Peano, Poincaré, König, Jourdain,
Bernstein, and Schoenflies). We focus on Poincaré’s objections.

Poincaré’s criticism of Zermelo’s proof occurred in his discussion (1906) of
logicism and set theory. In particular, he had objected to the formation of
impredicative sets which occur in the proof. Recall that in the final part of
the first proof Zermelo defined the set Lγ as the union of all γ-sets, that is,

Lγ = {x : for some γ-set Y , x ∈ Y }.
According to Poincaré, this definition is objectionable because to determine
whether an element x belongs to Lγ , one needs to go through all the γ-sets.
But among the γ-sets is Lγ itself, and thus a vicious circle is involved in
the procedure. Zermelo replied to Poincaré claiming that his critique would
“threaten the existence of all of mathematics” (Zermelo 1908b, 198). Indeed,
impredicative definitions and procedures occur not only in set theory but in
the most established branches of mathematics, such as analysis:

Now, on the one hand, proofs that have this logical form are by no
means confined to set theory; exactly the same kind can be found
in analysis wherever the maximum or the minimum of a previously
defined “completed” set of numbers Z is used for further inferences.
This happens, for example, in the well-known Cauchy proof of the
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fundamental theorem of algebra, and up to now it has not occurred
to anyone to regard this as something illogical. (Zermelo 1908b,
190–191)

Poincaré claimed that there was an essential difference between Cauchy’s
proof (in which the impredicativity is eliminable) and Zermelo’s proof. This
debate forced Poincaré to be more explicit on his notion of predicativity (see
Heinzmann 1985) and contributed to Zermelo’s spelling out of the axiomatic
structure of set theory. After presenting the axioms of Zermelo’s set theory we
will return to the issue of impredicativity.

3.2. Zermelo’s Axiomatization of Set Theory

Another set of objections that were raised against Zermelo’s proof suggested
the possibility that Zermelo’s assumption might end up generating the set of
all ordinals W and therefore fall prey to Burali-Forti’s antinomy.31 Zermelo
claimed that a suitable restriction of the notion of set was enough to avoid
the antinomies and that in 1904 he had restricted himself “to principles and
devices that have not yet by themselves given rise to any antinomy” (Zermelo
1908b, 192). These principles were the subject of another article that contains
the first axiomatization of set theory (Zermelo 1908c). Zermelo begins by
claiming that no solution to the problem of the paradoxes has yielded a simple
and convincing system. Rather than starting with a general notion of set, he
proposes to distill the axioms of set theory out of an analysis of the current
state of the subject. The treatment has to preserve all that is of mathematical
value in the theory and impose a restriction on the notion of set so that no
antinomies are generated. Zermelo’s solution consists in an axiom system
containing seven axioms. The main intuition behind his approach to set theory
is one of “limitation of size,” that is, sets which are “too large” will not be
generated by the axioms. This is ensured by the separation axiom, which
in essence restricts the possibility of obtaining new sets only by isolating
(definable) parts of already given sets. Following Hilbert’s axiomatization
of geometry, Zermelo begins by postulating the existence of a domain B of
individuals, among which are the sets, on which some basic relations are
defined. The two basic relations are equality (=) and membership (∈). For
sets A and B, A is said to be a subset of B if and only if every element of A is
an element of B. The key definition concerns the notion of definite property:

A question or assertion E is said to be definite if the fundamental
relations of the domain, by means of the axioms and the universally
valid laws of logic, determine without arbitrariness whether it holds
or not. Likewise a “propositional function” E(x), in which the
variable term x ranges over all individuals of a class K, is said to
be definite if it is definite for each single individual x of the class K.
(Zermelo 1908c, 201)
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This definition plays a central role in the axiom of separation (see the following)
which forms the cornerstone of Zermelo’s axiomatic construction. However, the
notion of a propositional function being “definite” remained unclarified and
Zermelo did not specify what “the universally valid laws of logic” are. This
lack of clarity was immediately seen as a blemish of the axiomatization; it was
given a satisfactory solution only later by, among others, Weyl and Skolem.
Let us now list the axioms in Zermelo’s original formulation.

Axiom I (Axiom of extensionality). If every element of a set M is also an
element of N and vice versa, if, therefore, both M ⊂= N and N ⊂= M ,
then always M = N ; or, more briefly: Every set is determined by its
elements. . . .

Axiom II (Axiom of elementary sets). There exists a (fictitious) set, the null
set, 0, that contains no element at all. If a is any object of the domain,
there exists a set {a} containing a and only a as element; if a and b are
two objects of the domain, there always exists a set {a, b} containing as
elements a and b but no object x distinct from both. . . .

Axiom III (Axiom of separation). Whenever the propositional function E(x)
is definite for all elements of a setM ,M possesses a subsetME containing
as elements precisely those elements x of M for which E(x) is true. . . .

Axiom IV (Axiom of the power set). To every set T there corresponds a set
UT , the power set of T , that contains as elements precisely all subsets
of T .

Axiom V (Axiom of the union). To every set T there corresponds a set ST ,
the union of T , that contains as elements precisely all elements of the
elements of T . . . .

Axiom VI (Axiom of choice). If T is a set whose elements are all sets that are
different from 0 and mutually disjoint, its union ST includes at least
one subset S1 having one and only one element in common with each
element of T . . . .

Axiom VII (Axiom of infinity). There exists in the domain at least one set Z
that contains the null set as an element and is so constituted that to
each of its element a there corresponds a further element of the form
{a}, in other words, that with each of its elements a it also contains the
corresponding set {a} as an element. (Zermelo 1908c, 201–204)

Let us clarify how Zermelo’s axiomatization manages to exclude the genera-
tion of the paradoxical sets and at the same time allows the development of
classical mathematics, including the parts based on impredicative definitions.
Previous developments of set theory operated with a comprehension principle
that allowed, given any property P (x), the formation of the set of objects
satisfying P (x), that is, {x : P (x) }. This unrestricted use of comprehension
leads to the possibility of forming Russell’s paradoxical “set” of all sets that
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do not contain themselves as elements, or the “set” of all ordinals W . How-
ever, the separation principle essentially restricts the formation of sets by
requiring that sets be obtained, through some propositional function P (x), as
subsets of previously given sets. Thus, to go back to Russell’s set, it is not
possible to construct {x : ∼(x ∈ x) } but only, for a previously given set A,
a set B = {x ∈ A : ∼(x ∈ x) }. Unlike the former, this set is innocuous and
does not give rise to an antinomy. In the same way, we cannot form the set
of all ordinals but only, for any given set A, the set of ordinals in A. The
paradoxes having to do with notions such as denotation and definability, such
as Berry’s or König’s paradoxes, are excluded because the notions involved
are not “definite” in the sense required for Axiom III. Zermelo’s approach
here foreshadows the distinction, later drawn by Ramsey (1925), between
mathematical and semantical paradoxes, albeit in a somewhat obscure way. In
his essay, Zermelo pointed out that the entire theory of sets created by Cantor
and Dedekind could be developed from his axioms, and he himself carried out
the development of quite a good amount of cardinal arithmetic.

To connect our discussion to the debate on impredicative definitions let us
look more closely at the principles of Zermelo’s system that allow the formation
of impredicative definitions. We shall consider one classic example, namely,
the definition of natural numbers according to Dedekind’s theory of chains.

In Was sind und was sollen die Zahlen? (1888), Dedekind had given a
characterization of the natural numbers starting from the notion of a chain.
First he argued, in a notoriously fallacious way, that there are simply infinite
systems (or sets), that is, sets that can be mapped one-one into a proper
subset of themselves. Then he showed that each simply infinite system S
contains an (isomorphic) copy of a K-chain, that is, a set that contains 1 and
is closed under successor. Finally, the set of natural numbers is defined as the
intersection of all K-chains contained in a simply infinite system. This is the
smallest K-chain contained in S. From the logical point of view, the definition
of the natural numbers by means of an intersection of sets corresponds to
a universal quantification over the power set of the infinite system S. More
formally, N = {X : X ⊂= S and X is a chain in S }. Equivalently, n ∈ N iff n
is a member of all chains in S.

In Zermelo’s axiomatization of set theory, the definition of N is justified
by appealing to three axioms. First of all, the existence of an infinite simple
system S is given through the axiom of infinity. By means of the power set
axiom we are also given the set of subsets of S. Finally, we appeal to the
separation axiom to construct the intersection of all chains in S.

It thus appears that the formalization of set theory provided by Zermelo
had met the goals he set for himself. On the one hand, the notion of set was
restricted in such a way that no paradoxical sets could arise. On the other hand,
no parts of classical mathematics seemed to be excluded by its formalization.
Zermelo’s axiomatization proved to be an astounding success. However, there
were problems left. Subsequent discussion showed the importance of the issue
of definability, and further results in set theory showed that Zermelo’s axioms
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did not quite characterize a single set-theoretic universe. This will be treated
in the next section.

3.3. The Discussion on the Notion of “Definit”
One important contribution to the clarification of Zermelo’s notion of “definit”
came already in Weyl’s “Über die Definitionen der mathematischen Grundbe-
griffe” (1910). After reflecting on the process of “Logisierung der Mathematik,”
Weyl declares in this paper that from the logical point of view, set theory
is the proper foundation of the mathematical sciences. Thus, he adds, if one
wants to give general definitional principles that hold for all of mathematics,
it is necessary to account for the definitional principles of set theory. First, he
begins his definitional analysis with geometry. Relying on Pieri’s work on the
foundations of geometry, he starts with two relations, x = y and E(x, y, z).
E(x, y, z) means that y and z are equidistant from x. Then he adds that all
definitions in Pieri’s geometry can be obtained by closing the basic relationships
under five principles:

1. Permutation of variables: if A(x, y, z) is a ternary relation, so is A(x, z, y).

2. Negation: if A is a relation, then not-A is also a relation.

3. Addition: if A(x, y, z) is a ternary relation, then A+(x, y, z, w) is a
relation, which holds of x, y, z, w, iff A(x, y, z) holds.

4. Subtraction: if A(x, y, z) is a relation, then so is B(x, y), which holds iff
there exists a z such that A(x, y, z)

5. Coordination: if A(x, y, z) and B(x, y, z) are ternary relations, so is
C(x, y, z), which holds if and only if both A(x, y, z) and B(x, y, z) hold.

For Weyl, these definitional principles are sufficient to capture all the
concepts of elementary geometry. In the later part of the article, Weyl poses
the question: Can all the concepts of set theory be obtained from x = y
and x ∈ y by closing under the definitional principles 1–5? Here his reply is
negative. He claims that the fact that in set theory we have objects that can be
characterized uniquely, such as the empty set, presents a situation very different
from the geometrical one, where all the points are equivalent. He adds that the
definitional principles 1–5 would have to be altered to take care of this situation.
However the definitional principles still play an important role in connection
to Zermelo’s concept of “definit.” After pointing out the vagueness of Zermelo’s
formulation of the comprehension principle he proposes an improvement: “A
definite relation is one that can be defined from the basic relationships =
and ∈ by finitely many applications of our definitional principles modified
in an appropriate fashion” (Weyl 1910, 304). The comprehension principle is
then stated not for arbitrary propositional functions, as in Zermelo, but in
the restricted form for binary relationships: “If M is an arbitrary set, a an
arbitrary object, and A is a definite binary relationship, then the elements
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x of M which stand in the relationship A to the object a constitute a set”
(Weyl 1910, 304). In a note to the text, Weyl also expresses his conviction that
without a precise formulation of the definitional principles the solution of the
continuum problem would not be possible. Weyl’s attempt at making precise
the notion of definite property is important because, despite a few remaining
obscure points, it clearly points the way to a notion of definability based
on closure under Boolean connectives and existential quantification over the
individuals of the domain (definition principle 4). In Das Kontinuum (1918),
the analysis of the mathematical concept formation is presented as an account
of the principles of combination of judgments with minor differences from
the account given in 1910. However, the explicit rejection of the possibility of
quantifying over (what he then calls) ideal elements, that is, sets of elements
of the domain, which characterizes Weyl’s predicative approach in 1918, brings
his approach quite close to an explicit characterization of the comprehension
principle in terms of first-order definability.32

Two very important contributions to the problem of “definiteness” were
given by Fraenkel (1922b) and Skolem (1922). The more influential turned out
to be Skolem’s account. Here is the relevant passage from Skolem’s work:

A very deficient point in Zermelo is the notion “definite proposition.”
Probably no one will find Zermelo’s explanations of it satisfactory.
So far as I know, no one has attempted to give a strict formulation
of this notion; this is very strange, since it can be done quite easily
and, moreover, in a very natural way that suggests itself. (Skolem
1922, 292)

Skolem then listed “the five basic operations of mathematical logic”: conjunc-
tion, disjunction, negation, universal quantification, existential quantification.
His proposal is that “by a definite proposition we now mean a finite expression
constructed from elementary propositions of the form a ∈ b or a = b by means
of the five operations mentioned” (292–293). The similarity to Weyl’s account is
striking. Although Skolem does not mention Weyl (1910), he was familiar with
it, as he had reviewed it for the Jahrbuch für die Fortschritte der Mathematik
(Skolem 1912).

One final point should be mentioned in connection to these debates on the
notion of “definit.” Weyl, already in 1910, had pointed out that the appeal
to a finite number of applications of the definitional principles showed that
the notion of natural number was essential to the formulation of set theory,
which however was supposed to provide a foundation for all mathematical
concepts (including that of natural number). In Das Kontinuum, he definitely
takes the stand that the concept of natural number is basic, and that set
theory cannot give a foundation for it (Weyl 1918, 24). Zermelo took the
opposite stand. Analyzing Fraenkel’s account of “definit” (1929), he rejected it
on account of the fact that an explicit appeal to the notion of finitely many
applications of the axiom was involved. But the notion of finite number should
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be given a foundation by set theory, which therefore cannot presuppose it in
its formulation (see also Skolem 1929a).

Thus, two major problems emerged in the discussion concerning a refinement
of the notion of “definit.” The first concerned the question of whether set theory
could be considered a foundation of mathematics. Both Skolem and Weyl (who
had abandoned his earlier position) thought that this could not be the case.
The second problem had to do with the choice of the formal language. Why
restrict oneself to first-order logic as Skolem and Weyl were proposing? Why
not use a stronger language? The problem was of course of central significance
due to the relativization of set-theoretical notions that Skolem had pointed
out in his 1922 paper (see itinerary IV). This topic would be worthy of further
discussion, but we limit ourselves here to two observations. First of all, Skolem
used the relativity of set-theoretic notions as an argument against considering
set theory as a foundation of mathematics. Second, Zermelo proposed in “Über
Stufen der Quantifikation und die Logik des Unendlichen” (1931) an infinitary
logic with the aim of countering Skolem’s position (which Zermelo called,
disparagingly, “Skolemism”).33 As Ferreiros (1999, 363) argues, it was only
after Gödel’s incompleteness results that the idea of using first-order logic as
the “natural” logical scaffolding for axiomatic set theory became standard.

3.4. Metatheoretical Studies of Zermelo’s Axiomatization
In treating set theory as an axiomatic system, Zermelo had opened the way
for a study of the metatheoretical properties of the system itself, such as
independence, consistency, and categoricity of the axioms. It should be said
from the outset that no real progress was made on the issue of consistency. A
proof of the consistency of set theory was one of the major goals of Hilbert’s
program, but it was not achieved. Of course, much attention was devoted to
the axiom of choice. The Polish set-theorist Sierpinski (1918) listed a long
set of propositions which seemed to require the axiom of choice essentially, or
which were equivalent to the axiom of choice. But was the axiom of choice itself
indispensable, or could it be derived from the remaining axioms of Zermelo’s
system?34 While this problem was only solved by the combined work of Gödel
(1940) and Cohen (1966), an interesting result on independence was obtained
by Fraenkel (1922b). Fraenkel was able to show that the axiom of choice is
independent of the other axioms of Zermelo’s set theory, if we assume the
existence of infinitely many urelements, that is, basic elements of the domain
B which possess no elements themselves. Unfortunately, the assumption of a
denumerable set of urelements is essential to the proof, and thus the result
does not apply immediately to Zermelo’s system. Moreover, there were reasons
to consider the assumption of urelements as foreign to set theory. Fraenkel
himself (1922c) had criticized the possibility of having urelements as part of the
domain B, posited at the outset by Zermelo, as irrelevant for the goal of giving
a foundations of mathematics. The possibility of having interpretations of set
theory with urelements, and others without, already suggested the inability of
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the axioms to characterize a unique model. Skolem (1922) (and independently
also Fraenkel in the same year) also discusses interpretations of Zermelo’s
axioms in which there are infinite descending chains · · · ∈ M2 ∈ M1 ∈ M ,
which he called a descending ∈-sequence, a fact that had already been pointed
out by Mirimanoff (1917).35 A related shortcoming, which affects both the
completeness and the categoricity of Zermelo’s theory, is related to the inability
of the theory to ensure that certain sets, which are used unproblematically
in the practice of set theorists, actually exist. Skolem gives the following
example. Consider the set M . By the power set axiom we can form U(M),
then U(U(M)), and so on for any finite iteration of the power set axiom.
However, no axiom in Zermelo’s set theory allows us to infer the existence
of {M,U(M),U(U(M)), . . . }. Skolem gives an interpretation that satisfies all
the axioms of set theory, which contains M and all finite iterations of the
power set of M , but in which {M,U(M),U(U(M)), . . . } does not exist. Both
shortcomings, infinite descending chains and lack of closure at “limit” stages,
pointed out important problems in Zermelo’s axiomatization. The existence of
infinite descending chains ran against the intuitive conception of set theory as
built up in a “cumulative” way, and the lack of closure for infinite sets showed
that genuine parts of the theory of ordinal and cardinal numbers could not be
obtained in Zermelo’s system. The latter problem was addressed by Skolem
through the formulation of what came to be known as the replacement axiom:

Let U be a definite proposition that holds for certain pairs (a, b) in
the domain B; assume further, that for every a there exists at most
one b such that U is true. Then, as a ranges over the elements of a
set Ma, b ranges over all elements of a set Mb. (Skolem 1922, 297)

In other words, starting from a set a and a “definite” functional relationship f(x)
on the domain, the range of f(x) is also a set. The name and an independent
formulation, albeit very informal, of the axiom of replacement is due to Fraenkel
(1922c). For this reason Zermelo (1930, 29) calls the theory Zermelo–Fraenkel
set theory. However, Fraenkel had doubts that the axiom was really needed
for “general set theory.” The real importance of the axiom became clear with
the development of the theory of ordinals given by von Neumann, who showed
that the replacement axiom was essential to the foundation of the theory.36

Von Neumann (1923) gave a theory of ordinals in which ordinals are specific
well-ordered sets, as opposed to classes of equivalent well-orderings. This
opened the way for a development of ordinal arithmetic independently of the
theory of ordered sets. The definition he obtained is now standard and it was
captured by von Neumann in the claim that “every ordinal is the set of the
ordinals that precede it.” The formalization of set theory he offered in 1925 is
essentially different from that of Zermelo. Von Neumann takes the notion of
function as basic (the notion of set can be recovered from that of function)
and allows classes in addition to sets. This system of von Neumann was later
modified and extended by Bernays and Gödel, to result in what is known
as NBG set theory.37 The central intuition is a “limitation of size” principle,
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according to which there are collections of objects which are too big (we now
call them classes), namely, those that are equivalent to the class of all things.
The difference between classes and sets is essentially that the latter but not
the former can be elements of other sets or classes. A very important part of
von Neumann (1925) consists in the axiomatic investigation of “models” of set
theory. We will come back to this issue in itinerary VIII. Here it should be
pointed out that von Neumann’s technique foreshadowed the studies of inner
models of set theory.

It is only with von Neumann that a new axiom intended to eliminate the
existence of descending ∈-sequences (and finite cycles) was formulated (1925,
1928) (although Mirimanoff had foreshadowed this development by means of
his postulate of “ordinariness” meant to eliminate “extraordinary” sets, that
is, infinite descending ∈-sequences). This was the axiom of well foundedness
(von Neumann 1928, 498), which postulates that every (nonempty) set is such
that it contains an element with which it has no element in common. The
axiom appears in Zermelo (1930) as the Axiom der Fundierung:

Axiom of Foundation: Every (descending) chain of elements, each
member of which is an element of the previous one, terminates with
a finite index in an urelement. Or, equivalently: Every subdomain
T (of a ZF-model) contains at least one element t0 that has no
element t in T . (Zermelo 1930, 31)

Thus by 1930 we have all the axioms that characterize what we nowadays call
ZFC, namely, Zermelo–Fraenkel set theory with choice. However, the formu-
lation given by Zermelo (1930) is not first-order, as it relies on second-order
quantification in the statement of the axioms of separation and replacement.
Even the second formulation of the axiom of foundation contains an implicit
quantification over models of ZF.38

During the thirties, there were several competing systems for the foundations
of mathematics, such as, in addition to Zermelo’s extended system, simple
type theory and NBG. It was only in the second half of the 1930s that the
first-order formulation of ZFC became standard (see Ferreiros 1999, 2001).

4. Itinerary IV. The Theory of Relatives
and Löwenheim’s Theorem

4.1. Theory of Relatives and Model Theory
Probably the most important achievements of the algebraic tradition in logic
are the axiomatization of the algebra of classes, the theory of relatives, and
the proof of the first results of a clearly metalogical character. The origin of
the calculus of classes is found in the works of Boole. De Morgan was the
first logician to recognize the importance of relations to logic, but he did not
develop a theory of relations. Peirce established the fundamental laws of the
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calculus of classes and created the theory of relatives.39 Schröder proposed
the first complete axiomatization of the calculus of classes and expanded
considerably the calculus and the theory of relatives. This theory was the
frame that made possible the proof by Löwenheim of the first metalogical
theorem. “Über Möglichkeiten im Relativkalkül” (1915), the paper in which
Löwenheim published these results, is now recognized as one of the cornerstones
in the history of logic (or even in the history of mathematics) due to the fact
that it marks the beginning of what we call model theory.40

The main theorems of Löwenheim’s paper are (stated in modern terminol-
ogy): (1) Not every first-order sentence of the theory of relatives is logically
equivalent to a quantifier-free formula of the calculus of relatives (proved by
Korselt in a letter to Löwenheim); (2) if a first-order sentence has a model,
then it has a countable model; (3) there are satisfiable second-order sentences
which have no countable model; (4) the unary predicate calculus is decidable;
and (5) first-order logic can be reduced to binary first-order logic.

Nowadays, we use the term “Löwenheim–Skolem theorem” to refer to
theorems asserting that if a set of first-order sentences has a model of some
infinite cardinality, it also has models of some other infinite cardinalities.
The mathematical interest of these theorems is well known. They imply, for
example, that no infinite structure can be characterized up to isomorphism
in a first-order language. Theorem 2 of Löwenheim’s paper was the first one
of this group to be proved and, in fact, the first in the history of logic that
established a nontrivial relation between first-order formulas and their models.

Löwenheim’s theorem poses at least two problems to the historian of logic.
The first is to explain why the theory of relatives made it possible to state
and prove a theorem which was unthinkable in the syntactic tradition of Frege
and Russell. The second problem is more specific. Even today, Löwenheim’s
proof raises many uncertainties. On the one hand, the very result that is
attributed to Löwenheim today is not the one that Skolem—a logician raised
in the algebraic tradition—appears to have attributed to him. On the other
hand, present-day commentators agree that the proof has gaps, but it is not
completely clear which they are. We deal with these questions in the following
pages.41

Schröder was interested in the study of the algebras of relatives. As Peirce
and he himself conceived it, an algebra of relatives consists of a domain of
relatives (the set of all relatives included in a given universe), the inclusion
relation between relatives (denoted by ⊂= ), six operations (union, intersection,
complementation, relative product, relative sum, and inversion) and four
distinguished elements called modules (the total relation, the identity relation,
the diversity relation, and the empty class). Schröder’s objective was to study
these structures with the help of a calculus. He could have tried to axiomatize
the calculus of relatives, but, following Peirce, he preferred to develop it
within the theory of relatives. The difference between the theory and the
calculus of relatives is roughly this. The calculus permits the quantification
over relatives, but deals only with relatives and operations between them. The
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theory of relatives, on the other hand, is an extension which also allows the
quantification over individuals. The advantage of the theory over the calculus
is that the operations between relatives can be defined in terms of individuals
and these definitions provide a simpler and more intuitive way of proving
certain theorems of the calculus.

Neither Peirce nor Schröder thought that the theory of relatives was stronger
than the calculus. Schröder in particular was convinced that all logical and
mathematical problems could be addressed within the calculus of relatives
(Schröder 1898, 53). So he focused on developing the calculus and viewed the
theory as a tool that facilitated his task. Schröder did not address problems
of a metalogical nature, in that he did not consider the relation between the
formulas of a formal language and their models. Arguments or considerations of
a semantic type are not completely absent from Vorlesungen über die Algebra
der Logik (henceforth Vorlesungen), but they occur only in the proofs of certain
equations, and so we cannot view them as properly metalogical.

Schröder posed numerous problems regarding the calculus of relations, but
very few later logicians showed any interest in them, and the study of the
algebras of relatives was largely neglected until Tarski. In his first paper on
the subject, Tarski (1941) claimed that hardly any progress had been made
in the previous 45 years and expressed his surprise that this line of research
should have had so few followers.42

Schröder was not interested in metalogical questions, but the theory of
relatives as he conceived it made it possible to take them into consideration. As
a preliminary appraisal, we can say that in the theory of relatives two interpre-
tations coexist: an algebraic interpretation and a propositional interpretation.
This means that the same expressions can be seen both as expressions of an
algebraic theory and as formulas of logic (i.e., as well-formed expressions of a
formal language which we may use to symbolize the statements of a theory to
reflect its logical structure). We do not mean by this that the whole theory
admits of two interpretations, because not all the expressions can be read in
both ways, but the point is that some expressions do.

One way of viewing the theory of relatives that gives a fairly acceptable
idea of the situation is as a theory of relations together with a partly algebraic
presentation of the logic required to develop it.43 The theory constitutes a
whole, but it is important to distinguish the part that deals with the tools
needed to construct and evaluate the expressions that denote a truth value
(i.e., the fragment that concerns logic) from the one that deals specifically
with relatives. So, to prove his theorem, Löwenheim had to think of logic as
a differentiated fragment of the theory of relatives and delimit the formal
language at least to the extent required to state and prove the theorem.

With the exception of the distinction between object language and metalan-
guage (an absence that needs emphasizing as it causes many problems in the
proof by Löwenheim of his theorem), the basic components of model theory
are found in one way or another in the theory of relatives. On the one hand,
the part of the theory dealing with logic contains more or less implicitly the
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syntactic component of a formal language with quantification over relatives: a
set of logical symbols with its corresponding propositional interpretation and
a syntax borrowed from algebra. On the other, the algebraic interpretation
supplies a semantics for this language in the sense that it is enough to evaluate
the expressions of this language. In this situation, all that remains to be done
to obtain the first results of model theory is, first, become aware that the
theory does include a formal language and single it out; second, focus on this
language and, in particular, on its first-order fragment; and third, investigate
the relationship between the formulas of this language and the domains in
which they hold. As far as we know, Löwenheim was the first in the history of
logic to concentrate on first-order logic and investigate some of its nontrivial
metalogical properties.

4.2. The Logic of Relatives
To understand Löwenheim’s proof and the relationship between his paper and
the theory of relatives, we need first to present the logic of relatives (i.e., the
fragment of the theory that concerns logic).44 In our exposition, we distinguish
syntax from semantics, although such a distinction is particularly alien to the
logic of relatives. Consequently, the exposition should not be used to draw
conclusions about the level of precision found in Schröder or in Löwenheim.

Strictly speaking, relatives denote relations on the (first-order) domain and
they are the only nonlogical symbols of the logic of relatives. However, as a
matter of fact, in the writings of the algebraists the word relative refers both
to a symbol of the language and to the object denoted by it. The only relatives
usually taken into account are binary, on the assumption that all relatives can
be reduced to binary.45

What we would call today logical symbols are the following: (a) indices;
(b) module symbols: 1′ and 0′; (c) operation symbols: +, · and ; (d) quantifiers:
Σ and Π; (e) equality symbol: =; and (f) propositional constants: 1 and 0.

Indices play the role of individual variables. As indices the letters h, i, j, k,
and l are the most frequently used.

In the theory of relatives, the term module is used to refer to any of the
four relatives 1, 0, 1′, and 0′. The module 1 is the class of all ordered pairs
of elements of the (first-order) domain; 0 is the empty class; 1′ is the identity
relation on the domain; and 0′ is the diversity relation on the domain. In the
logic of relatives, 1′ and 0′ are used as relational constants and 1 and 0 are not
viewed as modules but as propositional constants, denoting the truth values.

There are six operations on the set of relatives: identical sum (union,
denoted by +), identical product (intersection, denoted by ·), complement
( ), relative sum, relative product, and inversion. None of these operations
belongs to the logic of relatives. The symbols corresponding to the first three
operations are used ambiguously to refer also to the three well-known Boolean
operations defined on the set {0, 1}. This is the meaning they have in the logic
of relatives.
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If i and j are elements of the domain and a is a relative or a module, then
aij is a relative coefficient. For example, the relative coefficients of z in the
domain {2, 3} are z22, z23, z32, and z33. Relative coefficients can only take two
values: the truth values (1 and 0). That is, if aij is a relative coefficient, then

aij = 1 or aij = 0.

Relative coefficients admit of a propositional interpretation: aij expresses
that the individual i is in the relation a with the individual j. This interpreta-
tion allows us to regard relative coefficients as atomic formulas of a first-order
language, but in the logic of relatives they are considered as terms.

If A and B are expressions denoting a truth value, so are (A+B), (A ·B),
and A; for example, (aij + bij), (aij · bij), and (aij) are meaningful expressions
of this sort. Terms denoting a truth value admit a propositional reading when
the symbols +, ·, and occurring in them are viewed as connectives.

The symbols Σ and Π have different uses in the theory of relatives and they
cannot be propositionally interpreted as quantifiers in all cases. We restrict
ourselves to their use as quantifiers. If u is a variable ranging over elements
(or over relatives) and Au is an expression denoting a truth value in which u
occurs, then

Σ
u
Au and Π

u
Au

are, respectively, the sum and the product of all Au, where u ranges over the
domain (or over the set of relatives). From the algebraic point of view, these
expressions are terms of the theory, because they denote a truth value. They
also admit a propositional reading, Σ can also be interpreted as the existential
quantifier and Π as the universal one. For example, ΣiΠj zij can also be read
as “there exists i such that for every j, i is in the relation z with j.”46

The canonical formulas of the theory of relatives are the equations, that
is, the expressions of the form A = B, where both A and B are terms
denoting either a relative or a truth value. As a special case, A = 0 and
A = 1 are equations.47 The logic of relatives only deals with terms that have
a propositional interpretation, that is, with terms denoting a truth value. A
first-order term is a term of this kind whose quantifiers (if any) range over
elements (not over relatives). In his presentation of the logic of relatives (1915),
Löwenheim uses the word Zählausdruck (first-order expression) to refer to
these terms and the word Zählgleichung (first-order equation) to refer to the
equations whose terms are first-order expressions.48 To move closer to the
current terminology, in what follows we use the word “formula” for what
Löwenheim calls Zählausdruck.

The set over which the individual variables range is the first-order domain
(Denkbereich der ersten Ordnung) and is denoted by 11. The only condition
that this domain must fulfill is to be nonempty. Schröder insists that it must
have more than one element, but Löwenheim ignores this restriction. Relative
variables range over the set of relations on 11. The second-order domain
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(Denkbereich der zweiten Ordnung), 12, is the set of all ordered pairs whose
coordinates belong to 11. In this exposition we are using the word domain as
shorthand for “first-order domain.”

The current distinction between the individual variables of the object
language and the metalinguistic variables ranging over the elements of the
domain does not exist in the logic of relatives. From the moment it is assumed
that an equation is interpreted in a domain, the indices play simultaneously
the role of variables of the formal language and that of variables of the
metalanguage. The canonical names of the elements of the domain are then
used as individual constants having a fixed interpretation. Thus, the semantic
arguments that we find in the logic of relatives are better reproduced when we
think of them as arguments carried out in the expanded language that results
from adding the canonical names of the elements to the basic language.

Interpreting an equation means fixing a domain and assigning a relation on
the domain to each relative occurring in it. We can say that an interpretation
in a domain D of an equation (without free variables) is a function that assigns
a relation on D to each relative occurring in the equation. The interpretation
of a relative z can also be fixed by assigning a truth value to each coefficient
of z in D, because, in the theory of relatives, for every a, b ∈ D, 〈a, b〉 ∈ z if
and only if zab = 1. Thus, an interpretation of an equation in a domain D can
also be defined as an assignment of truth values to the coefficients in D of the
relatives (other than 1′ and 0′) occurring in the equation.

The most immediate response to an equation is to inquire about the systems
of values that satisfy it. This inquiry has a clear meaning in the context of
the logic of relatives and it does not require any particular clarification to
understand it. The equations of the logic of relatives are composed of terms
which in a domain D take a unique value (1 or 0) for each assignment of
values to the coefficients in D of the relatives occurring in them. An equation
is satisfied by an interpretation I in a domain if both members of the equation
take the same value under I. There is no essential difference between asking
if there is a solution (an interpretation) that satisfies the equation A = 1 and
asking if the formula A is satisfiable in the modern sense.49 In this way, in the
logic of relatives semantic questions arise naturally, propitiated by the algebraic
context. There is no precise definition of any semantic concept, but the meaning
of these concepts is clear enough for the proof of theorems such as Löwenheim’s.

4.3. Löwenheim’s Theorem
The simplest versions of the Löwenheim–Skolem theorem can be stated as
follows: For every first-order sentence A,

a. if A is satisfiable, then it is satisfiable in some countable domain;

b. if an interpretation I in D satisfies A, there exists a countable subdomain
of D such that the restriction of I to the subdomain satisfies A.
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Version b (the subdomain version) is stronger than version a (the weak
version) and has important applications in model theory. Some form of the
axiom of choice is necessary to prove the subdomain version, but not to prove
the weak one.

All modern commentators of Löwenheim’s proof agree that he proved the
weak version, and that it was Skolem (1920) who first proved the subdomain
version and further generalized it to infinite sets of formulas. By contrast,
Skolem (1938, 455), a logician trained in the algebraic tradition, attributed
to Löwenheim the proof of the subdomain version, and in our opinion, this
attribution must be taken seriously. The fact that Löwenheim’s proof allows
two readings so at variance with each other shows patently his argument is far
from clear.

As far as the correctness of the proof is concerned, no logician of Löwenheim’s
time asserts that the proof is incorrect or that it has major gaps. The only
inconvenience mentioned by Skolem is that the use of fleeing indices complicates
the proof unnecessarily.50 Herbrand thought that Löwenheim’s argument
lacks the rigor required by metamathematics but considered it “sufficient in
mathematics” (Herbrand 1930, 176). The most widely held position today is
that the proof has some important gaps, although commentators differ as to
precisely how important they are. Without actually stating that the proof is
incorrect, van Heijenoort maintains that Löwenheim does not account for one
of the most important steps. Dreben and van Heijenoort (1986, 51) accept
that Löwenheim proved the weak version, but state that their reading of the
proof is a charitable one. For Vaught (1974, 156), the proof has major gaps,
but he does not specify what they are. Wang (1970, 27 and 29) considers that
Löwenheim’s argument is “less sophisticated” than Skolem’s in 1922, but does
not say that it has any important gaps. Moore’s point of view is idiosyncratic
(see Moore 1980, 101; 1988, 121–122). In his opinion, the reason Löwenheim’s
argument appears “odd and unnatural” to the scholars just mentioned is that
they consider it inside standard first-order logic instead of considering it in
the frame of infinitary logic.

This diversity of points of view makes manifest the difficulty of understanding
Löwenheim’s argument and at the same time the necessity to provide a new
reading of it.

Theorem 2 of Löwenheim’s paper is: “If the domain is at least denumerably
infinite, it is no longer the case that a first-order fleeing equation is satisfied
for arbitrary values of the relative coefficients” (Löwenheim 1915, 235).

A fleeing equation is an equation that is not logically valid but is valid in
every finite domain. Löwenheim’s example of a fleeing equation is:

Σ
l

Π
i,j,h

(zhi + zhj + 1′ij)zli Σ
k
zki = 0.

For the proof of the theorem, he assumes without any loss of generality that
every equation is in the form A = 0. This allows him to go from equations
to formulas, bearing in mind that “A = 0 is valid” is equivalent to “A is not
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satisfiable.” Thus, Löwenheim’s argument can also be read as a proof of the
following.

Theorem If a first-order sentence (a Zählausdruck) is satisfiable but not
satisfiable in any finite domain, then it is satisfiable in a denumerable domain.

Löwenheim’s proof can be split into two lemmas. We state them for formulas
(not for equations) and comment on their proof separately.

Lemma 1 Every sentence of a first-order language is logically equivalent to
a sentence of the form Σ ΠF , where Σ stands for a possibly empty string
of existential quantifiers, Π stands for a possibly empty string of universal
quantifiers, and F is a quantifier-free formula.

The central step in the proof of this lemma involves moving the existential
quantifiers in front of the universal quantifiers, preserving logical equivalence.
Löwenheim takes this step by applying the equality

(1) Π
i

Σ
k
Aik = Σ

ki

Π
i
Aiki ,

which is a notational variant of a transformation introduced by Schröder (1895,
513–516). According to Löwenheim, Σki is an n-fold quantifier, where n is the
cardinality of the domain (n may be transfinite).51 For example, if the domain
is the set of natural numbers, then

(2) Σ
ki

Π
i
Aiki

can be developed in this way:

Σ
k1,k2,k3,...

A1k1A2k2A3k3 . . .

Löwenheim warns, however, that this development of (2) contravenes the
stipulations on language, even if the domain is finite.

Löwenheim calls terms of the form ki fleeing indices (Fluchtindizes) and
says that these indices are characterized by the fact that their subindices are
universally quantified variables, but in fact, he also gives that name to the
indices generated by a fleeing index when its universally quantified variables
take values on a domain (k1, k2, k3, . . . in the example).

Schröder’s procedure for changing the order of quantifiers is generally
considered to be the origin of the concept of the Skolem function, and

∀x∃yA(x, y) ↔ ∃f∀xA(x, fx)

as the current way of writing (1).52 Even if we subscribed to this assertion, we
should notice that neither Schröder nor Löwenheim associated the procedure
for changing the order of quantifiers with the quantification over functions
(as Goldfarb notes in 1979). Skolem did not make this association either. In
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addition, the interpretation of (2) in terms of Skolem functions does not clarify
why Schröder and Löwenheim reasoned as they did, nor does it explain some
of Skolem’s assertions as this one: “But his [Löwenheim’s] reasonings can be
simplified by using the ‘Belegungsfunktionen’ (i.e., functions of individuals
whose values are individuals)” (Skolem 1938, 455–456). Finally, it is debatable
whether fleeing indices are functional terms or not.

The usual way of interpreting Löwenheim’s explanation of the meaning of (2)
can be summarized as follows: (2) is a schema of formulas that produces different
formulas depending on the cardinality of the domain under consideration; when
the domain is infinite the result of the development is a formula of infinite length;
in each case, (2) should be replaced by its development in the corresponding
domain.53 Against this interpretation the above-mentioned warning could be
cited and also the fact that, strictly speaking, no step in Löwenheim’s proof
consists of the replacement of a formula by its development.

The main characteristic of fleeing indices is their ability to generate a
different term for each element of the domain. If a is an element of the domain
and ki is a fleeing index, then ka is an index. The terms generated by a
fleeing index behave like any “normal” index (i.e., like any individual variable).
Thus, Löwenheim can assert that ka, unlike ki, stands for an element of the
domain.

In our view, Löwenheim’s recourse to the development of quantifiers in
a domain is a rather rough and ready way of expressing the semantics of
formulas with fleeing indices. The purpose of the development of (2) is to
facilitate the understanding of this kind of formulas. Today’s technical and
expressive devices allow us to express the meaning of (2) without recourse to
developments. If for the sake of simplicity let us suppose that (2) has no free
variables, then

(3) Σki ΠiAiki is satisfied by an interpretation I in a domain D if and only
if there is an indexed family 〈ka | a ∈ D〉 of elements of D such that for
all a ∈ D: Aiki is satisfied by I in D when i takes the value a and ki the
value ka.

This interpretation of (2) is what Löwenheim attempts to express and is
all we need to account for the arguments in which (2) intervenes. Löwenheim
(unlike Schröder) does not see (2) as a schema of formulas. The developments
are informal explanations (informal, because they contravene the stipulations
on language) whose purpose is to facilitate the understanding of quantification
over fleeing indices. Löwenheim has no choice but to give examples, because
the limitations of his conceptual apparatus (specifically, the lack of a clear
distinction between syntax and semantics) prevents him from giving the
meaning of (2) in a way analogous to (3). Many of Schröder’s and Löwenheim’s
arguments and remarks are better understood when they are read in the light
of (3). In particular, some of these remarks show that they did not relate
quantification over fleeing indices with quantification over functions, because
they did not relate the notion of indexed family with that of function.
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In the proof of Lemma 1, Löwenheim aims to present a procedure for
obtaining a formula of the form Σ ΠF logically equivalent to a given formula A.
One of the most striking features of Löwenheim’s procedure is that the order
in which he proceeds is the opposite of the one we would follow today. First
he moves the existential quantifiers of A in front of the universal ones, and
then obtains the prenex form. This way of arriving at a formula of the form
Σ ΠF introduces numerous, totally unnecessary complications. One of the
most unfortunate consequences of the order that Löwenheim follows is that the
prenex form cannot be obtained in a standard first-order language, because
the formula that results from changing the order of the quantifiers will contain
quantified fleeing indices. Thus, to obtain the prenex form we need equivalences
that tell us how to deal with these expressions and how to resolve the syntactic
difficulties that they present. Löwenheim ignores these problems.

The proof of the lemma presents some problems, but its first part, the one
in which existential quantifiers are moved in front of universal ones, is an
essentially correct proof by recursion. Löwenheim is not aware of the recursion
involved, but his proof shows that he intuits the recursive structure of a formal
language.

Lemma 2 If Σ ΠF is satisfiable but not satisfiable in any finite domain, then
it is satisfiable in a denumerable domain.

First of all, Löwenheim shows with the aid of examples that for this proof
we can ignore the existential quantifiers of Σ ΠF . He notes that a formula of
the form ΠF is satisfiable in a domain D if there exists an interpretation of
the relatives occurring in F and an assignment of values (elements in D) to
the free variables of F and to the indices generated by the fleeing indices when
their subindices range over the domain. But this is precisely what it means to
assert that Σ ΠF is satisfiable in D.

The proof proper begins with the recursive definitions of a sequence (Cn,
n ≥ 1) of subsets of C = {1, 2, 3, . . . } and of some sequences of formulas as
follows.

1. If ΠF is a sentence, C0 = {1}. If {j1, . . . , jm} are the free variables
of ΠF , then C0 = {1, . . . ,m}. Let ΠF ′ be the result of replacing in ΠF
the constant n (1 ≤ n ≤ m) for the variable jn. Let F1 be the product of
all the formulas that are obtained by dropping the quantifiers of ΠF ′ and
replacing the variables that were quantified by elements of C0. For example, if
ΠF = Πi F (i, j1, j2, ki) then, C0 = {1, 2} and

F1 = F (1, 1, 2, k1) · F (2, 1, 2, k2).

If F1 has p fleeing indices, we enumerate them in some order from m+ 1
to m+ p. P1 is the result of replacing in F1 the individual constant n for the
fleeing index tn (m+ 1 ≤ n ≤ m+ p) and C1 is the set of individual constants
of P1, that is, C1 = {1, 2, . . . ,m, . . . ,m + p}. If ΠF and, therefore, F1 has
no fleeing indices, then P1 = F1 and C1 = C0. If in our example, the fleeing
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indices are enumerated from 2 onward in the order in which they occur in F1,
then

P1 = F (1, 1, 2, 3) · F (2, 1, 2, 4).

At this point Löwenheim makes the following claim.

Claim 2.1 If P1 is not satisfiable, then ΠF is not satisfiable.

To determine whether P1 is satisfiable or not, Löwenheim takes identity
into account and considers all possible systems of equalities and inequalities
between the constants that occur in P1.54 He implicitly assumes that we choose
a representative of each equivalence class of each equivalence relation. Then, for
each system of equalities between the constants of P1, we obtain the formula
resulting from

i. replacing each constant of P1 by the representative of its class; and

ii. evaluating the coefficients of 1′ and 0′. This means that in place of 1′ab, we
will write 1 or 0, depending on whether a = b or a �= b, and analogously
for the case of 0′ab. Thus, each system of equalities determines the values
of the relative coefficients of 1′ and 0′ and this allows us to eliminate
these coefficients.

Because C1 is finite, we obtain by this method a finite number of formulas:

P 1
1 , P

2
1 , . . . , P

q
1 .

Following Skolem’s terminology (1922, 296), we use the expression formulas of
level 1 to refer to these formulas.

Löwenheim goes on by stating the following.

Claim 2.2 If no formula of level 1 is satisfiable, then ΠF is not satisfiable.

He could now have applied the hypothesis of the theorem to conclude that
there are satisfiable formulas at level 1, but instead of doing so, he argues as
follows: if no formula of level 1 is satisfiable, we are done; if some formula is
satisfiable, we proceed to the next step of the construction.

2. Let F2 be the product of all the formulas that are obtained by dropping
the quantifiers of ΠF ′ and replacing the variables that were quantified by
elements of C1. Evidently, the fleeing indices of F1 are also fleeing indices of F2.
Suppose that F2 has q fleeing indices that do not occur in F1. Enumerate these
new fleeing indices in some order starting at m+p+ 1. Now, P2 is the result of
replacing in F2 each individual constant n for the corresponding fleeing index
tn (m+ 1 ≤ n ≤ m+ p+ q), and C2 is the set of individual constants of P2,
that is, C2 = {1, 2, . . . ,m + p + q}. If ΠF and, therefore, F1 has no fleeing
indices, then P2 = P1 and C2 = C1. If in our example, the fleeing indices are
enumerated from 4 onward in the order in which they occur in F1, then

P2 = F (1, 1, 2, 3) · F (2, 1, 2, 4) · F (3, 1, 2, 5) · F (4, 1, 2, 6).
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As before, we take into account all possible systems of equalities between
the elements of C2, and for each of these systems, we obtain the formula
resulting from replacing each constant by the representative of its class and
from evaluating the coefficients of 1′ and 0′. Let the formulas obtained by this
method (the formulas of level 2) be:

P 1
2 , P

2
2 , . . . , P

r
2 .

If no formula of level 2 is satisfiable, we are done; if any of them is satisfiable,
we repeat the process to construct P3, C3, and the formulas of level 3. By
repeatedly applying this method, we can construct for each n ≥ 1, the formula
Pn, the subset Cn and the associated formulas of level n.

We emphasize a number of points that will be important in the final part
of the proof.

a. The number of formulas at each level is finite, since for each n, Cn is
finite.

b. Let us say that a formula A is an extension of a formula B, if A is of the
form B ·B′. Löwenheim assumes that for every n, Fn+1 is an extension of Fn.
Thus, if n < m, Pm is an extension of Pn, and each formula Q of level m is an
extension of one and only one formula of level n. The relation of extension on
the set of all formulas occurring at some level (the formulas P rn obtained from
P1, P2, . . . ) is a partial order on the set of all formulas. This kind of partial
order is what we today call a tree.

c. Because what we said about the formulas of level 1 goes for any n > 1 as
well, the following generalization of Claim 2.2 can be considered as proven.

Claim 2.3 If there exists n such that no formula of level n is satisfiable, then
ΠF is not satisfiable.

We now present the last part of Löwenheim’s argument. We deliberately
leave a number of points unexplained—points which, in our opinion, Löwenheim
does not clarify. In the subsequent discussion we argue for our interpretation
and explain all the details.

By the hypothesis of the theorem, there is an interpretation in an infinite
domain D that satisfies Σ ΠF and, therefore, ΠF . As a consequence, at
each level there must be at least one true formula under this interpretation
and, therefore, the tree of formulas constructed by following Löwenheim’s
procedure is infinite. Among the true formulas of the first level which, we
recall, is finite, there must be at least one which has infinitely many true
extensions (i.e., one that has true extensions at each of the following levels).
Let Q1 be one of these formulas. At the second level, which is also finite,
there are true formulas which are extensions of Q1 and also have infinitely
many true extensions. Let us suppose that Q2 is one of these formulas. In the
same way, at the third level there must be true formulas which are extensions
of Q2 (and, therefore, of Q1) and have infinitely many true extensions. Let
Q3 be one of these formulas. In this way, there is a sequence of formulas
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Q1, Q2, Q3, . . . such that for each n > 0: Qn+1 is a true extension of Qn.
Consequently,

(4) Q1 ·Q2 ·Q3 · · · = 1.

The values taken by the various kind of indices whose substitution gives rise
to the sequence Q1, Q2, Q3, . . . determine a subdomain of D on which ΠF
has the same truth value as Q1 ·Q2 ·Q3 · · · . Because this subdomain cannot
be finite, because ΠF is not satisfiable in any finite domain, we conclude that
ΠF = 1 in a denumerable domain. This ends the proof of the theorem.

Basically, this part of Löwenheim’s argument is the proof of a specific case
of what we know today as the infinity lemma proved later with all generality
by Denes König (1926, 1927). The proof of this lemma requires the use of
some form of the axiom of choice, but when the tree is countable (as in this
case) any enumeration of its nodes allows us to choose one from each level
without appealing to the axiom of choice. Since Löwenheim does not choose
the formulas on the basis of any ordering, we can assume that he is implicitly
using some form of the axiom of choice.

Modern commentators have seen in the construction of the tree an attempt
to construct an interpretation of ΠF in a denumerable domain. Van Heijenoort
(1967a, 231) reads the final step in this way: “for every n, Qn is satisfiable;
therefore, Q1 · Q2 · Q3 · · · is satisfiable.” This step is correct but, as the
compactness theorem had not been proven in 1915 and Löwenheim does not
account for it, van Heijenoort concludes that the proof is incomplete. Wang
considers that Löwenheim is not thinking of formulas but of interpretations.
According to his reading, the tree that Löwenheim constructs should be seen
as if any level n were formed by all the interpretations in D (restricted to
the language of Pn) that satisfy Pn. The number of interpretations at each
level is also finite, although it is not the same as the number of formulas
that Löwenheim considers. Thus, when Löwenheim fixes an infinite branch
of the tree, it should be understood that he is fixing a sequence of partial
interpretations such that each one is an extension of the one at the previous
level. The union of all these partial interpretations is an interpretation in a
denumerable domain that satisfies Pn for every n ∈ N , and therefore ΠF .

The main difference between these readings of Löwenheim’s argument and
the foregoing version is that instead of constructing the sequence Q1, Q2,
Q3, . . . with satisfiable formulas or interpretations, we do so with formulas
that are true under the interpretation that, by hypothesis, satisfies ΠF in D.
Obviously, this means that we subscribe to the view that Löwenheim meant
to prove the subdomain version of the theorem.

The aim of Löwenheim’s proof is to present a method for determining a
domain. The determination is made when all the possible systems of equalities
are introduced. In a way, it is as if the satisfiable formulas of a level n
represented all the possible ways of determining the values of the constants
occurring in Pn. Thus, when Löwenheim explains how to construct the different
levels of the tree, what he means to be explaining is how to determine a domain
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on the basis of an interpreted formula; consequently, when the construction is
completed, he states that he has constructed it.

In Löwenheim’s view the problem of determining the system of equalities
between numerals is the same (or essentially the same) as that of fixing the
values taken by the summation indices of ΠF (the free variables, and the
indices generated by the fleeing indices). Each system of equalities between the
numerals of Pn is biunivocally associated to a formula of level n. The formulas
of any level n represent, from Löwenheim’s perspective, all the possible ways
of determining the values taken by the numerals that occur in Pn and, in
the last resort, the values taken by the indices replaced by the numerals (i.e.,
the free variables in ΠF and the indices generated when their fleeing indices
range over the set of numerals occurring in Pn−1). Thus, any assignment of
values to these indices is represented by a formula of level n. Now, if ΠF
is satisfiable, at each level there must be at least one satisfiable formula. In
the same way, if ΠF is true in a domain D, at each level there must be at
least one true formula (in other words, for each n there exists an assignment
of elements of D to the numerals of Pn that satisfies Pn, assuming that the
relative coefficients are interpreted according to the interpretation that, by
hypothesis, satisfies Σ ΠF in D). The infinite branches of the tree represent
the various ways of assigning values to the summation indices of ΠF in a
denumerable domain. The product of all the formulas of any infinite branch
can be seen as a possible development of ΠF in a denumerable domain. This
assertion is slightly inexact, but we think this is how Löwenheim sees it, and
for this reason he claims without any additional clarification that for the values
of the summation indices that give rise to the sequence Q1, Q2, Q3, . . . , the
formula ΠF takes the same truth value as the product Q1 ·Q2 ·Q3 · · · . Thus,
showing that the tree has an infinite branch of true formulas (in the sense just
described) amounts, from this perspective, to constructing a subdomain of D
in which ΠF is true, and this is what Löwenheim set out to do.

One of the reasons for seeing in Löwenheim’s argument an attempt to
construct an interpretation in a denumerable domain is probably that when it is
seen as a proof of the subdomain version of the theorem, the construction of the
tree appears to be an unnecessary complication. He could, it seems, have offered
a simpler proof which would not have required that construction and which
would have allowed him to reach essentially the same conclusion. Löwenheim
reasons in the way he does because he lacks the conceptual distinctions
required to pose the problem accurately. The meaning of ΠF and the relation
between this formula and Σ ΠF cannot be fully grasped without the concept
of assignment or at least without sharply distinguishing between the terms of
the language and the elements they denote. From Löwenheim’s point of view,
the assumption that ΠF is satisfied by an interpretation in D does not imply
that the values taken by the summation indices are fixed. All he manages to
intuit is that the problem of showing that Σ ΠF is satisfiable is equivalent to
the problem of showing that ΠF is satisfiable. He then proceeds essentially as
he would with Σ ΠF , but without the inconvenience of having to eliminate the
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existential quantifiers each time that a formula of the sequence P1, P2, . . . is
constructed: he assumes that the nonlogical relatives (i.e., relatives other than
1′ and 0′) of ΠF have a fixed meaning in a domain D and proposes fixing the
values of summation indices in a denumerable subdomain of D. This means
that in practice Löwenheim is arguing as he would do if the prefix had the
form Π Σ.

Löwenheim’s strategy is then as follows: First he presents a procedure of a
general nature to construct a tree of a certain type, and then (without any
warning, and without differentiating between the two ideas) he applies the
hypothesis of the theorem to the construction. The reason for the style that
he adopts in the construction of the tree probably lies in his desire to make
it clear that the technique he is presenting is applicable to any formula in
normal form and not only to one that meets the conditions of the hypothesis.
If the starting formula is not satisfiable, we will conclude the construction in
a finite number of steps because we will reach a level at which none of the
formulas is satisfiable; if the starting formula is satisfiable in a domain D, then,
according to Löwenheim, this construction will allow us to determine a finite
or denumerable subdomain of D in which it is satisfiable.

We must distinguish between what Löwenheim actually constructs and what
he thinks is constructing. On the one hand, the tree (which he constructs)
naturally admits a syntactic reading and can be viewed as a method of analyzing
quantified formulas. This proof method was later used by Skolem, Herbrand,
Gödel, and more recently by Quine (though he related it with Skolem and not
with Löwenheim) (Quine 1955b; 1972, 185ff.). On the other hand, it is obvious
that, contrary to Löwenheim’s belief, the process of constructing the sequence
Q1, Q2, Q3, . . . does not represent the process of constructing a subdomain,
because neither these formulas nor their associated systems of equalities can
play the role of partial assignments of values to the summation indices. If we
wanted to reflect what Löwenheim is trying to express, we should construct
a tree with partial assignments rather than with formulas and modify his
argument accordingly. Thus, Löwenheim’s proof is not completely correct, but
any assessment of it must take into account that he lacked the resources that
would allow him to express his ideas better.

4.4. Skolem’s First Versions of Löwenheim’s Theorem
Although Skolem did not explicitly state the subdomain version until 1929, this
was the version that he proved in 1920. At the beginning of this paper (1920,
254), Skolem asserts explicitly that his aim is to present a simpler proof of
Löwenheim’s theorem that avoids the use of fleeing indices. He then introduces
what today we know as Skolem normal form for satisfiability (a prenex formula
with the universal quantifiers preceding the existential ones), and then shows
the subdomain version of the theorem for formulas in that form. This change
of normal form is significant, because Löwenheim reasons as if the starting
formula were in the form Π ΣF (as remarked) and, therefore, the recourse to
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Π Σ formulas seems to be the natural way of dispensing with fleeing indices.
Skolem’s construction of a countable subdomain is, in essence, the usual one.
Let us suppose that Πx1 . . .Πxn Σy1 . . .Σym Ux1...xny1...ym (his notation) is the
Π Σ formula that is satisfied by an interpretation I in a domain D. By virtue
of the axiom of choice, there is a function h that assigns to each n-tuple
(a1, . . . , an) of elements in D the m-tuple (b1, . . . , bm) of elements in D such
that Ua1...anb1...bm is satisfied by I in D. Let a be any element in D. The
countable subdomain D′ is the union

⋃
nDn, where D0 = {a} and for each n,

Dn+1 is the union of Dn and the set of elements in the m-tuples h(a1, . . . , an)
for a1, . . . , an ∈ Dn.

In 1922, Skolem proved the weak version of the theorem, which allowed him
to avoid the use of the axiom of choice. The schema of Skolem’s argument
is as follows: (1) he begins by transforming the starting formula A into one
in normal form for satisfiability which is satisfiable if and only if A is; (2) he
then constructs a sequence of formulas which, in essence, is Löwenheim’s
P1, P2, . . . , and, for each n, he defines a linear ordering on the finite set of
(partial) interpretations that satisfy Pn in the set of numerals of Pn; and
(3) after observing that the extension relation defined in the set of all partial
interpretations is an infinite tree whose levels are finite, Skolem fixes an infinite
branch of this tree; this branch determines an interpretation that satisfies A
in set of natural numbers (assuming that A is formula without identity).

Skolem’s (1922) proof seems similar to Löwenheim’s in certain aspects, but
the degree of similarity depends on our reading of the latter. If Löwenheim
was attempting to construct a subdomain, the two proofs are very different:
Each one uses a distinct notion of normal form, fleeing indices do not intervene
in Skolem’s proof, and, more important, the trees constructed in each case
involve different objects (in Löwenheim’s proof the nodes represent partial
assignment of values to the summation indices, while in Skolem’s the nodes
are partial interpretations). These are probably the differences that Skolem
saw between his proof and Löwenheim’s. The fact is that in 1922 he did not
relate one proof to the other. This detail corroborates the assumption that
Skolem did not see in Löwenheim’s argument a proof of the weak version of
the theorem.

In 1964 Gödel wrote to van Heijenoort:

As for Skolem, what he could justly claim, but apparently does not
claim, is that, in his 1922 paper, he implicitly proved: “Either A
is provable or ¬A is satisfiable” (“provable” taken in an informal
sense). However, since he did not clearly formulate this result (nor,
apparently, had he made it clear to himself), it seems to have
remained completely unknown, as follows from the fact that Hilbert
and Ackermann (1928) do not mention it in connection with their
completeness problem. (Dreben and van Heijenoort 1986, 52)

Gödel made a similar assertion in a letter to Wang in 1967 (Wang 1974, 8).
Gödel means that Skolem’s (1922) argument can be viewed as (or can easily
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be transformed into) a proof of a version of the completeness theorem (see
itinerary VIII). This is so because the laws and transformations used to obtain
the normal form of a formula A, together with the rules employed in the
construction of the sequence P1, P2, . . . associated with A and the rules used
to decide whether a formula without quantifiers is satisfiable can be viewed
as an informal refutation procedure. From this point of view, to say that Pn
(n ≥ 1) is not satisfiable is equivalent to saying that the informal procedure
refutes it. Now, we can define what it means to be provable as follows:

1. A formula A is refutable if and only if there exists n such that the
informal procedure refutes Pn;

2. A formula A is provable if and only if ¬A is refutable.

An essential part of Skolem’s argument is the proof of the following result.

Lemma 3 If for every n, Pn is satisfiable, then A is satisfiable.

With the aid of the foregoing definitions, this lemma can be restated as follows.

Lemma 4 If A is not satisfiable, then A is refutable.

This lemma (which is equivalent to Gödel’s formulation: Either A is prov-
able or ¬A is satisfiable) asserts the completeness of the informal refutation
procedure.55

Since the laws and rules used by Löwenheim in his proof can also be
transformed into an informal refutation procedure (applicable even to formulas
with equality), it is interesting to ask whether he proves Lemma 3 (for ΠF
formulas). The answer to this question depends on our reading of his proof.
If we think, as van Heijenoort and Wang do, that Löwenheim proved the weak
version, then we are interpreting the last part of his argument as an (incomplete
or unsatisfactory) proof of Lemma 3. Thus, if we maintain that Löwenheim
proved the weak version, we have to accept that what Gödel asserts in the
quotation applies also to Löwenheim as well. In our view, Löwenheim did not
try to construct an interpretation, but a subdomain. He did not set out to prove
Lemma 3, and as a consequence, Gödel’s assertion is not applicable to him.

5. Itinerary V. Logic in the Hilbert School
5.1. Early Lectures on Logic
David Hilbert’s interests in the foundations of mathematics began with his
work on the foundations of geometry in the 1880s and 1890s (Hilbert 1899,
2004). Although he was then primarily concerned with geometry, he was
interested more broadly in the principles underlying the axiomatic method,
and in Dedekind’s work (1888). A number of factors worked together to
persuade Hilbert around 1900 that a fundamental investigation of logic and
its relationship to the foundation of mathematics was needed. These were
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his correspondence with Frege (1899–1900) on the nature of axioms and the
realization that his formulation of geometry was incomplete without an axiom
of completeness. They were manifest in his call for an independent consistency
proof of arithmetic in his 1900 address, and in his belief that every meaningful
mathematical problem had a solution (“no ignorabimus”).

Although the importance of logic was clear to Hilbert in the early years
of the 1900s, he himself did not publish on logic. His work and influence
then consisted mainly in a lecture course he taught in 1905 and a number of
administrative decisions he made at Göttingen. The latter are described in
detail in Peckhaus (1990, 1994, 1995), and include his involvement with the
appointment of Edmund Husserl and Ernst Zermelo at Göttingen.

Hilbert’s first in-depth discussion of logic occurred in his course “Logical
Principles of Mathematical Thought” in the summer term of 1905. The lectures
centered on set theory (axiomatized in natural language, just like his axiomatic
treatment of geometry), but in chapter V, Hilbert also discussed a basic calculus
of propositional logic. The presentation is influenced mainly by Schröder’s
algebraic approach.

Axiom I If X ≡ Y then one can always replace X by Y and Y
by X.

Axiom II From 2 propositionsX,Y a new one results (“additively”)

Z ≡ X + Y

Axiom III From 2 propositionsX, Y a new one results in a different
way (“multiplicatively”)

Z ≡ X · Y
The following identities hold for these “operations”:

IV. X + Y ≡ Y +X
V. X + (Y + Z) ≡ (X + Y ) + Z

VI. X · Y ≡ Y ·X
VII. X · (Y · Z) ≡ (X · Y ) · Z

VIII. X · (Y + Z) ≡ X · Y +X · Z
There are 2 definite propositions 0, 1, and for each proposition X

a different proposition X is defined, so that the following identities
hold:

IX. X +X ≡ 1
X. X ·X ≡ 0

XI. 1 + 1 ≡ 1
XII. 1 ·X ≡ X

(Hilbert 1905a, 225–228)



370 The Development of Modern Logic

Hilbert’s intuitive explanations make clear that X, Y , and Z stand for propo-
sitions, + for conjunction, · for disjunction, · for negation, 1 for falsity, and
0 for truth. In the absence of a first-order semantics, neither statement nor
proof of a semantic completeness claim could be given. Hilbert does, however,
point out that not every unprovable formula renders the system inconsistent
when added as an axiom, that is, the full function calculus is not (what we
now call) Post-complete.

5.2. The Completeness of Propositional Logic
Hilbert’s work on the foundations of logic begins in earnest with a lecture course
on the principles of mathematics he taught in the winter semester 1917/18
(1918b). These form the basis of Hilbert and Ackermann (1928) (see Section 5.5
and Sieg 1999), and contain a wealth of material on propositional and first-order
logic, as well as Russell’s type theory. We focus here on the development of the
propositional calculus in these lectures. Syntax and axioms are modeled after
the propositional fragment of Principia Mathematica (Whitehead and Russell
1910). The language consists of propositional variables (Aussage-Zeichen) X,
Y , Z, . . . , as well as signs for particular propositions, and the connectives ·
(negation) and × (disjunction). The conditional, conjunction, and equivalence
are introduced as abbreviations. Expressions are defined by recursion:

1. Every propositional variable is an expression.

2. If α is an expression, so is α.

3. If α and β are expressions, so are α× β, α→ β, α+ β and α = β.

Hilbert introduces a number of conventions, for example, that X × Y
may be abbreviated to XY , and the usual conventions for precedence of the
connectives. Finally, the logical axioms are introduced. Group I of the axioms
of the function calculus gives the formal axioms for the propositional fragment
(unabbreviated forms are given on the right, recall that XY is “X or Y ”).

1. XX → X XXX

2. X → XY X(XY )

3. XY → Y X XY (Y X)

4. X(Y Z) → (XY )Z X(Y Z)((XY )Z)

5. (X → Y ) → (ZX → ZY ) XY (ZX(ZY ))

The formal axioms are postulated as correct formulas (richtige Formel),
and we have the following two rules of derivation (“contentual axioms”):

a. Substitution: From a correct formula another one is obtained by replacing
all occurrences of a propositional variable with an expression.

b. If α and α→ β are correct formulas, then β is also correct.
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Although the calculus is very close to the one given in Principia Mathe-
matica, there are some important differences. Russell uses (2′) X → Y X and
(4′) X(Y Z) → Y (XZ) instead of (2) and (4). Principia also does not have
an explicit substitution rule.56 The division between syntax and semantics,
however, is not quite complete. The calculus is not regarded as concerned
with uninterpreted formulas; it is not separated from its interpretation. (This
is also true of the first-order part, see Sieg 1999, B3.) Also, the notion of a
“correct formula” which occurs in the presentation of the calculus is intended
not as a concept defined, as it were, by the calculus (as we would nowadays
define the term “provable formula” for instance) but rather should be read
as a semantic stipulation: The axioms are true, and from true formulas we
arrive at more true formulas using the rules of inference.57 Read this way, the
statement of modus ponens is not that much clearer than the one given in
Principia: “Everything implied by a true proposition is true” (*1.1).

Hilbert goes on to give a number of derivations and proves additional rules.
These serve as stepping stones for more complicated derivations. He proves
a normal form theorem to establish decidability and completeness. In the
new propositional calculus, however, Hilbert has to establish that arbitrary
subformulas can be replaced by equivalent formulas, that is, that the rule of
replacement is a dependent rule. He does so by establishing the admissibility
of rule (c): If ϕ(α), α → β, and β → α are provable, then so is ϕ(β). With
that, the admissibility of using commutativity, associativity, distributivity, and
duality inside formulas is quickly established, and Hilbert obtains the normal
form theorem just as he did for the first propositional calculus in the 1905
lectures. Normal forms again play an important role in proofs of decidability
and now also completeness.

5.3. Consistency and Completeness
“This system of axioms would have to be called inconsistent if it were to
derive two formulas from it which stand in the relation of negation to one
another” (Hilbert 1918b, 150). Hilbert proves that the system of axioms
is not inconsistent in this sense using an arithmetical interpretation. The
propositional variables are interpreted as ranging over the numbers 0 and 1, ×
is just multiplication, and X is 1−X. One sees that the five axioms represent
functions which are constant equal to 0, and that the two rules preserve that
property. Now if α is derivable, α represents a function constant equal to 1,
and thus is underivable.

Hilbert then poses the question of completeness in the syntactic sense for
the propositional calculus in the following way:

Let us now turn to the question of completeness. We want to call the
system of axioms under consideration complete if we always obtain
an inconsistent system of axioms by adding a formula which is so far
not derivable to the system of basic formulas. (Hilbert 1918b, 152)
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This is the first time that completeness is formulated as a precise mathematical
question to be answered for a system of axioms. Before this, Hilbert (1905a,
13) had formulated completeness as the question of whether the axioms suffice
to prove all “facts” of the theory in question. The notion of completeness is
of course related to the axiom of completeness. This axiom was missing from
the first edition of Grundlagen der Geometrie, but was added in subsequent
editions. Hilbert also added such an axiom to his axiomatization of the reals in
(1900b); it states that it is not possible to extend the system of real numbers
by adding new entities so that the other axioms are still satisfied. Following
the formulation of the completeness axiom in Hilbert (1905a), we read:

This last axiom is of a general kind and has to be added to every
axiom system whatsoever in some form. It is of special importance
in this case, as we shall see. Following this axiom, the system
of numbers has to be so that whenever new elements are added
contradictions arise, regardless of the stipulations made about them.
If there are things which can be adjoined to the system without
contradiction, then in truth they already belong to the system.
(Hilbert 1905a, 17)

The formulation of completeness can be seen to arise directly out of the
completeness axioms of Hilbert’s earlier axiomatic systems, only this time
completeness is a theorem about the system instead of an axiom in the system.
The completeness axiom stated that the domain cannot be extended without
producing contradictions; the domain of objects is the system of real numbers
in one case, the system of provable propositional formulas in the other.58

The completeness proof in the 1917/18 lectures itself is an ingenious ap-
plication of the normal form theorem: Every formula is interderivable with a
conjunctive normal form. As has been proven earlier in the lectures, a conjunc-
tion is provable if and only if each of its conjuncts is provable. A disjunction
of propositional variables and negations of propositional variables is provable
only if it represents a function which is constant equal to 0, as the consistency
proof shows. A disjunction of this kind is equal to 0 if and only if it contains a
variable and its negation, and conversely, every such disjunction is provable. So
a formula is provable if and only if every conjunct in its normal form contains
a variable and its negation. Now suppose that α is an underivable formula. Its
conjunctive normal form β is also underivable, so it must contain a conjunct γ
where every variable occurs only negated or unnegated but not both. If α were
added as a new axiom, then β and γ would also be derivable. By substituting
X for every unnegated variable and X for every negated variable in γ, we
would obtain X as a derivable formula (after some simplification), and the
system would be inconsistent.59

In a footnote, the result is used to establish the converse of the character-
ization of provable formulas used for the consistency proof: Every formula
representing a function which is constant equal to 0 is provable. For, supposing
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there were such a formula that was not provable, then adding this formula to
the axioms would not make the system inconsistent, by the same argument as
in the consistency proof. This would contradict syntactic completeness (Hilbert
1918b, 153).

We have seen that the lecture notes to Principles of Mathematics 1917–18
contain consistency and completeness proofs (relative to a syntactic com-
pleteness concept) for the propositional calculus of Principia Mathematica.
They also implicitly contain the familiar truth value semantics and a proof
of semantic soundness and completeness. In his Habilitationsschrift (Bernays
1918), Bernays fills in the last gaps between these remarks and a completely
modern presentation of propositional logic.

Bernays introduces the propositional calculus in a purely formal manner.
The concept of a formula is defined and the axioms and rules of derivation are
laid out almost exactly as done in the lecture notes. §2 of Bernays (1918) is
titled “Logical interpretation of the calculus. Consistency and completeness.”
Here Bernays first gives the interpretation of the propositional calculus, which
is the motivation for the calculi in Hilbert’s earlier lectures (Hilbert 1905a,
1918b). The reversal of the presentation—first calculus, then its interpretation—
makes it clear that Bernays is fully aware of a distinction between syntax and
semantics, a distinction not made precise in Hilbert’s earlier writings. There,
the calculi were always introduced with the logical interpretation built in, as
it were. Bernays writes:

The axiom system we set up would not be of particular interest,
were it not capable of an important contentual interpretation.

Such an interpretation results in the following way:
The variables are taken as symbols for propositions (sentences).
That propositions are either true or false, and not both simulta-

neously, shall be viewed as their characteristic property.
The symbolic product shall be interpreted as the connection

of two propositions by “or,” where this connection should not be
understood in the sense of a proper disjunction, which excludes
the case of both propositions holding jointly, but rather so that
“X or Y ” holds (i.e., is true) if and only if at least one of the two
propositions X, Y holds. (Bernays 1918, 3–4)

Similar truth-functional interpretations of the other connectives are given as
well. Bernays then defines what a provable and what a valid formula is, thus
making the syntax-semantics distinction explicit:

The importance of our axiom system for logic rests on the following
fact: If by a “provable” formula we mean a formula which can
be shown to be correct according to the axioms [footnote in text:
It seems to me to be necessary to introduce the concept of a
provable formula in addition to that of a correct formula (which
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is not completely delimited) in order to avoid a circle], and by
a “valid” formula one that yields a true proposition according to
the interpretation given for any arbitrary choice of propositions to
substitute for the variables (for arbitrary “values” of the variables),
then the following theorem holds:

Every provable formula is a valid formula and conversely.

The first half of this claim may be justified as follows: First one
verifies that all basic formulas are valid. For this one only needs to
consider finitely many cases, for the expressions of the calculus are
all of such a kind that in their logical interpretation their truth or
falsehood is determined uniquely when it is determined of each of
the propositions to be substituted for the variables whether it is
true or false. The content of these propositions is immaterial, so one
only needs to consider truth and falsity as values of the variables.
(Bernays 1918, 6)

We have here all the elements of a modern discussion of propositional logic: A
formal system, a semantics in terms of truth values, soundness and completeness
relative to that semantics. As Bernays points out, the consistency of the calculus
follows from its soundness. The semantic completeness of the calculus is proved
in §3, along the lines of the note in Hilbert (1918b) just mentioned. The
formulation of syntactic completeness given by Bernays is slightly different
from the lectures and independent of the presence of a negation sign: It is
impossible to add an unprovable formula to the axioms without thus making all
formulas provable.60 Bernays sketches the proof of syntactic completeness along
the lines of Hilbert’s lectures, but leaves out the details of the derivations.

Bernays also addresses the question of decidability. In the lecture notes,
decidability was not mentioned, even though Hilbert had posed it as one of
the fundamental problems in the investigation of the calculus of logic. In
his talk in Zürich in 1917, he said that an axiomatization of logic cannot be
satisfactory until the question of decidability by a finite number of operations
is understood and solved (Hilbert 1918a, 1143). Bernays gives this solution for
the propositional calculus by observing that

this consideration does not only contain the proof for the com-
pleteness of our axiom system, but also provides a uniform method
by which one can decide after finitely many applications of the
axioms whether an expression of the calculus is a provable formula
or not. To decide this, one need only determine a normal form of
the expression in question and see whether at least one variable
occurs negated and unnegated as a factor in each simple product.
If this is the case, then the expression considered is a provable for-
mula, otherwise it is not. The calculus therefore can be completely
trivialized. (Bernays 1918, 15–16)
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Consistency and independence are the requirements that Hilbert laid down for
axiom systems of mathematics time and again. Consistency was established—
but the “contributions to the axiomatic treatment” of propositional logic
could not be complete without a proof that the axioms investigated are
independent. In fact, however, the axiom system for the propositional calculus,
slightly modified from the postulates in (*1) of Principia Mathematica, is not
independent. Axiom 4 is provable from the other axioms. Bernays devotes §4
of the Habilitationsschrift to give the derivation, and also the interderivability
of the original axioms of Principia (2′) and (4′) with the modified versions (2)
and (4) in presence of the other axioms.

Independence is, of course, more challenging. The method Bernays uses is
not new, but it is applied masterfully. Hilbert had already used arithmetical
interpretations (1905a) to show that some axioms are independent of the others.
The idea was the same as that originally used to show the independence of
the parallel postulate in Euclidean geometry: To show that an axiom α is
independent, give a model in which all axioms but α are true, the inference rules
are sound, but α is false. Schröder was the first to apply that method to logic.
§12 of his Algebra of Logic (Schröder 1890) gives a proof that one direction of
the distributive law is independent of the axioms of logic introduced up to that
point (see Thiel 1994). The interpretation he gives is that of the “calculus of
algorithms,” developed in detail in appendix 4. Bernays combines Schröder’s
idea with Hilbert’s arithmetical interpretation and the idea of the consistency
proof for the first propositional calculus in Hilbert (1918b) (interpreting the
variables as ranging over a certain finite number of propositions, and defining
the connectives by tables). He gives six “systems” to show that each of the five
axioms (and a number of other formulas) is independent of the others. The
systems are, in effect, finite matrices. He introduces the method as follows:

In each of the following independence proofs, the calculus will
be reduced to a finite system (a finite group in the wider sense
of the word [footnote: that is, without assuming the associative
law or the unique invertability of composition]), where for each
element a composition (“symbolic product”) and a “negation” is
defined. The reduction is given by letting the variables of the
calculus refer to elements of the system as their values. The “correct
formulas” are characterized in each case as those formulas which
only assume values from a certain subsystem T for arbitrary values
of the variables occurring in it. (Bernays 1926, 27–28)

We shall not go into the details of the derivations and independence proofs;
see section 8.2.61 Bernays’s method was of some importance in the investiga-
tion of alternative logics. For instance, Heyting (1930a) used it to prove the
independence of his axiom system for intuitionistic logic, and Gödel (1932b)
was influenced by it when he defined a sequence of sentences Fn so that each
Fn is independent of intuitionistic propositional calculus together with all Fi,
i > n (see section 7.1.7).62
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5.4. Axioms and Inference Rules
In the final section of his Habilitationsschrift, Bernays considers the question
of whether some of the axioms of the propositional calculus may be replaced
by rules. This seems like a natural question, given the relationship between
inference and implication: For instance, axiom 5 suggests the following rule of
inference (recall that αβ is Hilbert’s notation for the disjunction of α and β):

α→ β
γα→ γβ c,

which Bernays used earlier as a derived rule. Indeed, axiom 5 is in turn derivable
using this rule and the other axioms and rules. Bernays considers a number of
possible rules,

α→ β
β → γ
α→ γ d

αα

α
r1

α

αβ
r2

αβ

βα
r3

α(βγ)
(αβ)γ

r4

ϕ(αα)
ϕ(α)

R1
ϕ(αβ)
ϕ(βα)

R3,

and shows that the following sets of axioms and rules are equivalent (and
hence, complete for propositional logic):

1. Axioms: 1, 2, 3, 5; rules: a, b.

2. Axioms: 1, 2, 3; rules: a, b, c.

3. Axioms: 2, 3; rules: a, b, c, r1.

4. Axioms: 2; rules: a, b, c, r1, R3.

5. Axioms: XX; rules: a, b, c, r1, r2, r3, r4.

Bernays also shows, using the same method as before, that these axiom
systems are independent, and also the following independence results:63

6. Rule c is independent of axioms: 1, 2, 3; rules: a, b, d (showing that in
(2), rule c cannot in turn be replaced by d).

7. Rule r2 is independent of axioms: 1, 3, 5; rules: a, b, (thus showing that
in (1) and (2), axiom 2 cannot be replaced by rule r2).

8. Rule r3 is independent of axioms: 1, 2; rules: a, b, c (showing similarly,
that in (1) and (2), rule r3 cannot replace axiom 3).

9. Rule R3 is independent of axioms: XX, 3; rules: a, b (showing that R3
is stronger than r3, since 3 is provable from R3 and XX ).

10. Rule R1 is independent of axioms: XX, 1; rules: a, b (showing that R1
is stronger than r1, since 1 is provable from XX and R1).



The Development of Mathematical Logic from Russell to Tarski, 1900–1935 377

11. Axiom 2 is independent of axioms: XX, 1, 3, 5; rules: a, b.
12. Axiom 2 is independent of axioms: XX; rules: a, b, c, r1, R3 (showing

that in (5), XX together with r2 is weaker than axiom 2).

The detailed study exhibits, in particular, a sensitivity to the special status
of rules like R3, where subformulas have to be substituted. The discussion
foreshadows developments of formal language theory in the 1960s. Bernays
also mentions that a rule (corresponding to the contrapositive of axiom 2),
allowing inference of ϕ(α) from ϕ(αβ) would be incorrect (and hence, “there
is no such generalization of r2”).

Bernays’s discussion of axioms and rules, together with his discussion
of expressibility in the “Supplementary remarks to §2–3,” shows his acute
sensitivity for subtle questions regarding logical calculi. His remarks are quite
opposed to the then-prevalent tendency (e.g., Sheffer and Nicod) to find
systems with fewer and fewer axioms, and foreshadow investigations of relative
strength of various axioms and rules of inference, for example, of Lewis’s modal
systems, or more recently of the various systems of substructural logics.

At the end of the “Supplementary remarks,” Bernays isolates the positive
fragment of propositional logic (i.e., the provable formulas not containing
negation; here + and → are considered primitives) and claimed that he had
an axiomatization of it. He did not give an axiom system, but stated that it
is possible to choose a finite number of provable sentences as axioms so that
completeness follows by a method exactly analogous to the proof given in §3.
The remark suggests that Bernays was aware that the completeness proof is
actually a proof schema, in the following sense. Whenever a system of axioms
is given, one only has to verify that all the equivalences necessary to transform
a formula into conjunctive normal form are theorems of that system. Then
completeness follows just as it does for the axioms of Principia.

In his next set of lectures on the “Logical Calculus” given in the winter
semester of 1920 (Hilbert 1920a), Hilbert makes use of the fact that these
equivalences are the important prerequisite for completeness. The propositional
calculus we find there is markedly different from the one in Hilbert (1918b)
and Bernays (1918), but the influences are clearly visible. The connectives are
all primitive, not defined, this time. The sole axiom is XX, and the rules of
inference are:

X

XY
b2,

X
Y

X + Y
b3,

plus the rule (b4), stating: “Every formula resulting from a correct formula
by transformation is correct.” “Transformation” is meant as transformation
according to the equivalences needed for normal forms: commutativity, as-
sociativity, de Morgan’s laws, X and X, and the definitions of → and =
(biconditional). These transformations work in both directions, and also on
subformulas of formulas (as did R1 and R3).64 One equivalence corresponding
to modus ponens must be added, it is: (X+X)Y is intersubstitutable with Y.
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Anyone familiar with the work done on propositional logic elsewhere might
be puzzled by this seemingly unwieldy axiom system. It would seem that the
system in Hilbert (1920a) is a step backward from the elegance and simplicity
of the Principia axioms. Adjustments, if they are to be made at all, it would
seem, should go in the direction of even more simplicity, reducing the number
of primitives (as Sheffer did) and the number of axioms (as in the work of
Nicod and later Łukasiewicz). Hilbert was motivated by different concerns. He
was interested not only in the simplicity of his axioms but in their efficiency.
Decidability, in particular, supersedes considerations of independence and
elegance. The presentation in Hilbert (1920a) is designed to provide a decision
procedure which is not only efficient but also more intuitive to use for a
mathematician trained in algebraic methods. Bernays’s study of inference rules
made clear, on the other hand, that such an approach can in principle be
reduced to the axiomatics of Principia. The subsequent work on the decision
problem is also not strictly axiomatic, but uses transformation rules and normal
forms. The rationale is formulated by Behmann:

The form of presentation will not be axiomatic, rather, the needs
of practical calculation shall be in the foreground. The aim is thus
not to reduce everything to a number (as small as possible) of
logically independent formulas and rules; on the contrary, I will give
as many rules with as wide an application as possible, as I consider
appropriate to the practical need. The logical dependence of rules
will not concern us, insofar as they are merely of independent
practical importance. . . . Of course, this is not to say that an
axiomatic development is of no value, nor does the approach taken
here preempt such a development. I just found it advisable not to
burden an investigation whose aim is in large part the exhibition
of new results with such requirements, as can later be met easily
by a systematic treatment of the entire field. (Behmann 1922, 167)

Such a systematic treatment, of course, was necessary if Hilbert’s ideas regard-
ing his logic and foundation of mathematics were to find followers. Starting
in (1922c) and (1923), Hilbert presents the logical calculus not in the form
of Principia but by grouping the axioms governing the different connectives.
In (1922c), we find the “axioms of logical consequence,” in (1923), “axioms of
negation.” The first occurrence of axioms for conjunction and disjunction seems
to be in a class taught jointly by Hilbert and Bernays during winter 1922–23,
and in print in Ackermann’s dissertation (Ackermann 1924). The project of
replacing the artificial axioms of Principia with more intuitive axioms grouped
by the connectives they govern, and the related idea of considering subsystems
such as the positive fragment, is Bernays’s. In 1918, he had already noted
that one could refrain from taking + and → as defined symbols and consider
the problem of finding a complete axiom system for the positive fragment.
The notes to the lecture course from 1922–23 (Hilbert and Bernays 1923a,
17) indicate that the material in question was presented by Bernays. In 1923,
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he gives a talk titled “The role of negation in propositional logic,” in which
he points out the importance of separating axioms for the different connec-
tives, in particular, giving axioms for negation separately. This emphasis of
separating negation from the other connectives is of course necessitated by
Hilbert’s considerations on finitism as well. Full presentations of the axioms of
propositional logic are also found in Hilbert (1928a), and in slightly modified
form in a course on logic taught by Bernays in 1929–1930. The axiom system
we find there is almost exactly the one later included in Hilbert and Bernays
(1934).

I. A→ (B → A)
(A→ (A→ B)) → (A→ B)
(A→ (B → C)) → (B → (A→ C))
(B → C) → ((A→ B) → (A→ C))

II. A&B → A
A&B → B
(A→ B) → ((A→ C) → (A→ B & C))

III. A→ A ∨B
B → A ∨B
(B → A) → ((C → A) → (B ∨ C → A))

IV. (A ∼ B) → (A→ B)
(A ∼ B) → (B → A)
(A→ B) → ((B → A) → (A ∼ B))

V. (A→ B) → (B → A)
(A→ A) → A
A→ A
A→ A.65

Bernays (1927) claims that the axioms in groups I–IV provide an axiomati-
zation of the positive fragment and raises the question of a decision procedure.
This is where he first follows up on his claim in 1918 that such an axiomatization
is possible.

5.5. Grundzüge der theoretischen Logik
Hilbert and Ackermann’s textbook Grundzüge der theoretischen Logik (Hilbert
and Ackermann 1928) provided an important summary of the work on logic
done in Göttingen in the 1920s. Although (as documented by Sieg 1999),
the book is in large parts a polished version of Hilbert’s 1917–1918 lectures
(Hilbert 1918b), it is important especially for the influence it had in terms of
making the work available to an audience outside of Göttingen. Both Gödel
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and Herbrand, for instance, became acquainted with the methods developed
by Hilbert and his students through it.

In addition, Grundzüge contained a number of minor but significant im-
provements over Hilbert (1918b). The first is a much simplified presentation
of the axioms of the predicate calculus. Whereas Hilbert (1918b) listed six
axioms and three inference rules governing the quantifiers, the formulation in
Hilbert and Ackermann (1928) consisted simply in:

e. (x)F (x) → F (y),

f. F (y) → (Ex)F (x),

with the following form of the rule of generalization. If A → B(x) is provable,
and x does not occur in A, then A → (x)B(x) is provable. Similarly, if
B(x) → A is provable, then so is (Ex)B(x) → A.

Another important part of Grundzüge concerns the semantics of the predi-
cate calculus and the decision problem. The only publication addressing the
decision problem had been Behmann (1922); Bernays and Schönfinkel (1928)
and Ackermann (1928a) appeared the same year as Grundzüge (although
Bernays and Schönfinkel’s result was obtained much earlier). Thus, the book
was important in popularizing the decision problem as a fundamental problem
of mathematical foundations. In a similar vein, although the completeness of
the propositional calculus had been established already in 1918 by Bernays and
in 1920 by Post, the Post-completeness and semantic completeness of predicate
logic remained an open problem. Ackermann solved the former in the negative;
this result is first reported in Grundzüge. It motivates the question of semantic
completeness, posed on p. 68: “Whether the axiom system is complete at least
in the sense that all logical formulas that are correct for every domain of
individuals can be derived from it is still an unsolved question.” This offhand
remark provided the motivation for Gödel’s landmark completeness theorem
(see section 8.4).

5.6. The Decision Problem
The origin of the decision problem in Hilbert’s work is no doubt his conviction,
expressed in his 1900 address to the Paris Congress, that every mathematical
problem has a solution:

This conviction of the solvability of every mathematical problem is
a powerful incentive to the worker. We hear within us the perpetual
call: There is the problem. Seek its solution. You can find it by
pure reason, for in mathematics there is no ignorabimus. (Hilbert
1900a, 1102)

A few years later, Hilbert first explicitly took the step that this no ignorabimus
should be reflected in the decidability of the problem of whether a mathematical
statement is derivable from the axiom system for the domain in question:
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So it turns out that for every theorem there are only finitely many
possibilities of proof, and thus we have solved, in the most primitive
case at hand, the old problem that it must be possible to achieve any
correct result by a finite proof. This problem was the original starting
point of all my investigations in our field, and the solution to this
problem in the most general case[,] the proof that there can be no
“ignorabimus” in mathematics, has to remain the ultimate goal.66

Hilbert’s emphasis on the axiomatic method was thus not only motivated by
providing a formal framework in which questions such as independence, consis-
tency, and completeness could be given mathematical treatment, but so could
the question of the solvability of all mathematical problems. In “Axiomatic
Thought” (1918a, 1113), the problem of “decidability of a mathematical ques-
tion in a finite number of operations” is listed as one of the fundamental
problems for the axiomatic method.

Without a semantics for first-order logic in hand, it is not surprising that the
formulation of the problem as well as the partial results obtained only made
reference to derivability from an axiom system. For instance, as discussed,
Bernays infers the decidability of the propositional calculus in this sense as
a consequence of the completeness theorem. The development of semantics
for first-order logic in the following years made it possible to reformulate the
decision problem as a question of validity (Allgemeingültigkeit) or, dually, as
one of satisfiability: “The decision problem is solved, if one knows a procedure
which allows for any given logical expression to decide whether it is valid
or satisfiable, respectively” (Hilbert and Ackermann 1928, 73). Hilbert and
Ackermann (1928) call the decision problem the main problem of mathematical
logic. No wonder it was pursued with as much vigor as the consistency problem
for arithmetic.

5.6.1. The Decision Problem in the Tradition of Algebra of Logic

In the algebra of logic, results on the decision problem were obtained in the
course of work on elimination problems. The first major contribution to the
decision problem was Löwenheim’s (1915) result. His theorem 4, “There are
no fleeing equations between singulary relative coefficients, not even when
the relative coefficients of 1′ and 0′ are included as the only binary ones”
(Löwenheim 1915, 243), amounts to the proposition that every monadic first-
order formula, if satisfiable, is satisfiable in a finite domain. Recall from
itinerary IV that a fleeing equation is one that is not valid but valid in every
finite domain. If there are no fleeing equations between singulary relative
coefficients (i.e., monadic predicates), then every monadic formula valid in
every finite domain is also valid.

It should be noted that both Löwenheim (1915) and Skolem (1919), who gave
a simpler proof, state the theorem as a purely algebraic result. Neither draws
the conclusion that the result shows that satisfiability of monadic formulas
is decidable, indeed, this only follows by inspection of the particular normal



382 The Development of Modern Logic

forms they give in their proofs. In particular, the proofs do not contain bounds
on the size of the finite models that have to be considered when determining
if a formula is satisfiable.

Löwenheim (1915) proved a second important result, namely, that validity
of an arbitrary first-order formulas is equivalent to a formula with only binary
predicate symbols. This means that dyadic predicate logic forms a reduction
class, that is, the decision problem for first-order logic can be reduced to that
of dyadic logic. Löwenheim, of course, did not draw this latter conclusion,
since he was not concerned with decidability in this sense. He does, however,
remark that

since, now, according to our theorem the whole relative calculus
can be reduced to the binary relative calculus, it follows that we
can decide whether an arbitrary mathematical proposition is true
provided that we can decide whether a binary relative equation is
identically satisfied or not. (Löwenheim 1915, 246)

A related result is proved in (Skolem 1920, theorem 1). A formula is in
(satisfiability) Skolem normal form if it is a prenex formula and all universal
quantifiers precede all existential quantifiers, that is, it is of the form

(∀x1) . . . (∀xn)(∃y1) . . . (∃ym)A(x1, . . . , xn, y1, . . . , ym).

Skolem’s result is that for every first-order formula there is a formula in Skolem
normal form that is satisfiable if and only if the original formula is. From this,
it follows that the formulas in Skolem normal form are a reduction class as well.

5.6.2. Work on the Decision Problem after 1920

The word Entscheidungsproblem first appears in a talk given by Behmann
to the Mathematical Society in Göttingen on May 10, 1921, titled “Entschei-
dungsproblem und Algebra der Logik.”67 Here, Behmann is very explicit about
the kind of procedure required, characterizing it as a “mere calculational
method,” as a procedure following the “rules of a game,” and stating its aim
as an “elimination of thinking in favour of mechanical calculation.”

The result Behmann reports on in this talk is that of his Habilitationsschrift
(Behmann 1922), in which he proves, independently of Löwenheim and Skolem,
that monadic second-order logic with equality is decidable. The proof is by
a quantifier elimination procedure, that is, a transformation of sentences of
monadic-second order logic (with equality) into a disjunctive normal form
involving expressions “there are at least n objects” and “there are at most n
objects.”

The problem was soon taken up by Moses Schönfinkel, who was a student in
Göttingen at the time. In December 1922, he gave a talk to the Mathematical
Society in which he proved the decidability of validity of formulas of the
form (∃x)(∀y)A, where A is quantifier-free and contains only one binary
predicate symbol (Schönfinkel 1922). This result was subsequently extended
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by Bernays to apply to formulas with arbitrary many predicate symbols
(Bernays and Schönfinkel 1928). The published paper also discusses Behmann’s
(1922) result and gives a bound on the size of finite models for monadic
formulas, as well as the cases of prenex formulas with quantifier prefixes of
the form ∀∗A, ∃∗A and ∀∗∃∗. In particular, it is shown there that a formula
(∀x1) . . . (∀xn)(∃y1) . . . (∃ym)A is valid iff it is valid in all domains with n
individuals. In its dual formulation, the main result is that satisfiability of
prenex formulas with prefix ∃∗∀∗ (the Bernays-Schönfinkel class) is decidable.
The result was later extended by Ramsey (1930) to include identity; along the
way, Ramsey proved his famous combinatorial theorem.

The result dual to Bernays and Schönfinkel’s first, namely, the decidability
of satisfiability of formulas of the form (∀x)(∃x)A, was extended by Acker-
mann (1928a) to formulas with prefix ∃∗∀∃∗. The same result was proved
independently later the same year by Skolem (1928); this paper as well as the
follow-up (1935) also prove some related decidability results.

Herbrand (1930, 1931b) draws some important conclusions regarding the
decision problem from his theorème fondamental (see following discussion) as
well, giving new proofs of the decidability of the monadic class, the Bernays-
Schönfinkel class, the Ackermann class, and the Herbrand class (prenex formulas
where the matrix is a conjunction of atomic formulas and negated atomic
formulas).

The last major partial solution of the decision problem before Church’s
(1936a) and Turing’s (1937) proofs of the undecidability of the general problem
was the proof of decidability of satisfiability for prenex formulas with prefix
of the form ∃∗∀∀∃∗. This was carried out independently by Gödel (1932a),
Kalmár (1933), and Schütte (1934a, 1934b). Gödel (1933b) also showed that
prenex formulas with prefix ∀∀∀∃∗ form a reduction class.68

5.7. Combinatory Logic and λ-Calculus
In the early 1920s, there was a significant amount of correspondence between
Hilbert and his students (in particular, Bernays and Behmann) and Russell
on various aspects of Principia (see Mancosu 1999a, 2003). One of the things
Russell mentioned to Bernays was Sheffer’s (1913) reduction of the two primitive
connectives ∼ and ∨ of Principia to the Sheffer stroke. In 1920, Schönfinkel
extended this reduction to the quantifiers by means of the operator |x, where
φ(x) |x ψ(x) means “for no x is φ(x) and ψ(x) both true.” Then (x)φ(x)
can be defined by (φ(x) |y φ(x)) |x (φ(x) |y φ(x)). This led Schönfinkel to
consider further possibilities of reducing the fundamental notions of the logic
of Principia, namely, those of propositional function and variables themselves.

In a manuscript written in 1920, and later edited by Behmann and pub-
lished (1924), Schönfinkel gave a general analysis of mathematical functions,
and presented a function calculus based on only application and three basic
functions (the combinators). First, Schönfinkel explains how one only needs
to consider unary functions: A binary function F (x, y), for instance, may be
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considered instead as a unary function which depends on the argument x, or,
equivalently, as a unary function of the argument x which has a unary function
as its value. Hence, F (x, y) becomes (fx)y; fx now is the unary function which,
for argument y has the same value as the binary function F (x, y). Application
associates to the left, so that (fx)y can more simply be written fxy.

Just as functions in Schönfinkel’s system can have functions as values, they
can also be arguments to other functions. Schönfinkel introduces five primitive
functions I, C, T , Z, and S by the equations

Ix = x
(Cx)y = x

(Tφ)xy = φyx
Zφχx = φ(χx)
Sφχx = (φx)(χx)

I is the identity; its value is always simply its argument. C is the constancy
function: Cx is the function whose value is always x. T allows the interchange
of argument places; Tφ is the function which has as its value for xy the value
of φyx. Z is the composition function: Zφχ is the function which takes its
argument, first applies χ, and then applies φ to the resulting value. The fusion
function S is similar to composition, but here φ is to be thought of as a binary
function F (x, y): Then Sφχx is the unary function F (x, χx).

So far this constitutes a very general theory of functions. In applying this
to logic, Schönfinkel obtains an elegant system in which formulas without free
variables can be written without connectives, quantifiers, or variables at all. In
light of the reduction to unary functions, first of all relations can be eliminated;
for example, instead of a binary relation R(x, y) we have a unary function r
from arguments x to functions that themselves take individuals as arguments,
and whose value is a truth value. Then, instead of |x, Schönfinkel introduces a
new combinator, U : Ufg = fx |x gx—note that in the expression on the left
the bound variable x no longer occurs. Together with the other combinators,
this allows Schönfinkel to translate any sentence of even higher-order logic into
an expression involving only combinators. For instance, (f)(Eg)(x)fx& gx
first becomes, using |x:

[(fx |x gx) |g (fx |x gx)] |f [(fx |x gx) |g (fx |x gx)].

Now replacing |x and |g by the combinator U , we get

[U(Uf)(Uf)] |f [U(Uf)(Uf)].

To remove the last |f , the expressions on either side must end with f ; however,
U(Uf)(Uf) = S(ZUU)Uf , and so finally we get U [S(ZUU)U ][S(ZUU)U ].

Schönfinkel’s ideas were further developed in great detail by Haskell Curry,
who wrote a dissertation under Hilbert in 1929 (1929, 1930).69
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Similar ideas led Church (1932) to develop his system of λ-calculus. Like
Schönfinkel’s and Curry’s combinatory logic, the λ-calculus was intended in
the first instance to provide an alternative to Russellian type theory and to set
theory as a foundation for mathematics. Like combinatory logic, the λ-calculus
is a calculus of functions with application (st) as the basic operation; like Curry,
Church defined a notion of equality between terms using certain conversion
relations. If t is a term in the language of the calculus with free variable x,
the λ operator is used to form a new term λx.t, which denotes a function with
argument x. A term of the form (λx.t)s converts to the term t(x/s) (t with
all free occurrences of x replaced by s). This is one of three basic kinds of
conversion; a term on which no conversion can be carried out is in normal form.

Unfortunately, as Kleene and Rosser (1935) showed, both Curry’s and
Church’s systems were inconsistent and hence unsuitable in their original
formulation to provide a foundation for mathematics. Nevertheless, combina-
tory logic and λ-calculus proved incredibly useful as theories of functions; in
particular, versions of the λ-calculus were developed as systems of computable
functions. In fact, Church’s (1936b, 1936a) (negative) solution to the decision
problem essentially involved the λ-calculus. Church (1933) and Kleene (1935)
found a way to define the natural numbers as certain λ-terms n̄ in normal
form (Kleene numerals). The notion of λ-definability of a number theoretic
function is then simply: A function f is λ-definable if there is a term t such
that t applied to the Kleene numeral n̄ converts to a normal form which is the
Kleene numeral of the value of f(n). Church (1936b) showed that λ-definability
coincides with (general) recursiveness and that the problem of deciding whether
a term converts to a normal form is not general recursive. Church (1936a) uses
this result to show that the decision problem is unsolvable.

5.8. Structural Inference: Hertz and Gentzen
Another important development in logic that originated in Hilbert’s school
was the introduction of sequent calculus and natural deduction by Gentzen.
This grew out of the logical work of Paul Hertz. Hertz was a physicist working
in Göttingen between 1912 and 1933. From the 1920s onward, he was also
working in philosophy and in particular, logic. In a series of papers (Hertz
1922, 1923, 1928, 1929), he developed a theory of structural inference based on
expressions of the form a1, . . . , an → b. Hertz calls such expressions sentences;
the signs on the left are the antecedents, the sign on the right the succedent.
It is understood that in the antecedents each sign occurs only once. The two
rules which he considers are what he calls syllogism:

a1
1, a

1
2, . . . → b1

a2
1, a

2
2, . . . → b2...

a1, a2, . . . , b1, b2 → c
a1

1, a
1
2, . . . , a

2
1, a

2
2, . . . , a

1, a2 → c
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and direct inference:
a1, a2, . . .→ b

a1, a2, . . . , a1, a2, . . .→ b .

In the syllogism, the premises on the left are called lower sentences, the premise
on the right the upper sentence of the inference.

A set of sentences is called closed if it is closed under these two rules of
inference. Hertz’s investigations concern in the main criteria for when a closed
system of sentences has a set of independent axioms—a concern typical for the
Hilbert school. Hertz’s other concern, and this is his lasting contribution, is
that of proof transformations and normal forms. We cannot give the details of
all these results, but a statement of one will give the reader an idea: A sentence
is called tautological if it is of the form a→ a. An Aristotelian normal proof is
one in which each inference has a nontautological upper sentence that is an
initial sentence of the proof (i.e., not the conclusion of another inference). For
instance, the following is an Aristotelian normal proof:

a→ b b→ c
a→ c c→ m
a→ m m, b→ d
a, b→ d .

Hertz proves that every proof can be transformed into an Aristotelian normal
proof.

Gentzen’s first contribution to logic was a continuation of Hertz’s work. In
(1933b), Gentzen shows a similar normal form theorem, as well as a complete-
ness result relative to a simple semantics which interprets the elements of the
sentences as propositional constants. A sentence a1, . . . , an → b is interpreted
as: either one of the ai is false or b is true. Gentzen’s result is that if a sentence S
follows from (is a tautological consequence of) some other sentences S1, . . . ,
Sn, then there is a proof of a certain normal form of S from S1, . . . , Sn.70

The basic framework of sentences and inferences, as well as the interest in
normal form theorems, was contained in Gentzen’s more important work on
the proof theory of classical and intuitionistic logic. Gentzen (1934) extended
Hertz’s framework from propositional atoms to formulas of predicate logic.
Sentences are there called sequents, and the succedent is allowed to contain
more than one formula (for intuitionistic logic, the restriction to at most one
formula on the right stands). Hertz’s direct inference is now called “thinning”;
there is an analogous rule for thinning the succedent: The antecedent and
succedent of a sequent are now considered sequences of formulas (denoted by
uppercase Greek letters). Thus, Gentzen adds rules for changing the order of
formulas in a sequent and for contracting two of the same formulas to one.
Syllogism is restricted to one lower sentence; this is the cut rule:

Γ → Θ, A A,Δ → Λ
Γ,Δ → Θ,Λ

.
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To deal with the logical connectives and quantifiers, Gentzen adapts the axiom
systems developed by Hilbert and Bernays in the 1920s by turning the axioms
governing a connective into rules introducing the connective in the antecedent
and succedent of a sequent. For instance, axiom group (III),

III. A→ A ∨B
B → A ∨B
(B → A) → ((C → A) → (B ∨ C → A)),

results in the rules

OES: Γ → Θ, A
Γ → Θ, A ∨B

Γ → Θ, B
Γ → Θ, A ∨B OEA:

A,Γ → Θ B,Γ → Θ
A ∨B,Γ → Θ

.

The rules, together with axioms of the form A→ A, result in the system LK
for classical logic, and LJ for intuitionistic logic, where LJ is like LK with
the restriction that each sequent can contain at most one formula in the
succedent. The soundness and completeness of these systems is proved in the
last section of the paper, by showing that they derive the same formulas as
ordinary axiomatic presentations of Hilbert (1928a) and Glivenko (1929) (for
the intuitionistic case).

Gentzen’s main result (1934) is the Hauptsatz. It states that any derivation
in LK (or LJ) can be transformed into one that does not use the cut rule;
thus it is now also called the cut-elimination theorem. It has some important
consequences: It establishes the decidability of intuitionistic propositional
logic, and provides new proofs of the consistency of predicate logic as well as
the nonderivability of the principle of the excluded middle in intuitionistic
propositional calculus. Gentzen also proves an extension of the Hauptsatz, now
called the midsequent theorem: Every derivation of a prenex formula in LK
can be transformed into one that is cut-free and in which all propositional
inferences precede all quantifier inferences. An important consequence of this
theorem is a form of Herbrand’s theorem (see section 6.4).

The second main contribution of Gentzen (1934) is the introduction of calculi
of natural deduction. It was intended to capture actual “natural” reasoning
more accurately than axiomatic systems do. Such patterns of reasoning are
for instance the methods of conditional proof (to prove a conditional, give a
proof of the consequent under the assumption that the antecedent is true) and
dilemma (if a conclusion C follows from both A and B individually, it follows
from A∨B). In natural deduction then, a derivation is a tree of formulas. The
uppermost formulas are assumptions, and each formula is either an assumption,
or must follow from preceding formulas according to one of the rules:

A B
A&B

A&B
A

A&B
B

A
A ∨B

B
A ∨B

A ∨B
[A]
C

[B]
C

C
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Fa
∀xFx

∀xFx
Fa

Fa
∃xFx

∃xFx
[Fa]
C

C

[A]
B

A ⊃ B
A A ⊃ B

B

[A]∧
¬A

A ¬A∧ ∧
D
.

In the rules, the notation [A] indicates that the subproof ending in the
corresponding premise may contain any number of formulas for the form A as
assumptions, and that the conclusion of the inference is then independent of
these assumptions. A derivation is a proof of A, if A is the last formula of the
derivation and is not dependent on any assumptions.

6. Itinerary VI. Proof Theory and Arithmetic
6.1. Hilbert’s Program for Consistency Proofs
The basic aim and structure of Hilbert’s program in the philosophy of mathe-
matics is well known: To put classical mathematics on a firm foundation and
to rescue it from the attempted Putsch of intuitionism, two things were to
be accomplished. First, formalize classical mathematics in a formal system;
second, give a direct, finitistic consistency proof for this formal system. This
project is first outlined in Hilbert (1922c) and received its most popular presen-
tation in “On the infinite” (1926). The project has an important philosophical
aspect, which we cannot do justice here (see Zach 2006). This philosophical
aspect is the finitist standpoint—the methodological position from which
the consistency proofs were to be carried out. At its most basic, the finitist
standpoint is characterized as the domain of reasoning about sequences of
strokes (the finitist numbers), or sequences of signs in general. From the finitist
standpoint, only such finite objects which, according to Hilbert, are “intuitively
given” are admissible as objects of finitist reflection; specifically, the finitist
standpoint cannot operate with or assume the existence of completed infinite
totalities such as the set of all numbers. Furthermore, only such methods of
construction and inference are allowed that are immediately grounded in the
intuitive representation we have of finitist objects. This includes, for example,
definition by primitive recursion and induction as the basic method of proof.
A consistency proof for a formal system, in particular, has to take roughly
the following form: Give a finitist method by which any given proof in the
formal system of classical mathematics can be transformed into one which
by its very form cannot be a derivation of a contradiction, such as 0 = 1.
Such a finitist consistency proof not only grounds classical mathematics but
also can be taken as a reductio of one of the intuitionist’s motivations, viz.,
that classical reasoning may lead to outright contradictions, since the finitist
methods themselves are acceptable intuitionistically.
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Hilbert envisaged the consistency proof for classical mathematics to be
accomplished in stages of consistency proofs for increasingly stronger systems,
starting with propositional logic and ending with full set theory. The crucial de-
velopment that enabled Ackermann and von Neumann to give partial solutions
to the consistency problem was the invention of the ε-calculus around 1922.71

The ε-calculus is an extension of quantifier-free logic and number theory by
term forming ε-operators: If A(a) is a formula, then εaA(a) is a term, intu-
itively, the least a such that A(a) is true. Using such ε-terms, it is then possible
to define the quantifiers by (∃a)A(a) ≡ A(εaA(a)) and (∀a)A(a) ≡ A(εaA(a)).
The axioms governing the ε-operator are the so-called transfinite axioms

A(a) → A(εa(A(a))) and

εaA(a) �= 0 → A(δεaA(a)).

The first axiom allows the derivation of the usual axioms for ∃ and ∀; the
second derives the induction axiom (δ is the predecessor function). The ε-
substitution method used by Ackermann and von Neumann goes back to an
idea of Hilbert: In a given proof, replace the ε-terms by actual numbers so
that the result is a derivation of the same formula; then apply the consistency
proof for quantifier-free systems.

6.2. Consistency Proofs for Weak Fragments of Arithmetic
Around 1900, Hilbert began championing the axiomatic method as a founda-
tional approach, not only to geometry but also to arithmetic. He proposed
the axiomatic method in contradistinction to the genetic method, by which
the reals were constructed out of the naturals (which were taken as primi-
tive) through the usual constructions of the integer, rational, and finally real
numbers through constructions such as Dedekind cuts. In Hilbert’s opinion,
the axiomatic method is to be preferred for “the final presentation and the
complete logical grounding of our knowledge [of arithmetic]” (Hilbert 1900b).
The first order of business, then, is to provide an axiomatization of the reals,
which Hilbert first attempted in “Über den Zahlbegriff” (1900b). To complete
the “logical grounding,” however, one would also have to prove the consistency
(and completeness) of the axiomatization. For geometry, consistency proofs
can be given by exhibiting models in the reals; but a consistency proof of
arithmetic requires a direct method. Hilbert considered such a direct proof
of consistency the most important question that has to be answered for the
axiomatization of the reals, and he formulated it as the second of his “Mathe-
matical problems” (Hilbert 1900a). Attempts at such a proof were made in
(Hilbert 1905b) and his course on “Logical principles of mathematical thought”
(1905a). It became clear that a successful direct consistency proof requires a
further development of the underlying logical systems. This development was
carried out by Russell and Whitehead, and following a period of intense study
of the Principia between 1914 and 1917 in Göttingen (see Mancosu 1999a,
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2003), Hilbert renewed his call for a direct consistency proof of arithmetic
in “Axiomatic thought” (1918a). This was followed by an increased focus on
foundations in Göttingen. Until 1920, Hilbert seems to have been sympathetic
to Russell’s logicist approach, but soon became dissatisfied by it. In his course
“Problems of mathematical logic,” he explains:

Russell starts with the idea that it suffices to replace the predicate
needed for the definition of the union set by one that is extensionally
equivalent, and which is not open to the same objections. He is
unable, however, to exhibit such a predicate, but sees it as obvious
that such a predicate exists. It is in this sense that he postulates the
“axiom of reducibility,” which states approximately the following:
“For each predicate, which is formed by referring (once or multi-
ple times) to the domain of predicates, there is an extensionally
equivalent predicate, which does not make such reference.

With this, however, Russell returns from constructive logic to
the axiomatic standpoint. . . .

The aim of reducing set theory, and with it the usual methods of
analysis, to logic, has not been achieved today and maybe cannot
be achieved at all. (Hilbert 1920b, 32–33)

Precipitated by increasing interest in Brouwer’s intuitionism and Poincaré’s
and Weyl’s predicativist approaches to mathematics (Weyl 1918, 1919), and
especially Weyl’s (1921) conversion to intuitionism, Hilbert finally formulated
his own approach to mathematical foundations. This approach combined his
previous aim of providing a consistency proof that does not proceed by exhibit-
ing a model, or reducing consistency to the consistency of a different theory,
with a philosophical position delineating the acceptable methods for a direct
consistency proof. In the same course on “Problems of mathematical logic,”
he presented a simple axiom system for the naturals, consisting of the axioms

1 = 1
(a = b) → (a+ 1 = b+ 1)

(a+ 1 = b+ 1) → (a = b)
(a = b) → ((a = c) → (b = c))
a+ 1 �= 1.

An equation between terms containing only 1’s and +’s is called correct if it is
either 1 = 1, results from the axioms by substitution, or is the end formula of a
proof from the axioms using modus ponens. The system was later extended by
induction, but for the purpose of describing the kind of consistency proof he has
in mind, Hilbert observed that the axiom system would be inconsistent in the
sense of deriving a formula and its negation iff it were possible to derive a substi-
tution instance of a+1 = 1. In this case, then, a direct consistency proof requires
a demonstration that no such formula can be the end formula of a formal proof.
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Thus we are led to make the proofs themselves the object of our
investigation; we are urged toward a proof theory, which operates
with the proofs themselves as objects.

For the way of thinking of ordinary number theory the numbers
are then objectively exhibitable, and the proofs about the numbers
already belong to the area of thought. In our study, the proof itself
is something which can be exhibited, and by thinking about the
proof we arrive at the solution of our problem.

Just as the physicist examines his apparatus, the astronomer his
position, just as the philosopher engages in critique of reason, so the
mathematician needs his proof theory, to secure each mathematical
theorem by proof critique.72

This is the first occurrence of the term “proof theory” in Hilbert’s writings.73

This approach to consistency proofs is combined with a philosophical position
in Hilbert’s address in Hamburg in July 1921 (1922c), which emphasizes
the distinction between the “abstract operation with general concept-scopes
[which] has proved to be inadequate and uncertain,” and contentual arithmetic
which operates on signs. In a famous passage, Hilbert makes clear that the
immediacy and security of mathematical “contentual” thought about signs is a
precondition of logical thought in general, and hence is the only basis on which
a direct consistency proof for formalized mathematics must be carried out:

As a precondition for the application of logical inferences and for the
activation of logical operations, something must already be given
in representation: certain extra-logical discrete objects, which exist
intuitively as immediate experience before all thought. If logical
inference is to be certain, then these objects must be capable of
being completely surveyed in all their parts, and their presentation,
their difference, their succession (like the objects themselves) must
exist for us immediately, intuitively, as something that cannot be
reduced to something else. . . . The solid philosophical attitude that
I think is required for the grounding of pure mathematics—as well
as for all scientific thought, understanding, and communication—is
this: In the beginning was the sign. (Hilbert 1922c, 1121–1122)

Just as a contentual mathematics of number signs enjoys the epistemological
priority claimed by Hilbert, so does contentual reasoning about combinations
of signs in general. Hence, contentual reasoning about formulas and formal
proofs, in particular, contentual demonstrations that certain formal proofs are
impossible, are the aim of proof theory and metamathematics. This philosoph-
ical position, together with the ideas about how such contentual reasoning
about derivations can be applied to prove consistency of axiomatic systems—
ideas outlined in the 1920 course and going back to 1905—make up Hilbert’s
program for the foundation of mathematics.
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In the following two years, Hilbert and Bernays elaborate the research
project in a series of courses and talks (Hilbert 1922a, 1923; Hilbert and
Bernays 1923b; Bernays 1922). The courses from 1921–1922 and 1922–1923 are
most important. It is there that Hilbert introduces the ε-calculus in 1921–1922
to deal with quantifiers and the approach using the ε-substitution method as a
proof of consistency for systems containing quantification and induction. The
system used in 1922–23 is given by the following axioms (Hilbert and Bernays
1923b, 17, 19):

1. A→ B → A 2. (A→ A→ B) → A→ B
3. (A→ B → C) → (B → A→ C) 4. (B → C) → (A→ B) → A→ C
5. A&B → A 6. A&B → B
7. A→ B → A&B 8. A→ A ∨B
9. B → A ∨B 10. (A→ C) → (B → C) → A ∨B → C

11. A→ A→ B 12. (A→ B) → (A→ B) → B
13. a = a 14. a = b→ A(a) → A(b)
15. a+ 1 �= 0 16. δ(a+ 1) = a

Here, “ + 1” is a unary function symbol. In Hilbert’s systems, Latin letters
are variables; in particular, a, b, c, . . . are individual variables and A, B, C, . . .
are formula variables. The rules of inference are modus ponens and substitution
for individual and formula variables.

The idea of the consistency proof is this: Suppose a proof of a contradiction
is available. (We may assume that the end formula of this proof is 0 �= 0.)

1. Resolution into proof threads. First, we observe that by duplicating part
of the proof and leaving out steps, we can transform the derivation to
one where each formula (except the end formula) is used exactly once as
the premise of an inference. Hence, the proof is in tree form.

2. Elimination of variables. We transform the proof so that it contains no
free variables. This is accomplished by proceeding backward from the
end formula: The end formula contains no free variables. If a formula
is the conclusion of a substitution rule, the inference is removed. If a
formula is the conclusion of modus ponens it is of the form

A A→ B

B′
,

where B′ results from B by substituting terms (functionals, in Hilbert’s
terminology) for free variables. If these variables also occur in A, we
substitute the same terms for them. Variables in A that do not occur in
B are replaced with 0. This yields a formula A′ not containing variables.
The inference is replaced by

A′ A′ → B′

B′
.
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3. Reduction of functionals. The remaining derivation contains a number of
terms which now have to be reduced to numerical terms (i.e., standard
numerals of the form (. . . (0 + 1) + · · · ) + 1). In this case, this is done
easily by rewriting innermost subterms of the form δ(0) by 0 and δ(n + 1)
by n. In later stages, the set of terms is extended by function symbols
introduced by recursion, and the reduction of functionals there proceeds
by calculating the function for given numerical arguments according to
the recursive definition.

To establish the consistency of the axiom system, Hilbert suggests, we have
to find a decidable property of formulas (konkret feststellbare Eigenschaft)
so that every formula in a derivation which has been transformed using the
foregoing steps has the property, and the formula 0 �= 0 lacks it. The property
Hilbert proposes to use is correctness. This, however, is not to be understood
as truth in a model: The formulas still occurring in the derivation after the
transformation are all Boolean combinations of equations between numerals.
An equation between numerals n = m is correct if n and m are equal, and the
negation of an equality is correct if n and m are not equal.

If we call a formula which does not contain variables or functionals
other than numerals an “explicit [i.e., numerical] formula,” then
we can express the result obtained thus: Every provable explicit
formula is end formula of a proof all the formulas of which are
explicit formulas.

This would have to hold in particular of the formula 0 �= 0, if it
were provable. The required proof of consistency is thus completed
if we show that there can be no proof of the formula which consists
of only explicit formulas.

To see that this is impossible it suffices to find a concretely
determinable [konkret feststellbar ] property, which first of all holds
of all explicit formulas which result from an axiom by substitution,
which furthermore transfers from premises to end formula in an
inference, which however does not apply to the formula 0 �= 0.
(Hilbert 1922b, part 2, 27–28)

This basic model for a consistency proof is then extended to include terms
containing function symbols defined by primitive recursion and terms con-
taining the ε-operator. Hilbert’s Ansatz for eliminating ε-terms from formal
derivations is first outlined in the 1921–1922 lectures and in more detail in the
1922–1923 course.74

Suppose a proof involves only one ε-term εaA(a) and corresponding critical
formulas

A(ki) → A(εaA(a)),

that is, substitution instances of the transfinite axiom

A(a) → A(εaA(a)).



394 The Development of Modern Logic

We replace εaA(a) everywhere with 0, and transform the proof as before
by rewriting it in tree form (“dissolution into proof threads”), eliminating
free variables, and evaluating numerical terms involving primitive recursive
functions. Then the critical formulas take the form

A(zi) → A(0),

where zi is the numerical term to which ki reduces. A critical formula can now
only be false if A(zi) is true and A(0) is false. If that is the case, repeat the
procedure, now substituting zi for εaA(a). This yields a proof in which all
initial formulas are correct and no ε terms occur.

If critical formulas of the second kind, that is, substitution instances of the
induction axiom,

εaA(a) �= 0 → A(δεaA(a)),

also appear in the proof, the witness z has to be replaced with the least z′ so
that A(z′) is true.

The challenge is to extend this procedure to (a) cover more than one ε-term
in the proof, (b) take care of nested ε-terms, and last (c) extend it to second-
order ε’s and terms involving them, that is, εfAa(f(a)), which are used in
formulations of second-order arithmetic. This was attempted in Ackermann’s
(1924) dissertation.

6.3. Ackermann and von Neumann on Epsilon Substitution
Ackermann’s dissertation (1924) is a milestone in the development of proof
theory. The work contains the first unified presentation of a system of second-
order arithmetic based on the ε-calculus, a complete and correct consistency
proof of the ε-less fragment (an extension of what is now known as primitive
recursive arithmetic, PRA), and an attempt to extend Hilbert’s ε-substitution
method to the full system.

The consistency proof for the ε-free fragment extends a sketch of a con-
sistency proof for primitive recursive arithmetic contained in Hilbert and
Bernays’s 1922–1923 lectures. For primitive recursive arithmetic, the basic
axiom system is extended by definitional equations for function symbols which
define the corresponding functions recursively, for example,

ψ(0,�c) = a(�c)
ψ(a+ 1,�c) = b(a, ψ(a,�c),�c).

To prove consistency for such a system, the “reduction of functionals” step has
to be extended to deal with terms containing the function symbols defined by
evaluating innermost terms with leading function symbol ψ according to the
primitive recursion specified by the defining equations. It should be noted right
away that such a consistency proof requires the possibility of evaluating an
arbitrary primitive recursive function, and as such exceeds primitive recursive
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methods. This means that Hilbert, already in 1922, accepted nonprimitive
recursive methods as falling under the methodological, “finitary” standpoint
of proof theory. Ackermann’s dissertation extends this consistency proof by
also dealing with what might be called second-order primitive recursion. A
second-order primitive recursive definition is of the form

φ�bi(0,
�f(�bi),�c) = a�bi(

�f(�bi),�c)

φ�bi(a+ 1, �f(�bi),�c) = b�bi(a, φ�di(a,
�f(�di),�c), �f(�bi)).

The subscript notation indicates λ-abstraction; in modern notation the schema
would more conspicuously be written as

φ(0, λ�bi. �f(�bi),�c) = a(λ�bi. �f(�bi),�c)

φ(a+ 1, λ�bi. �f(�bi),�c) = b(a, φ(a, λ�di. �f(�di),�c), λ�bi. �f(�bi)).

Second-order primitive recursion allows the definition of the Ackermann func-
tion, which was shown by Ackermann (1928b) to be itself not primitive
recursive.

The first consistency proof given by Ackermann is for this system of second-
order primitive recursive arithmetic. While for PRA, the reduction of func-
tionals only requires the relatively simple evaluation of primitive recursive
terms, the situation is more complicated for second-order primitive recursion.
Ackermann locates the difficulty in the following: Suppose you have a functional
φb(2, b(b)), where φ is defined by

φb(0, f(b)) = f(1) + f(2)
φb(a+ 1, f(b)) = φb(a, f(b)) + f(a) · f(a+ 1).

Here, b(b) is a term that denotes a function, and so there is no way to replace
the variable b with a numeral before evaluating the entire term. In effect, the
variable b is bound (in modern notation, the term might be more suggestively
written φ(2, λb.b(b))). To reduce this term, we apply the recursion equations
for φ twice and end up with a term like

b(1) + b(2) + b(0) · b(1) + b(1) · b(2).

The remaining b’s might in turn contain φ, for example, b(b) might be
φc(b, δ(c)), in which case the above expression would be

φc(1, δ(c)) + φc(2, δ(c)) + φc(0, δ(c)) · φc(1, δ(c)) + φc(1, δ(c)) · φc(2, δ(c)).
By contrast, reducing a term ψ(z) where ψ is defined by first-order primitive
recursion results in a term which does not contain ψ, but only the function
symbols occurring on the right-hand side of the defining equations for ψ.

To overcome this difficulty, Ackermann defines a system of indexes of terms
containing second-order primitive recursive terms and an ordering on these
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indexes. Ackermann’s indexes are, essentially, ordinal notations for ordinals
< ωω

ω

, and the ordering he defines corresponds to the ordering on the ordinals.
He then defines a procedure to evaluate such terms by successively applying
the defining equations; each step in this procedure results in a new term
whose index is less than the index of the preceding term. Because the ordering
of the indexes is well founded, this constitutes a proof that the procedure
always terminates, and hence that the process of reduction of functionals in
the consistency proof comes to an end, resulting in a proof with only correct
equalities and inequalities between numerical terms (not containing function
symbols).75 This proof very explicitly proceeds by transfinite induction up to
ωω

ω

, and foreshadows Gentzen’s (1936) use of transfinite induction up to ε0.
Ackermann was completely aware of the involvement of transfinite induction
in this case, but did not see in it a violation of the finitist standpoint:

The disassembling of functionals by reduction does not occur in the
sense that a finite ordinal is decreased each time an outermost func-
tion symbol is eliminated. Rather, to each functional corresponds
as it were a transfinite ordinal number as its rank, and the theorem
that a constant functional is reduced to a numeral after carrying out
finitely many operations corresponds to the other [theorem], that
if one descends from a transfinite ordinal number to ever smaller
ordinal numbers, one has to reach zero after a finite number of steps.
Now there is naturally no mention of transfinite sets or ordinal
numbers in our metamathematical investigations. It is however
interesting, that the mentioned theorem about transfinite ordinals
can be formulated so that there is nothing transfinite about it any
more. (Ackermann 1924, 13–14)

The full system for which Ackermann attempted to give a consistency proof
in the second part of the dissertation consists of the system of second-order
primitive recursive arithmetic together with the transfinite axioms:

1. A(a) → A(εaA(a)) Aa(f(a)) → Aa((εfAb(f(b))(a)))
2. A(εaA(a)) → πaA(a) = 0 Aa(εfAb(f(b))(a)) → πfAa(f(a)) = 0

3. A(εaA(a)) → πaA(a) = 1 Aa(εfAb(f(b))(a)) → πfAa(f(a)) = 1

4. εaA(a) �= 0 → A(δ(εaA(a))).

The intuitive interpretation of ε and π, based on these axioms is this: εaA(a)
is a witness for A(a) if one exists, and πaA(a) = 1 if A(a) is false for all a,
and = 0 otherwise. The π functions are not necessary for the development of
mathematics in the axiom system. They do, however, serve a function in the
consistency proof, viz., to keep track of whether a value of 0 for εaA(a) is a
“default value” (i.e., a trial substitution for which A(a) may or may not be
true) or an actual witness (a value for which A(a) has been found to be true).

To give a consistency proof for this system, Ackermann first has to extend
the ε-substitution method to deal with proofs in which terms containing more
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than one ε-operator (and corresponding critical formulas) occur, and then
argue (finitistically), that the procedure so defined always terminates in a
substitution of numerals for ε-terms which transform the critical formulas into
correct formulas of the form A(t) → A(s) (where A, t, and s do not contain
ε-operators or primitive recursive function symbols). To solve the first task,
Ackermann has to deal with the various possibilities in which ε-operators can
occur in the scope of other ε’s. For instance, an instance of the transfinite
axiom might be

A(t, εyB(y)) → A(εxA(x, εyB(y)), εyB(y)).

To find a substitution for εxA(x, εyB(y)) here, it is necessary to first have a
substitution for εyB(y). This case is rather benign, since the value for εyB(y)
can be determined independently of that for εxA(x, εyB(y)). If εyB(y) occurs
in the term t on the left-hand side, the situation is more complicated. We
might have, for example, a critical formula of the form

A(εyB(y, εxA(x))) → A(εxA(x)).

With an initial substitution of 0 for εxA(x), we can determine a value for
εyB(y, εxA(x)), that is, for εyB(y, 0). With this value for εyB(y), we then find
a value for εxA(x). This, however, now might change the “correct” substitution
for εxA(x), say to n, and hence the initial determination of the value of the
term on the left-hand side changes: We now need a value for εyB(y, n).

The procedure proposed by Ackermann is too involved to be discussed here
(see Zach 2003 for details). In short, what is required is an ordering of terms
based on the level of nesting and of cross-binding of ε’s, and a procedure based
on this ordering which successively approximates a “solving substitution,” that
is, an assignment of numerals to ε-terms which results in all correct critical
formulas. In this successive approximation, the values found for some ε-terms
may be discarded if the substitutions for enclosed ε-terms change. A correct
consistency proof would then require a proof that this procedure does in fact
always terminate with a solving substitution. Unfortunately, Ackermann’s
argument in this regard is opaque.

The system to which Ackermann applied the ε-substitution method, as
indicated, is a system of second-order arithmetic. Ackermann (and Bernays)
soon realized that the proposed consistency proof had problems. Already in the
published version, a footnote on p. 9 restricts the system in the following way:
Only such terms are allowed in substitutions for formula and function variables
in which individual variables do not occur in the scope of a second-order ε.
Von Neumann clarified the restriction and its effect: In Ackermann’s system,
the second-order ε-axiom A(f) → εfA(f) does duty for the comprehension
principle. In this system, the comprehension principle is (∃f)(∀x)(f(x) = t),
where t is a term possibly containing ε-terms. Under Ackermann’s restriction,
only such instances of the comprehension principle are permitted in which x
is not in the scope of a second-order ε-operator; essentially this guarantees
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the existence of only such f ’s which can be defined by arithmetical formulas.
Von Neumann (1927) also remarked that Ackermann’s restriction makes the
system predicative; it is roughly of the strength of the system ACA0.

This alone restricts the consistency proof to a system much weaker than
analysis; however, other problems and lacunae were known to Ackermann, one
being that the proof does not cover ε-extensionality,

(∀f)(A(f) ↔ B(f)) → εfA(f) = εfB(f),

which serves as the ε-analog of the axiom of choice. Ackermann continued
to work on the proof, amending and correcting the ε-substitution procedure
even for first-order ε-terms. These corrections used ideas of von Neumann
(1927), which was already completed in 1925. Von Neumann (1927) used a
different terminology than Ackermann, and the precise connection between
Ackermann’s and von Neumann’s proofs is not clear. Von Neumann’s system
does not include the induction axiom explicitly, because induction can be proved
once a suitable second-order apparatus is available. Hence, the consistency
proof for the first-order fragment of his theory does not deal with induction,
whereas Ackermann’s system has an induction axiom in the form of the second
ε-axiom, and his substitution procedure takes into account critical formulas of
this second kind. Another significant feature of von Neumann’s proof is the
precision with which it is executed: Von Neumann gives numerical bounds for
the number of steps required until a solving substitution is found.76

Ackermann gave a revised ε-substitution proof, using von Neumann’s ideas,
and communicated it to Bernays in 1927. Both Ackermann and Bernays believed
that the new proof would go through for full first-order arithmetic. Hilbert re-
ported on this result in his lectures in Hamburg 1928 (1928a) (see also Bernays
1928b) and Bologna (Hilbert 1928b, 1929). Only with Gödel’s (1930b, 1931)
incompleteness results did it become clear that the consistency proofs did not
even go through for first-order arithmetic. Bernays later gave an analysis of Ack-
ermann’s second proof (Hilbert and Bernays 1939) and showed that the bounds
obtained hold for induction restricted to quantifier-free formulas, but not for
induction axioms of higher complexity. Ackermann eventually, using ideas from
Gentzen, gave an ε-substitution proof for full first-order arithmetic (1940).

6.4. Herbrand’s Theorem
Herbrand’s (1930) thesis “Investigations in proof theory” marks another mile-
stone in the development of first-order proof theory. Herbrand’s main influences
in this work were Russell and Whitehead’s Principia, from which he took the
notation and some of the presentations of his logical axioms, the work of the
Hilbert school, which provided the motivations and aims for proof theoretic
research; and Löwenheim’s (1915) and Skolem’s (1920) work on normal forms.
The thesis contains a number of important results, among them a proof of
the deduction theorem and a proof of quantifier elimination for induction-free
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successor arithmetic (no addition or multiplication). The most significant
contribution, of course, is Herbrand’s theorem.

Herbrand’s theorem shares a fundamental feature with Hilbert’s approaches
to proof theory and consistency proofs: Consistency for systems including quan-
tifiers (ε-terms) is established by giving a procedure that removes quantifiers
from a proof, reducing proofs containing such “ideal elements” to quantifier-
free (essentially, propositional) proofs. Herbrand’s theorem provides a general
necessary and sufficient condition for when a formula of the predicate calculus
is provable by reducing such provability to the provability of an associated
“expansion” in the propositional calculus. The way such an expansion is ob-
tained is closely related to obtaining a Skolem normal form of the formula.
The Löwenheim–Skolem theorem reduces the validity of a formula in general
to its validity in a canonical countable model. Skolem’s and Löwenheim’s
methods, however, were semantic and used infinitary methods, both features
that make it unsuitable for employment in the framework of Hilbert’s finitist
program. Herbrand’s theorem can thus be seen as giving finitary meaning to
the Löwenheim–Skolem theorem.

Let us now give a brief outline of the theorem. We follow Herbrand (1931b),
which is in some respects clearer than the original (1930). Suppose A is a
formula of first-order logic. For simplicity, we assume A is in prenex normal
form; Herbrand gave his argument without making this restriction. So let P be
(Q1x1) . . . (Qnxn)B(x1, . . . , xn), where Qi is either ∀ or ∃, and B is quantifier-
free. Then the Herbrand normal form H of A is obtained by removing all
existential quantifiers from the prefix of A, and replacing each universally
quantified xi by a term fi(xj1 , . . . , xjn), where xj1 , . . . , xjn are the existentially
quantified variables preceding xi. Herbrand (1931a) calls this the elementary
proposition associated with P , and fi is the index function associated with xi.

To state the theorem, we have to define what Herbrand calls canonical
domains of order k. This notion, in essence, is a first-order interpretation with
the domain being the term model generated from certain initial elements and
function, and the terms all have height ≤ k. (The height of a term is defined
as usual: Constants have height 0, and a term fj(t1, . . . , tk) has height h+ 1 if
h is the maximum of the heights of t1, . . . , tk.) Herbrand did not use terms
explicitly as objects of the domain, but instead considered domains consisting
of letters, such that each term (of height ≤ k) has an element of the domain
associated with it as its value and such that if terms t1, . . . , tk have values
b1, . . . , bk, and the value of fi(b1, . . . , bk) is c, then the value associated with
f(t1, . . . , tk) is also c. A domain is canonical if it furthermore satisfies the
condition that any two distinct terms have distinct values associated with
them (i.e., the domain is freely generated from the initial elements and the
function symbols). Last, a domain is of order k if each term of height ≤ k with
constants only from among the initial elements has a value in the domain, but
some term of height k + 1 does not.

The canonical domain of order k associated with P then is the canonical
domain of order k with some nonempty set of initial elements and the functions
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occurring in the Herbrand normal form H of P . P is true in the canonical
domain if some substitution of elements for the free variables in H makes H
true in the domain, and false otherwise. Herbrand’s statement of the theorem
then is:

1. If [for some k] there is no system of logical values [truth value assignment
to the atomic formulas] making P false in the associated canonical domain
of order k, then P is an identity [provable in first-order logic].

2. If P is an identity, then there is a number k obtainable from the proof
of P , such that there is no system of logical values making P false in
every associated canonical domain of order equal to or greater than k.
(Herbrand 1931b, 229)

By introducing canonical domains of order k, Herbrand has thus reduced
provability of P in the predicate calculus to the validity of H in certain finite
term models. If H1, . . . , Hnk are all the possible substitution instances of H
in the canonical domain of order k, then the theorem may be reformulated as:
(1) If

∨
Hi is a tautology, then P is provable in first-order logic; (2) if P is

provable in first-order logic, then there is a k obtainable from the proof of P
so that

∨
Hi is a tautology.

Herbrand’s original proof contained a number of errors that were found
by Peter Andrews and corrected by Dreben, Andrews, and Aanderaa (1963);
Gödel had independently found a correction (see Goldfarb 1993; Andrews
2003 gives a detailed account of the discovery of the errors). Gentzen (1934)
gave a different proof based on the midsequent theorem, which, however, only
applies to prenex formulas and does not provide a bound on the size of the
Herbrand disjunction

∨
Hi. Another early complete and correct proof was

given by Bernays (Hilbert and Bernays 1939) using the ε-calculus.
Herbrand was able to apply the fundamental theorem to give consistency

proofs of various fragments of arithmetic, including the case of arithmetic with
quantifier-free induction. The idea is to reduce the consistency of arithmetic
with quantifier-free induction to induction-free (primitive recursive) arithmetic.
This is done by introducing new primitive recursive functions that “code”
the induction axioms used. The proof of Herbrand’s theorem then produces
finite term models for the remaining axioms, and consistency is established
(Herbrand 1931a).

6.5. Kurt Gödel and the Incompleteness Theorems
Hilbert had two main aims in his program in the foundation of mathematics:
first, a finitistic consistency proof of all of mathematics, and second, a precise
mathematical justification for his belief that all well-posed mathematical
problems are solvable, that is, that “in mathematics, there is no ignorabimus.”
This second aim resulted in two specific convictions: that the axioms of
mathematics, in particular, of number theory, are complete in the sense that
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for every formula A, either A or ∼A is provable,77 and second that the validities
of first-order logic are decidable (the decision problem). The hopes of achieving
both aims were dashed in 1930, when Gödel proved his incompleteness theorems
(1930b, 1931). The summary of his results (Gödel 1930b) addresses the impact
of the results quite explicitly:

I. The system S [of Principia] is not complete [entscheidungsdefinit];
that is, it contains propositions A (and we can in fact exhibit
such propositions) for which neither A nor A is provable and, in
particular, it contains (even for decidable properties F of natural
numbers) undecidable problems of the simple structure (Ex)F (x),
where x ranges over the natural numbers.

II. Even if we admit all the logical devices of Principia mathe-
matica . . . in metamathematics, there does not exist a consistency
proof for the system S (still less so if we restrict the means of proof
in any way). (Gödel 1930b, 141–143)

Soon thereafter, Church and Turing were able to show, using some of the
central ideas in Gödel (1931), that the remaining aim of proving the decidability
of predicate logic was likewise doomed to fail (Church 1936a,b; Turing 1937).

Gödel obtained his results in the second half of 1930. After proving the
completeness of first-order logic, a problem posed by Hilbert and Ackermann
(1928), Gödel set to work on proving the consistency of analysis (recall that
according to Hilbert (1929), the consistency of arithmetic was already estab-
lished). Instead of directly giving a finitistic proof of analysis, Gödel attempted
to first reduce the consistency of analysis to that of arithmetic, which led him
to consider ways to enumerate the symbols and proofs of analysis in arith-
metical terms. It soon became evident to him that truth of number-theoretic
statements is not definable in arithmetic, by reasoning analogous to the liar
paradox. By the end of summer 1930, he had a proof that the analogous fact
about provability is formalizable in the system of Principia, and hence that
there are undecidable propositions in Principia. At a conference in Königs-
berg in September 1930, Gödel mentioned the result to von Neumann, who
inquired whether the result could be formalized not only in type theory but
already in first-order arithmetic. Gödel subsequently showed that the coding
mechanism he had come up with could be carried out with purely arithmetical
methods using the Chinese remainder theorem. Thus the first incompleteness
theorem, that arithmetic contains undecidable propositions, was established.
The second incompleteness theorem, namely, that in particular the statement
formalizing consistency of number theory is such an undecidable arithmeti-
cal statement, was found shortly thereafter (and also independently by von
Neumann).78

Let us now give a brief outline of the proof. The system P Gödel considers
is a version of simple type theory in addition to Peano arithmetic. To carry out
the formalization of predicates about formulas and proofs, Gödel introduces
what is now known as “Gödel numbering.” To each symbol of the system P
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a natural number is associated. A finite sequence of symbols a (e.g., a formula)
can then be coded by Φ(a) = 2n1 · 3n2 · · · pnkk , where k is the length of the
sequence, pk is the kth prime, and ni is the Gödel code of the ith symbol in
the sequence. Similarly, a sequence of formulas (i.e., a sequence of sequences
of numbers) with codes n1, . . . , nk is coded by 2n1 · 3n2 · · · pnkk .

To carry out the metamathematical treatment of formulas and proofs
within the system, Gödel next defines the class of primitive recursive functions
and relations of natural numbers (he simply calls them “recursive”) and
proves (theorems I–IV) that primitive recursive functions and relations are
closed under composition, the logical operations of negation, disjunction,
conjunction, bounded minimization, and bounded quantification. Using this
characterization, he then shows that a collection of 45 functions can be defined
primitive recursively. The functions are those necessary to carry out simple
manipulations on formulas and proofs, or represent predicates about formulas
and proofs. For instance, (31) is the function Sb(xvy), the function the value of
which is the code of a formula that results from the formula A (with code x)
where every free occurrence of the variable with code v is replaced by the term
with code y; (45) is the primitive recursive relation xBy, which holds if x is
the code of a proof of a formula with code y. (46), finally is Bew(x), expressing
that x is the code of a provable formula with code x. Bew(x) is not primitive
recursive, because it results from xBy by unbounded existential generalization:
Bew(x) ≡ (Ey)yBx. Gödel then proves (theorem V) that every recursive
relation is numeralwise representable in P , that is, that if R(x1, . . . , xn) is a
formula representing a recursive relation (according to the characterization of
recursive relations given in theorems I–IV), then:

1. if R(n1, . . . , nk) is true, then P proves Bew(m), where m is the code of
R(n1, . . . , nk), and

2. if R(n1, . . . , nk) is false, then P proves Bew(m), where m is the code of
∼R(n1, . . . , nk).

Then Gödel proves the main theorem.

Theorem VI For every ω-consistent recursive class κ of formulas

there are recursive class signs r such that neither v Gen r nor
Neg(vGen r) belongs to Flg(κ) (where v is the free variable of r.
(Gödel 1931, 173)

Here κ is the recursive relation defining a set of codes of formulas to be
considered as axioms, r is the code of a recursive formula A(v) (i.e., one
containing no unbounded quantifiers) with free variable v, v Gen r is the code
of the generalization (v)A(v) of A(v), Neg(v Gen r) the code of its negation
∼(v)A(v), and Flg(κ) is the set of codes of formulas that are provable in P
together with κ. We may thus restate theorem IV somewhat more perspicuously
thus: If Pκ is an ω-consistent theory resulting by adding a recursive set of
axioms κ to P , then there is a formula A(x) such that neither (x)A(x) nor
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∼(x)A(x) is provable in Pκ. The requirement that Pκ is ω-consistent states that
for no formula A(x) does Pκ prove both A(n) for all numerals n and ∼(x)A(x);
Rosser (1936) later weakened this requirement to the simple consistency of Pκ.

In the following sections, Gödel sharpens the result in several ways. First, he
shows that (theorem VII) primitive recursive relations are arithmetical, that is,
that the basic functions +, and × of arithmetic suffice to express all primitive
recursive functions (this is where the Chinese remainder theorem is used).
From this, theorem VIII follows, namely, that not only are there undecidable
propositions of the form (x)A(x) with A recursive (in particular, possibly using
exponentiation xy) but even with A(x) arithmetical (i.e., containing only +
and ×). Finally, in section 4, Gödel states the second incompleteness theorem.

Theorem XI Let κ be any recursive consistent class of formulas;
then the sentential formula stating that κ is consistent is not
κ-provable; in particular, the consistency of P is not provable in
P , provided P is consistent (in the opposite case, of course, every
proposition is provable). (Gödel 1931, 193)

Although theorems VI and XI are formulated for the relatively strong system P ,
Gödel remarks that the only properties of P which enter into the proof of
theorem VI are that the axioms are recursively definable, and that the recursive
relations can be defined within the system. This applies, so Gödel, also to
systems of set theory as well as to number theoretical systems such as that of
von Neumann (1927).

Gödel’s result is of great importance to the development of mathematical
logic after 1930, but its most immediate impact at the time consisted in the
doubts it cast on the feasibility of Hilbert’s program. Von Neumann and
Bernays immediately realized that the result shows that no consistency proof
for a formal system of mathematics can be given by methods which can be
formalized within the system—and since finitistic methods presumably were so
formalizable in relatively weak number theoretic systems already, no finitistic
consistency proofs could be given for such systems. This led Gentzen (1935,
1936), in particular, to rethink the role of consistency proofs and the character
of finitistic reasoning; following him, work in proof theory has concentrated
on, in a sense, relative consistency proof.

From [Gödel’s incompleteness theorems] it follows that the consis-
tency of elementary number theory, for example, cannot be estab-
lished by means of part of the methods of proof used in elementary
number theory, nor indeed by all of these methods. To what extent,
then, is a genuine reinterpretation [Zurückführung] still possible?

It remains quite conceivable that the consistency of elementary
number theory can in fact be verified by means of techniques which,
in part, no longer belong to elementary number theory, but which
can nevertheless be considered to be more reliable than the doubtful
components of elementary number theory itself. (Gentzen 1936, 139)



404 The Development of Modern Logic

Gentzen’s proof uses transfinite induction on constructive ordinals < ε0, and
argues that these methods in fact are finitary, and hence “more reliable” than
the infinitistic methods of elementary number theory.79

7. Itinerary VII. Intuitionism and Many-Valued Logics
7.1. Intuitionistic Logic
7.1.1. Brouwer’s Philosophy of Mathematics

One of the most important positions in philosophy of mathematics of the 1920s
was the intuitionism of Luitzen Egbertus Jan Brouwer (1881–1966).80 Although
our emphasis will be on the logical developments that emerged from Brouwer’s
intuitionism (as opposed to his philosophy of mathematics or the development
of intuitionistic mathematics), it is essential to begin by saying something
about his position in philosophy of mathematics. The essay “Intuitionism and
Formalism” (1912b) contains many of the theses characteristic of Brouwer’s
approach. In it Brouwer discusses on what grounds one can base the conviction
about the “unassailable exactness” of mathematical laws and distinguishes the
position of the intuitionist from that of the formalist. The former, represented
mainly by the school of French analysts (Baire, Borel, Lebesgue),81 would
posit the human mind as the source of the exactness; by contrast the formalist,
by which Brouwer also means realists such as Cantor, would say that the
exactness resides on paper. This rough and ready characterization of the
situation, although objectionable, is very typical of Brouwer’s style and perhaps
contributed to the appeal of his radical proposal. Brouwer traces the origins
of the intuitionist position back to Kant.82 For Kant, time and space were the
forms of our intuition, which shaped our perception of the world. He famously
defended the idea that geometry and arithmetic are synthetic a priori. Brouwer
only retains part of the Kantian intuitionism, in that he rejects the aprioricity
of space but preserves that of time. The foundation of the Brouwerian account
of mathematics is to be found in fact in the basal intuition of time:

The neo-intuitionism considers the falling apart of moments of
life into qualitatively different parts, to be reunited only while
remaining separate by time, as the fundamental phenomenon of the
human intellect, passing by abstracting from its emotional content
into the fundamental phenomenon of mathematical thinking, the
intuition of the bare two-oneness. (Brouwer 1912a, 80)

The rest of mathematics is, according to Brouwer, built out of this basal
intuition. Together with the emphasis on the centrality of intuition, Brouwer
denigrates the use of language in mathematical activity and reserves to it only
an auxiliary role. Talking about the construction of (countable) sets he writes:

And in the construction of these sets neither the ordinary language
nor any symbolic language can have any other role than that of
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serving as a non-mathematical auxiliary, to assist the mathematical
memory or to enable different individuals to build up the same set.
(Brouwer 1912a, 81)

This is at the root of Brouwer’s skeptical attitude toward a foundational role
for formal work in logic and mathematics. Thus, the intuitionist position finds
itself at odds with formalists, logicists, and Platonists, all guilty, according
to Brouwer, of relying on “the presupposition of the existence of a world of
mathematical objects, a world independent of the thinking individual, obeying
the laws of classical logic and whose objects may possess to each other the
‘relation of a set to its elements.’ ” For this reason Brouwer criticized, among
other things, the foundation of set theory provided by Zermelo and eventually
produced (starting in 1916–1917) his own intuitionist set theory. While in
the realm of the finite there is agreement in the results (although not in
the method) between intuitionists and formalists, the real differences emerge
in the treatment of the infinite and the continuum. There is an important
development in Brouwer’s ideas here. Whereas in the 1912 essay he thought
of real numbers as given by laws, later on (starting in 1917) he developed a
very original conception of the continuum based on choice sequences.83 This
will lead him to the development of an alternative construction of mathe-
matics, intuitionistic mathematics. Brouwer presented his new approach in
two papers, titled “Foundation of set theory independent from the logical law
of the excluded middle” (1918) and the companion paper “Intuitionist set
theory” (1921). As already mentioned, the new approach to mathematics was
characterized by the admission of “free choice” sequences, that is, procedures
in which the subject is not limited by a law but can also proceed freely in the
generation of arbitrary elements of the sequence. These sequences are seen
as being generated in time and thus as “growing” or “becoming.” This new
conception of mathematics with the inclusion of free growth and indeterminacy
goes hand in hand with one of the major claims of Brouwer’s intuitionism,
that is, the denial of the idea that mathematical entities and properties are
always completely determined. The latter assumption is embodied, according
to Brouwer, in the logical law of the excluded middle:

The use of the principle of the excluded middle is not permissible
as part of a mathematical proof. It has only scholastic and heuristic
value, so that the theorems which in their proof cannot avoid the use
of this principle lack all mathematical content. (Brouwer 1921, 23)

Thus, for the intuitionist the only acceptable mathematical entities and prop-
erties are those that are constructed in thought; mathematical objects and
properties do not have an independent existence. As a consequence, this leads
to an abandonment of the unrestricted validity of the principle of the excluded
middle and thus to a restriction of the available means of proof in classical
mathematics. However, intuitionistic mathematics is not simply a subset of
classical mathematics obtained by eliminating the excluded middle but rather
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a different development, due to the fact that the admission of “incomplete
entities” such as free-choice sequences leads to a new and original theory of the
mathematical continuum. One of the new concepts introduced by Brouwer is
that of Species. This is the intuitionist equivalent of “property” in the classical
setting. The constructive interpretation of property is presented by Brouwer
in opposition to the principle of comprehension formulated by Cantor and in
a restricted form by Zermelo. While in the classical setting any well-formed
formula partitions the universe into the set of objects that satisfy the formula
and those that do not, the new interpretation of property, or “Species,” is
obtained by limiting its domain to the entities whose constructions have already
been achieved. However, the Species does not partition the already constructed
entities into those that satisfy the Species and those that do not. An entity
will belong to the Species if one can successfully carry out a proof that the
constructed entity does indeed have the property in question (in Brouwer’s
terminology, “fitting in”). An entity will not belong if one can successfully
carry out a construction that will show that the assumption of its belonging to
the Species generates a contradiction. However, it is clear that the alternatives
to a demonstration of “fitting in” can be twofold: either the demonstration
of the absurdity of a “fitting in” or the absence of a demonstration either of
“fitting in” or of its absurdity. The consequences of this strict interpretation of
negation are that Brouwer has to produce a reconstruction of mathematics
in which the principles of double negation and the principle of the excluded
middle do not hold. The intuitionistic reconstruction of mathematics cannot
be given here;84 our focus is on the logical aspects of the situation.

7.1.2. Brouwer on the Excluded Middle

From the beginning of his publishing career, Brouwer gave pride of place to
the mental mathematical activity and downplayed the foundational rôle of
language and logic in mathematics. The system of logical laws is then seen as
a mere linguistic edifice that at best can only accompany the communication
of successful mathematical constructions. In 1908, Brouwer expresses doubts
as to the validity of the principle of the excluded middle, since he claims
that it is not the case that for an arbitrary statement S, we either have a
proof of S or we have a proof of the negation of S. Of course, this already
presupposes a constructive interpretation of the logical connectives. Issues
about the excluded middle became central once Brouwer developed his new
conception of mathematics based on the admissibility of “becoming” entities
(such as choice sequences) and constructive properties (Species) for which, as
we have seen, there is more than one alternative to the successful “fitting” of a
constructed object to the Species. After the publication of “The Foundations of
set theory independent of the logical principle of the excluded middle,” which
develops parts of mathematics without appeal to the excluded middle, he wrote
a number of essays in which he analyzed the logic of negation implicit in the new
reconstruction of mathematics. In “On the significance of the excluded middle



The Development of Mathematical Logic from Russell to Tarski, 1900–1935 407

in mathematics, especially in function theory” (1923b), Brouwer proposes a
positive account of how we illegitimately move from the excluded middle on
finite domains to infinite domains:

Within a specific finite “main system” we can always test (i.e.,
either prove or reduce to absurdity) properties of systems. . . . On
the basis of the testability just mentioned, there hold, for proper-
ties conceived within a specific finite main system, the principle
of excluded middle, that is, the principle that for every system
every property is either correct or impossible, and in particular the
principle of the reciprocity of the complementary species, that is,
the principle that for every system the correctness of a property
follows from the impossibility of the impossibility of this property.
(Brouwer 1923b, 335)

However, the validity on finite domains was arbitrarily extended to mathematics
in general:

An a priori character was so consistently ascribed to the laws
of theoretical logic that until recently these laws, including the
principle of excluded middle, were applied without reservation even
in the mathematics of infinite systems. (Brouwer 1923b, 336)

7.1.3. The Logic of Negation

In “Intuitionistic Splitting of the Fundamental Notions of Mathematics” (1923a),
Brouwer for the first time engages in an analysis of the consequences of his
viewpoint, in particular, his conception of negation as contradiction, for logic
proper. He begins by pointing out that the

the intuitionist conception of mathematics not only rejects the prin-
ciple of the excluded middle altogether but also the special case, con-
tained in the principle of reciprocity of complementary species, that
is, the principle that for any mathematical system infers the correct-
ness of a property from the absurdity of its absurdity.” (1923a, 286)

The rejection of the principle of the excluded middle is then argued by means
of an example, which is paradigmatic of what are now called (weak) Brouwe-
rian counterexamples.85 Let k1 be the least n such that there is a sequence
0123456789 appearing between the nth place and the (n+ 9)th place of the
decimal expansion of π, and let

cn =

{
(−1/2)k1 if n ≥ k1
(−1/2)n otherwise.

Then the sequence c1, c2, c3, converges to a real number r. We define a real
number g to be rational if one can calculate two rational integers p and q
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whose ratio equals g. Then r cannot be rational and at the same time the
rationality of r cannot be absurd. This is because if r were rational we could
compute the two integers, thereby solving a problem for which no computation
is known (i.e., finding k1). On the other hand, it is not contradictory that
it be rational, because in that case k1 would not exist and thus r would be
0, that is, a rational after all. In fact, the problem giving rise to the weak
counterexample used by Brouwer has now been solved. But one can use other
unsolved problems to generate similar counterexamples.

The counterexample shows that intuitionistically we cannot assert (until
the problem is solved) “r is either rational or irrational,” something that is
of course perfectly legitimate from the classical point of view. However, the
argument goes through only if one grants that the property of being rational
requires the explicit computation of the integers p and q, which is of course
not required in the classical setting. The consequences for the logic of negation
are stated by Brouwer in the following principles:

1. Intuitionistically, absurdity-of-absurdity follows from correctness but not
vice versa.

2. However, intuitionistically, the absurdity-of-absurdity-of absurdity is
equivalent with absurdity.

As a consequence of these principles, any finite sequence of absurdity
predicates can be reduced either to an absurdity or to an absurdity-of-absurdity.

It should be pointed out in closing this section that the notion of absurdity
obviously involves the notion of a “contradiction” or “the impossibility of
fitting in” or an “incompatibility.” All these notions presuppose negation or
difference, but Brouwer never spells out with clarity how to avoid the potential
circularity involved here, although he refers to a primitive intuition of difference
(not definable in terms of classical negation) in 1975 (73).

7.1.4. Kolmogorov

Kolmogorov’s contribution to the formalization of intuitionistic logic and its
properties date from “On the principle of the excluded middle” (1925), which
however was not known to many logicians until much later, undoubtedly due
to the fact that it was written in Russian. Thus, the debate that we describe
in section 7.1.5 on the nature of Brouwer’s logic, does not refer to Kolmogorov.
In the introduction to his article, Kolmogorov states his aim as follows:

We shall prove that every conclusion obtained with the help of
the principle of the excluded middle is correct provided every
judgment that enters in its formulation is replaced by a judgement
asserting its double negation. We call the double negation of a
judgement its “pseudotruth.” Thus, in the metamathematics of
pseudotruth it is legitimate to apply the principle of the excluded
middle. (Kolmogorov 1925, 416)
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Kolmogorov’s declared goal in the paper was to show why the illegitimate
use of the excluded middle does not lead to contradiction. His results predate
similar results by Gentzen (1933a) and Gödel (1933a), which are known as
double negation interpretations or negative translations. Kolmogorov’s points
of departure are Brouwer’s critique of classical logic and the formalization of
classical logic given by Hilbert (1922c). He introduces two propositional calculi:
B and H.

Calculus B:

1. A→ (B → A),

2. {A→ (A→ B)} → (A→ B),

3. {A→ (B → C)} → {B → (A→ C)},
4. (B → C) → {(A→ B) → (A→ C)},
5. (A→ B) → {(A→ B) → A}.
Calculus H is obtained by adding to B the axiom

6. A→ A.

Rules of inference for both calculi are substitution and modus ponens.
It has been argued that Kolmogorov anticipated Heyting’s formalization

of intuitionistic propositional calculus (see section 7.1.6). This is almost true.
The system B (known after Johansson as the minimal calculus) differs from
the negation-implication fragment of Heyting’s axiomatization only by the
absence of axiom

h. A ⊃ (A ⊃ B).

H is equivalent to the formalization of classical propositional calculus given in
Hilbert (1922c). We find in Kolmogorov also an attempt at a formalization of
the intuitionistic predicate calculus, although he is not completely formal on
this point. He regards as intuitive the rule “whenever a formula S stands by
itself [i.e., is proved], we can write the formula (a)S” (433; rule P) and states
the following axioms:

I. (a){A(a) → B(a)} → {(a)A(a) → (a)B(a)}.
II. (a){A→ B(a)} → {A→ (a)B(a)}.

III. (a){A(a) → C} → {(Ea)A(a) → C}.
IV. A(a) → (Ea)A(a).

Adding to system B the axioms I–IV and rule P would result in a complete
system for intuitionistic predicate logic (Heyting 1930b) if axiom h and the
following axiom,

g. (a)A(a) → A(a),
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were also added. Kolmogorov considered axiom g to be true (see Wang 1967).
He conjectured that B is complete with respect to its intended interpretation
(“the intuitively obvious” class of propositions), but he cautiously observed
that “the question whether this axiom system is a complete axiom system for
the intuitionistic general logic of judgments remains open” (422).

Whereas calculus B corresponds, according to Kolmogorov, to the “general
logic of judgments,” calculus H corresponds to the “special logic of judgments,”
since its range of application is narrower (it produces true propositions only
when the propositional variables range over a narrower class of propositions). In
section III of his paper, Kolmogorov individuates a class of judgments with the
property that “the judgment itself follows [intuitively] from its double negation.”
Finitary judgments are of such type. Let A•, B•, C•, . . . denote judgments
of the mentioned kind. Then (A• → B•) → (A• → B•) and A• → A• are
provable in B. Moreover, for every negative formula A, B proves A→ A. It is
also shown that substitution for propositional variables, modus ponens, and
the axioms of H are all valid for this class of propositions. This shows that the
system H is intuitionistically correct if we restrict it to the class of judgments
of the form A•. Thus, the domain for which the calculus H is valid is the class
of propositions that follow (intuitively) from their double negation, and this
includes finitary statements and all negative propositions. This amounts to
showing that all of propositional logic is included in intuitionistic propositional
logic, if the domain of propositions is restricted to propositions of the form A•.
In section IV, Kolmogorov introduces a translation from formulas of classical
mathematics to formulas of intuitionistic mathematics:

We shall construct alongside of ordinary mathematics, a “pseudo-
mathematics” that will be such that to every formula of the first
there corresponds a formula of the second and, moreover, that every
formula of pseudomathematics is a formula of type A•. (Kolmogorov
1925, 418)

The translation is defined as follows: If A is atomic, then A∗ = A; A∗ = A∗; and
(A→ B)∗ = A∗ → B∗. Thus, if A1, . . . , Ak are axioms of classical mathematics
(comprising the logical axioms), then we have A1, . . . , Ak proves A in H iff A∗1,
. . . , A∗k proves A∗ in B. The theorem is proved by showing that applications of
substitution and modus ponens remain derivable in B under the ∗-translation,
using the results about double negations previously established. Moreover, the
∗-translations of the logical axioms are derivable in B.

Kolmogorov did not extend the result to predicate logic but the extension
is straightforward. It should be pointed out that he asserts (IV, §5–6) that
every axiom A of classical mathematics is such that A∗ is intuitionistically
true. But this would imply that all of classical mathematics is intuitionistically
consistent, a result which is not established, for analysis and set theory, even
to this day. However, as Wang remarks, “it seems not unreasonable to assert
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that Kolmogorov did foresee that the system of classical number theory is
translatable into intuitionistic number theory and therefore is intuitionistically
consistent” (Wang 1967, 415). We return to these results after describing the
discussion on Brouwer’s logic in the West.

7.1.5. The Debate on Intuitionist Logic

In 1926, Wavre published an article contrasting “logique formelle” (classical)
and “logique empiriste” (intuitionist). This was, apart from Kolmogorov (1925),
the first attempt to discuss systematically the features of “Brouwer’s logic.”
Whereas classical logic is a logic of truth and falsity, “empirical” logic is a
logic of truth and absurdity, where true means “effectively demonstrable” and
absurd “effectively reducible to a contradiction.” Wavre begins by listing similar
principles between the two logics:

1. ((A ⊃ B) & (B ⊃ C)) ⊃ (A ⊃ C).

2. From A and A ⊃ B, one can infer B.

3. ¬(A& ¬A).

4. (A ⊃ B) ⊃ (¬B ⊃ ¬A).

Among the different principles Wavre mentions the excluded middle and
double negation. He then shows that ¬A is equivalent, in empirical logic,
to ¬¬¬A. Moreover he observed that in empirical logic the converse of (4)
does not hold, unless B is a negative proposition. Much of Wavre’s article
only restated observations that were, implicitly or explicitly, contained in
Brouwer (1923b). However, it had the merit of opening a debate in the Revue
de Metaphysique et de Morale on the nature of intuitionistic logic which saw
contributions by Wavre, Levy, and Borel. However, this debate did not directly
touch on the principles of intuitionistic logic.86 By contrast, Barzin and Errera
(1927) claimed that Brouwerian logic was inconsistent, thereby sparking a long
debate on the possibility of an intuitionistic logic, which saw contributions by
Church, Levy, Glivenko, Khintchine, and others. Barzin and Errera incorrectly
interpreted Brouwer’s talk of undecided propositions (i.e., those for which
there is neither an effective proof of their validity nor an effective proof of
their absurdity) as claiming that there are propositions which are neither true
nor false. These propositions are “tierce.” Their aim was then to show that the
admission of a “tierce” led to formal contradictions. They interpreted these
“third” propositions not as a state of objective ignorance but rather as an
“objective logical fact.” They denoted “p is tierce” by p′. With this notation in
place, they stated a principle of “quartum non datur”: p∨¬p∨ p′ and claimed
that Brouwer must accept it, if “tierce” is defined as being “neither true nor
false.” Finally, the equivalent of the principle of noncontradiction, which they
claimed Brouwer must admit, is that no proposition can be true and false, or
true and tierce, or false and tierce. Under these assumptions they claimed to
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show that one could prove the collapse of the truth values, that is, that in the
calculus one could prove that every proposition that is true is also tierce, and
every proposition that is tierce is also false. The proof is, however, inconclusive.
First of all, there is a constant confusion between the object level and the
metalevel of analysis; moreover, the proof makes use of principles that are
classically but not intuitionistically valid.

Of the many replies to Barzin and Errera (1927), we discuss only Church’s
(1928).87 In “On the law of the excluded middle” Church discussed, and
rejected, the claims by Barzin and Errera by making essentially three points.
First, he points out that the easiest alternative to a system that includes the
law of the excluded middle is a system in which the excluded middle is not
assumed “without assertion of any contrary principle.” Thus, because this is a
subsystem of the original one, no contradictions can be derived that could not
be derived in the original system. To generate a contradiction we must admit
a new principle that is not consistent with the law of the excluded middle.
Second, one can drop the principle of the excluded middle and “introduce
the middle ground between true and false as an undefined term” in which
case it might be that “making the appropriate set of assumptions about the
existence and properties of tierce propositions, we can produce a system of
logic which is consistent with itself but which becomes inconsistent if the law
of the excluded middle be added.”88 This possibility had already been proven
by Łukasiewicz in developing many-valued logics (see later discussion), but
Church does not mention Łukasiewicz. Third, the argument by Barzin and
Errera fails because they introduce the tierce propositions by defining them as
being neither true nor false, and this leads to an inconsistency. The argument
by Barzin and Errera works only if one admits the faulty definition of a tierce
(rather than leaving the notion undefined) and the principle of the excluded
fourth, which again is defended using the faulty definition. Finally, Church
argued that Barzin and Errera’s argument is ineffective against those who
simply drop the principle of the excluded middle, as “the insistence that one
who refuses to accept a proposition must deny it can be justified only by an
appeal to the law of the excluded middle.”

7.1.6. The Formalization and Interpretation of Intuitionistic Logic

Glivenko (1928) contributed an article on intuitionistic logic in which he showed
that Brouwerian logic could not admit a tierce. But of great technical interest
is Glivenko (1929), which contains the following two theorems:

1. If a certain expression in the logic of propositions is provable in classical
logic, it is the falsity of the falsity of this expression that is provable in
Brouwerian logic.

2. If the falsity of a certain expression in the logic of propositions is prov-
able in classical logic, that same falsity is provable in Brouwerian logic
(Glivenko 1929, 301)
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Although Glivenko’s results do not yet amount to a translation of classical
logic into intuitionistic logic, they certainly paved the way for the later results
by Gödel and Gentzen (see Troelstra 1990; van Atten 2005). By far the
most important contribution in this period is the work of Heyting on the
formalization of intuitionistic logic. Heyting’s contributions were motivated
by a prize question published in 1927 by the Dutch Mathematical Society on
the formalization of the principles of intuitionism. Heyting was awarded the
prize in 1928, but his result appeared in print only in 1930. Heyting (1930a)
contains a formalization of the laws of intuitionistic propositional logic; (1930b)
moves on to intuitionistic predicate logic and arithmetic; and finally, (1930c)
investigates intuitionistic principles in analysis.

Heyting distilled the principles of intuitionistic logic by going through
the list of axioms in Principia Mathematica and retaining only those that
admitted of an intuitionist justification (letter to Becker, September 23, 1933;
see Troelstra 1990; van Atten 2005). The axioms for the propositional part
were the following.

1. A ⊃ (A ∧A).
2. A ∧B ⊃ B ∧A.
3. (A ⊃ B) ⊃ ((A ∧ C) ⊃ (B ∧ C)).
4. ((A ⊃ B) ∧ (B ⊃ C)) ⊃ (A ⊃ C).
5. B ⊃ (A ⊃ B).
6. (A ∧ (A ⊃ B)) ⊃ B.
7. A ⊃ A ∨B.
8. A ∨B ⊃ B ∨A.
9. ((A ⊃ C) ∧ (B ⊃ C)) ⊃ (A ∨B ⊃ C).

10. ¬A ⊃ (A ⊃ B).
11. ((A ⊃ B) ⊃ (A ⊃ ¬B)) ⊃ ¬A.

In the appendix, Heyting proves that all the axioms are independent, exploiting
a technique used by Bernays for proving the independence of the propositional
axioms of Principia (see Section 5.3). Heyting (1930b) also gives an axiomati-
zation for principles acceptable in intuitionistic first-order logic. He (1930a)
only states the admissible principles and proved theorems from them, but he
was not explicit on the meaning of the logical connectives in intuitionistic logic.
However, he (1930d) did provide an interpretation for intuitionistic negation
and disjunction. The interpretation depends on interpreting propositions as
problems or expectations:

A proposition p like, for example, “Euler’s constant is rational”
expresses a problem, or better yet, a certain expectation (that of
finding two integers a and b such that C = a/b), which can be
fulfilled or disappointed. (Heyting 1930d, 307)
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This interpretation is influenced by Becker’s treatment of intuitionism in
Mathematische Existenz (1927) where, appealing to distinctions found in
Husserl’s Logical Investigations, Becker distinguishes between the fulfillment of
an intention (say a proof of “a is B”), the frustration of an intention (a proof of
“a is not B”) and the nonfulfillment of an intention (i.e., the lack of a fulfillment).
Indeed, Heyting (1931) explicitly refers to the phenomenological interpretation
and claims that “the affirmation of a proposition is the fulfillment of an
intention” (1931, 59). He mentions Becker in connection with the interpretation
of intuitionistic negation:

A logical function is a process for forming another proposition from
a given proposition. Negation is such a function. Becker, following
Husserl, has described its meaning very clearly. For him negation is
something thoroughly positive, viz., the intention of a contradiction
contained in the original intention. The proposition “C is not
rational” therefore, signifies the expectation that one can derive
a contradiction from the assumption that C is rational. (Heyting
1931, 59)

Disjunction is interpreted as the expectation of a mathematical construction
that will prove one of the two disjuncts. In Heyting (1934), it is specified that
the mathematical construction fulfilling a certain expectation is a proof. Under
this interpretation, A ⊃ B signifies “the intention of a construction that leads
from each proof of A to a proof of B.” This interpretation of the intuitionistic
connectives is now known as the Brouwer–Heyting–Kolmogorov interpretation.
The presence of Kolmogorov stems from his interpretation of the intuitionistic
calculus as a calculus of problems (1932). In this interpretation, for instance,
¬A is interpreted as the problem “to obtain a contradiction, provided the
solution of A is given.” Although the two interpretations are distinct, they
were later on treated as essentially the same, and Heyting (1934, 14) speaks of
Kolmogorov’s interpretation as being closely related to his.89

7.1.7. Gödel’s Contributions to the Metatheory of Intuitionistic Logic

Glivenko’s work had shown that classical propositional logic could be inter-
preted as a subsystem of intuitionistic logic, and thus be intuitionistically
consistent. We have also seen that Kolmogorov (1925) implicitly claimed that
classical mathematics is intuitionistically consistent. A more modest, but ex-
tremely important, version of this unsupported general claim was proved by
Gödel and Gentzen in 1933. Gödel states:

The goal of the present investigation is to show that something
similar [to the translation of classical logic into intuitionistic logic]
holds also for all of arithmetic and number theory, delimited in scope
by, say, Herbrand’s axioms. Here, too, we can give an interpretation
of the classical notions in terms of the intuitionistic ones so that all
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propositions provable from the classical axioms hold for intuitionism
as well. (Gödel 1933c, 287–289)90

Gödel distinguished the classical connectives from the intuitionistic connectives:
¬, ⊃, ∨, ∧ are the intuitionistic connectives; the corresponding classical
connectives are ∼, →, ∨, ·. Gödel’s translation ′ from classical propositional
logic into intuitionistic logic is defined as follows: p′ = p, if p is atomic; let
(∼p)′ = ¬p′, (p · q)′ = p′ ∧ q′; (p ∨ q)′ = ¬(¬p′ ∧ ¬q′); (p→ q)′ = ¬(p′ ∧ ¬q′).

He then shows that classical propositional logic proves a sentence A if and
only if intuitionistic propositional logic proves the translation A′. The result
is then extended to first-order arithmetic by first extending the translation
to cover the universal quantifier so that (∀xP )′ = ∀xP ′. Letting H ′ stand
for intuitionistic first-order arithmetic and Z for first-order arithmetic (in
Herbrand’s formulation), then Gödel showed that a sentence A is provable in
Z iff its translation A′ is provable in H ′.

From the philosophical point of view, the importance of the result consists
in showing that under a somewhat deviant interpretation, classical arithmetic
is already contained in intuitionistic arithmetic. Therefore, this amounts to
an intuitionistic proof of the consistency of classical arithmetic. This result
once and for all brought clarity into a systematic confusion between finitism
and intuitionism, which had characterized the literature on the foundation
of mathematics in the 1920s.91 Gödel’s result makes clear that intuitionistic
arithmetic is much more powerful than finitistic arithmetic.

Two more results by Gödel on the metatheory of intuitionistic logic have to
be mentioned. The first (1933a) consists in an interpretation of intuitionistic
propositional logic into a system of classical propositional logic extended
by an operator B (“provable,” from the German beweisbar). It is essential
that provability here be taken to mean “provability in general” rather than
provability in a specified system. The logic of the system B turns out to
coincide with the modal propositional logic S4. The system S4 is characterized
by the following axioms:

1. Bp→ p,
2. Bp→ (B(p→ q) → Bq),
3. Bp→ BBp.

The translation † works as follows: Atomic sentences are sent to atomic
sentences; (¬p)† = ∼Bp†; (p ⊃ q)† = Bp† → Bq†; (p ∨ q)† = Bp† ∨ Bq†;
(p∧q)† = p†·q†. Gödel showed that if A is provable in intuitionistic propositional
logic, then A† is provable in S4. This result was important in that it showed
the connections between modal logic and intuitionistic logic and paved the
way for the development of Kripke’s semantics for intuitionistic logic, once the
semantics for modal logic had been worked out.

One final result by Gödel concerns intuitionistic logic and many-valued
logic. Gödel (1932b) proved that intuitionistic propositional logic cannot be
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identified with a system of many-valued logic with finitely many truth values.
Moreover, he showed that there is an infinite hierarchy of finite-valued logics
between intuitionistic and classical propositional logic.92

7.2. Many-Valued Logics
The systematic investigation of systems of many-valued logics goes back to Jan
Łukasiewicz.93 Łukasiewicz arrived at many-valued logics as a possible way
out of a number of philosophical puzzles he had been worrying about. The first
concerns the very foundation of classical logic, that is, the principle that every
proposition p is either true or false. This he called the law of bivalence (1930,
53). The principle had already been the subject of debate in ancient times,
and Aristotle himself expressed doubts as to its applicability for propositions
concerning future contingents (“there will be a sea battle tomorrow”). The
wider philosophical underpinnings of such debates had to do with issue of
determinism and indeterminism, which Łukasiewicz explored at length (see,
for instance, Łukasiewicz 1922). In all such issues, the notion of possibility
and necessity are obviously central. Indeed, in his presentation of many-valued
logic, Łukasiewicz motivates the system by a reflection on modal operators,
such as “it is possible that p.” The first presentation of the results goes back
to two lectures given in 1920: “On the concept of possibility” (1920b) and “On
three valued-logic” (1920a). Let us follow these lectures. In the first lecture,
Łukasiewicz considers the relationship between the following sentences:

i. S is P .

ii. S is not P .

iii. S can be P .

iv. S cannot be P .

v. S can be non-P .

vi. S cannot be non-P (i.e., S must be P ).

He distinguishes three positions that can be held with respect to the logical
relationship between the above sentences:

a. If S must be P (vi), then S is P (i).

b. If S cannot be P (iv), then S is not P (ii).

When no further relationships hold between (i)–(vi), this corresponds to
the point of view of traditional logic. The second position, corresponding to
ontological determinism, consists of theses (a) and (b) plus the implications

c. If S is P (i), then S must be P (vi).

d. If S is non-P (ii), then S cannot be P (iv).
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Finally, the third position, corresponding to ontological indeterminism, consists
of (a), (b), and the implications

e. If S can be P (iii), then S can be non-P (v).

f. If S can be non-P (v), then S can be P (iii).

All these theses have, according to Łukasiewicz, a certain intuitive obviousness.
However, he shows that if one reasons within the context of classical logic,
there is no way to consistently assign truth values 0 and 1 to (i)–(vi) so that
all of (a)–(f) will get value 1. However, this becomes possible if one introduces
a new truth value, 2, which stands for “possibility.” This gives rise to the need
for the study of “three-valued logic.”

In the second lecture, Łukasiewicz defines three-valued logic as a system
of non-Aristotelian logic and defines the truth tables for equivalence and
implication based on three values in such a way that the tables coincide with
classical logic when the values are 1 and 0 but satisfy the following laws when
the value 2 occurs. For the biconditional, one stipulates that the values for 02,
20, 21, and 12 is going to be 2; for the material conditional, the value is 1 for
02, 21, and 22 and it is 2 for 20 and 12. From the general analysis, it is also
clear that for negation the following holds: If p is assigned value 2 then ∼p is
also 2.

While all tautologies of three valued-logic are tautologies of classical propo-
sitional (two-valued) logic, the converse is not true. For instance, p ∨ ∼p is
not a tautology in three-valued logic, because if p is assigned the value 2, the
value of p ∨ ∼p is also 2.

In Post (1921) we also find a study of many-valued logics. However, Post
studies these systems purely formally, without attempting to give them an
intuitive interpretation. It is perhaps on account of this fact that he was the
first to develop tables for negation known as “cyclic commutation” tables. In
the case of Łukasiewicz’s system, negation is always defined by a “mirror”
truth table, that is, the value of negation is that of its opposite in the order of
truth (the value of ∼p is 1 minus the value of p). In the case of Post, the truth
table for negation is defined by permuting the truth values cyclically. Here is
a comparison of the tables for the two types of negations in three-valued logic:

Łukasiewicz Post

p ∼p p ∼p
0 1 0 1

2
1
2

1
2

1
2 1

1 0 1 0

Post was motivated by issues of functional completeness and in fact one of
the results (1921) is that the system of m-valued logic he introduces, with a
“cyclic commutation” table for negation, and a disjunction table obtained by
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giving the disjunction the maximum of the truth values of the disjuncts, is
truth-functionally complete. The table for negation, with values 1 to m, is as
follows:

p 1 2 . . . m
∼p 2 3 . . . 1

Łukasiewicz generalized his work from three-valued logics to many-valued
logics (1922). At first he looked at logics with n truth values and later he
considered logics with ℵ0 values. All these systems can be expressed as follows.
Let n be a natural number or ℵ0. Assume that p and q range over a set of n
numbers from the interval [0, 1]. As usual at the time, let us standardize the
values to be k/(n− 1) for 0 ≤ k ≤ n− 1 when n is finite and k/l (0 ≤ k ≤ l)
when n is ℵ0. Define p→ q to have value 1 whenever p ≤ q and value 1− p+ q
whenever p > q. Let ∼p have value 1 − p. If we select only 0 and 1 we are
back in the classical two-valued logic. If we add to 0 and 1 the value 1

2 we get
three-valued logic. In similar fashion, one can create systems of n-valued logic.
If p and q range over a countable set of values one obtains an infinite-valued
propositional calculus. Many Polish logicians investigated the relationships
between systems of many-valued logic (see Woleński 1989). One of the first
problems was to study how the sequence of logics Ln (n > 1) behaves. It
was soon shown that all tautologies of Ln are also tautologies of L2, but the
converse does not hold. While Lℵ0 turns out to be contained in all finite
Ln, the relationship between any two finite Lm and Ln is more complicated.
Łukasiewicz and Tarski (1930) attribute to Lindenbaum the following result
(theorem 19): For 2 ≤ m and 2 ≤ n (m, n finite) we have: Lm is included in Ln
iff n− 1 divides m− 1. Among the early results concerning the axiomatization
of many-valued logics one should mention Wajsberg (1931), which contains a
complete and independent axiomatization of three-valued logic. However, the
system is not truth-functionally complete. Słupecki (1936) proved that if one
adds to the connectives ⊃ and ∼ in three-valued logic, the operator T such
that Tp is always 1

2 (for p = 1, 0, or 1
2 ), then the system is truth-functionally

complete. To provide an axiomatization one needs to add some axioms for
T to the axioms given by Wajsberg. Thus, the axiomatization provided by
Słupecki is given by the following six axioms:

1. p ⊃ (q ⊃ p).
2. (p ⊃ q) ⊃ ((q ⊃ r) ⊃ (p ⊃ r)).
3. (∼p ⊃ ∼q) ⊃ (q ⊃ p).
4. ((p ⊃ ∼p) ⊃ p) ⊃ p.
5. Tp ⊃ ∼Tp.
6. ∼Tp ⊃ Tp.94

The axiomatizability of Lℵ0 was conjectured by Łukasiewicz in 1930, who put
forth the (correct) candidate axioms, but a proof of the result was only given
by Rose and Rosser (1958).
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Let us conclude this exposition on many-valued logic in the twenties and
the early thirties by mentioning some relevant work on the connection between
intuitionistic logic and many-valued logic. We have seen that Gödel in 1932
showed that intuitionistic logic did not coincide with any finite many-valued
logic. More precisely, he showed that no finitely valued matrix characterizes
intuitionistic logic. Theorem I of Gödel (1932b) reads:

There is no realization with finitely many elements (truth values)
for which the formulas provable in H [intuitionistic propositional
logic], and only those, are satisfied (i.e., yield designated truth
values for an arbitrary assignment). (Gödel 1932b, 225)

In the process he identified an infinite class of many-valued logic, now known
as Gödel logics. This is captured in the second theorem of the paper:

Infinitely many systems lie between H and the system A of the
ordinary propositional calculus, that is, there is a monotonically
decreasing sequence of systems all of which include H as a subset
and are included in A as subsets. (Gödel 1932b, 225)

The previous result gave the first examples of logics that are now studied
under the name of intermediate logics. One important result that should be
mentioned in this connection was obtained by Jaśkowski (1936), who provided
an infinite truth value matrix appropriate for intuitionistic logic.

8. Itinerary VIII. Semantics and Model-Theoretic Notions
8.1. Background
During the previous itineraries, we have come across the implicit and explicit
use of semantic notions (interpretation, satisfaction, validity, truth, etc.). In
this section we retrace, in broad strokes, the main contexts in which these
notions occurred in the first two decades of the twentieth century. This will
provide the background for an understanding of the gradual emergence of the
formal discipline of semantics (as part of metamathematics) and, much later,
model theory.

The first context we have encountered in which semantical notions make
their appearance is that of axiomatics (see itinerary I). A central notion in
the analysis of axiomatic theories is that of “interpretation,” which of course
has its roots in nineteenth-century work on geometry and abstract algebra
(see Guillaume 1994; Webb 1995). The development of analysis, algebra, and
geometry in the nineteenth century had led to the idea of an uninterpreted
formal axiomatic system. We have seen that Pieri (1901) emphasized that
the primitive notions of any deductive system “must be capable of arbitrary
interpretations,” with the only restriction that the primitive sentences are
satisfied by the particular interpretation. The axioms are verified, or made
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true, by particular interpretations. Interpretations are essential for proofs
of consistency and independence of the axioms. However, as we said, the
semantical notions involved (satisfaction, truth in a system) are used informally.
Moreover, all these developments took place without a formal specification
of the background logic. With minor modifications from case to case, these
remarks apply to Peano’s school, Hilbert, and the American postulate theorists.

8.1.1. The Algebra of Logic Tradition

A second tradition in which semantic notions appear quite frequently is that
of the algebra of logic. To this tradition we owe what is considered the very
first important result in model theory (as we understand it today, i.e., a formal
study of the relationship between a language and its interpretations). This is
the Löwenheim–Skolem theorem. As stated by Skolem:

In volume 76 of Mathematische Annalen, Löwenheim proved an
interesting and very remarkable theorem on what are called “first-
order expressions” [Zählausdrücke]. The theorem states that every
first-order expression is either contradictory or already satisfiable
in a denumerably infinite domain. (Skolem 1920, 254)

As we have already seen in itinerary IV, the basic problem is the satisfaction
of (first-order) equations on certain domains. Domain and satisfaction are the
key terminological concepts used by Löwenheim and Skolem (who do not talk
of interpretations). However, all these semantical notions are used informally.

It can safely be asserted that the clarification of semantic notions was not
seen as a goal for mathematical axiomatics. In 1918, Weyl gestures toward
an attempt at clarifying the meaning of “true judgment,” but he does so
by delegating the problem to philosophy (Fichte, Husserl). An exception
here is Ajdukiewicz (1921), who was only accessible to those who read Polish.
Ajdukiewicz stressed the issues related to a correct interpretation of the notions
of satisfaction and truth in the axiomatic context. This was to leave a mark
on Tarski, who was thoroughly familiar with this text (see section 8.7).

8.1.2. Terminological Variations (Systems of Objects, Models, and Structures)

Throughout the 1910s, the terminology for interpretations of axiomatic systems
remains rather stable. Interpretations are given by systems of objects with
certain relationships defined on them. Bôcher (1904) suggests the expression
“mathematical system” to “designate a class of objects associated with a class
of relations between these objects” (128). Nowadays, however, we speak just as
commonly of models or structures. When did the terminology become common
currency in axiomatics?

“Model,” as an alternative terminology for interpretation, makes its ap-
pearance in the mathematical foundational literature in von Neumann (1925),
where he talks of models of set theory. However, the new terminology owes
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its influence and success to Weyl’s “Philosophy of Mathematics and Natural
Science” (1927). In introducing techniques for proving independence, Weyl de-
scribes the techniques of “construction of a model [Modell]” (18) and described
both Klein’s construction of a Euclidean model for non-Euclidean geometry and
the construction of arithmetical models for Euclidean geometry (or subsystems
thereof) given by Hilbert.95 Once introduced in the axiomatical literature by
Weyl, the word “model” finds a favorable reception. It occurs in Carnap (1927,
2000 [1927–1929], 1930), Kaufmann (1930), and in articles by Gödel (1930b),
Zermelo (1929, 1930), and Tarski (1936a). The usage is, however, not universal.
The word “model” is not used in Hilbert and Ackermann (1928) (but it is
found in Bernays 1930). Fraenkel (1928) speaks about realizations or models
(353), as does Tarski (1936a). The latter do not follow Carnap in drawing a
distinction between realizations (concrete, spatiotemporal interpretations) and
models (abstract interpretations). “Realization” is also used by Baldus (1924)
and Gödel (1929).

As for “structure,” it is not used in the twenties as an equivalent of “mathe-
matical system.” Rather, mathematical systems have structure. In Principia
Mathematica (Whitehead and Russell 1912, part iv, *150ff.) and then in Russell
(1919, ch. 6) we find the notion of two relations “having the same structure.”96

In Weyl (1927, 21), two isomorphic systems of objects are said to have the
same structure. This process will eventually lead to the idea that a “structure”
is what is captured by an axiom system: “An axiom system is said to be
monomorphic when exactly one structure belongs to it [up to isomorphism]”
(Carnap 2000 [1927–1929], 127; see also Bernays 1930).

Here it should be pointed out that the use of the word “structure” in the
algebraic literature was not yet widespread, although the structural approach
was. It seems that “structure” was introduced in the algebraic literature in
the early 1930s by Øystein Ore to denote what we nowadays call a lattice (see
Vercelloni 1988; Corry 2004).

8.1.3. Interpretations for Propositional Logic

A major step forward in the development of semantics is the clarification of
the distinction between syntactical and semantic notions made by Bernays
in Habilitationsschrift of 1918 (see itinerary V). We have seen that Bernays
clearly distinguished between the syntax of the propositional calculus and its
interpretations, a distinction that was not always clear in previous writers.
This allowed him to properly address the problem of completeness for the
propositional calculus. Bernays distinguished between provable formulas (ob-
tainable from the axioms by means of the rules of inference) from the valid
formulas (which yield true propositions for any substitution of propositions for
the variables) and stated the completeness problem as follows: “Every provable
formula is a valid formula and conversely.” It would be hard to overestimate the
importance of this result, which formally shows the equivalence of a syntactic
notion (provable formula) with a semantic one (valid formula) (in section 8.4
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we will look at the emergence of the corresponding notions for first-order
logic). Post (1921) also made a clear distinction between the formal system
of propositional logic and the semantic interpretation in terms of truth-table
methods, and he also established the completeness of the propositional calculus
(see section 8.3).

In this way, logic becomes an object of axiomatic investigation for which one
can pose all the problems that had traditionally been raised about axiomatic
systems. To get a handle on the problems, researchers first focused on the
axiomatic systems for the propositional calculus and then moved on to wider
systems (such as the “restricted functional calculus,” that is, first-order predi-
cate logic). Here we focus on the metatheoretical study of systems of axiomatic
logic rather than the developments of mathematical axiomatic theories (models
of set theory, arithmetic, geometry, various algebraic structures, etc.).

8.2. Consistency and Independence for Propositional Logic
We have seen that the use of interpretations to provide independence results
was exploited already in the nineteenth century in several areas of mathematics.
Hilbert, Peano and his students, and also the American postulate theorists
put great value in showing the independence of the axioms for any proposed
axiomatic system. Most of these applications concern specific mathematical
theories. Applications to logic appear first in the tradition of the algebra of
logic. For instance, in “Sets of independent postulates for the algebra of logic”
(1904), Huntington studied the “algebra of symbolic logic” as an independent
calculus, as a purely deductive theory. The object of study is given by a set K
satisfying the axioms of what we would now call a Boolean algebra. Huntington
provides three different axiomatizations of the “algebra of logic,” of which we
present the first, built after Whitehead’s presentation in Universal Algebra
(1898). Possible interpretations for the system are the algebra of classes and
the algebra of propositions. Huntington claims originality in the extensive
investigation of the independence of the axioms. The first axiomatization states
the properties of a class K of objects on which are defined two operations, ⊕
and ⊗, satisfying the following axioms:

Ia. a⊕ b is in the class whenever a and b are in the class;

Ib. a⊗ b is in the class whenever a and b are in the class;

IIa. There is an element
∧

such that a⊕∧
= a, for every element a;

IIb. There is an element
∨

such that a⊗∨
= a, for every element a;

IIIa. a⊕ b = b⊕ a whenever a, b, a⊕ b, and b⊕ a are in the class;

IIIb. a⊗ b = b⊗ a whenever a, b, a⊗ b, and b⊗ a are in the class;

IVa. a⊕(b⊗c) = (a⊕b)⊗(a⊕c) whenever a, b, c, a⊕b, a⊕c, b⊗c, a⊕(b⊗c),
and (a⊕ b)⊗ (a⊕ c) are in the class;
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IVb. a⊗(b⊕c) = (a⊗b)⊕(a⊗c) whenever a, b, c, a⊗b, a⊗c, b⊕c, a⊗(b⊕c),
and (a⊗ b)⊕ (a⊗ c) are in the class;

V. If the elements
∧

and
∨

in postulates IIa and IIb exist and are unique,
then for every element a there is an element a such that a⊕ a =

∨
and

a⊗ a =
∧

;
VI. There are at least two elements, x and y, in the class such that x �= y.

The consistency of the set of axioms is given by a finite table consisting of
two objects, 0 and 1, satisfying the following.

⊕ 0 1
0 0 1
1 1 1

⊗ 0 1
0 0 0
1 0 1

The reader will notice that if we interpret ⊕ as conjunction of propositions and
⊗ as disjunction, we can read the table as the truth table for conjunction and
disjunction of propositions (letting 0 stand for true and 1 for false). Similar
tables are used by Huntington to prove the independence of each of the axioms
from the remaining ones. In every case one provides a class and tables for ⊕
and ⊗ that verify all of the axioms but the one to be shown independent. For
instance, IIIa can be shown to be independent by taking two objects 0 and 1
with the following tables.

⊕ 0 1
0 0 0
1 1 1

⊗ 0 1
0 0 0
1 0 1

All the axioms are satisfied, but a⊕ b = b⊕ a fails by letting a = 0 and b = 1.
Similarly for a⊗ b.

These techniques were not new and were already used in connection with
the algebra of propositions by Peirce and Schröder. An application of this
algebraic approach to the propositional calculus of Principia Mathematica was
given by Sheffer (1913). Sheffer showed that one could study an algebra on
a domain K with a binary K-rule of combination | satisfying the following
axioms.

1. There are at least two distinct elements of K.
2. a | b is in K whenever a and b are in K.
3. (a | a) | (a | a) = a whenever a is an element of K and all the indicated

combinations of a are in K.
4. a | (b | (b | b)) = a | a whenever a and b are elements of K and all the

indicated combinations of a and b are in K.
5. (a | (b | c)) | (a | (b | c)) = ((b | b) | a) | ((c | c) | a) whenever a, b, and c

are elements of K and all the indicated combinations of a, b, and c are
in K.
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Sheffer showed that this set of postulates implies Huntington’s set by letting
a = a | a; a ⊕ b = (a | b) | (a | b) and a ⊗ b = (a | a) | (b | b). Conversely,
by defining a | b as a ⊗ b, Huntington’s set implies Sheffer’s set of axioms.
The application to Principia is now immediate. One can substitute a single
connective p | q defined as ∼(p ∨ q).

This work leads us to Bernays’s (1918, 1926) studies of the independence
of the axioms of the propositional fragment of Principia. Actually, Bernays
was unaware of Sheffer’s work until Russell mentioned it to him in 1920 (see
Mancosu 2003). Bernays’s (1926) formulation of the propositional logic (“theory
of deduction”) of Principia is given by

Taut. � :p ∨ p. ⊃ .p
Add. � :q. ⊃ .p ∨ q
Perm. � :p ∨ q. ⊃ .q ∨ p
Assoc. � :p ∨ (q ∨ r). ⊃ .q ∨ (p ∨ r)
Sum. � :.q ⊃ r. ⊃ :p ∨ q. ⊃ .p ∨ r

One also has rules of substitution and modus ponens.
The proof of independence of the axioms of the propositional calculus of

Principia, with the exclusion of associativity, shown by Bernays to be derivable
from the others, was given by appropriate interpretations in the style of the
independence proofs we have looked at in the work of Huntington. However,
one also has to show that the inference rules, and in particular modus ponens,
preserve the right value. The technique is that of exhibiting “finite systems”
consisting in the assignment of three or four finite values to the variables. One
(or several) of these values are then singled out as distinguished value(s).

The proof of consistency of the calculus is given by letting propositions
range over {0, 1} and interpreting ∼p as the numerical operation 1 − p and
p ∨ q (disjunction) as the numerical operation p× q. It is easy to check that
the axioms always have value 0 and that substitution and modus ponens lead
from formulas with value 0 to other formulas with value 0. This shows the
calculus to be consistent, for were a contradiction provable, say (p& ¬p), then
it would take the value 1.

The technique of proving independence of the axioms is similar (Methode
der Aufweisung). Consider the axiom Taut. We give the following table with
three values a, b, c with a distinguished value, say a.

∨ a b c ∼
a a a a b
b a b c a
c a c a c

It is easy to check that Add, Perm, and Sum always have value a, but not Taut
as (c ∨ c) ⊃ c has value c (�= a). Bernays also proved completeness by using
the technique of normal forms (see section 5.3 for details on this and Bernays’s
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independence proofs in 1918). Since Bernays’s work did not appear in print
until 1926, Post’s paper (1921) contained the most advanced published results
on the metatheory of the propositional calculus by the early 1920s. Similar
results were also obtained by Łukasiewicz around 1924 (see Tarski 1983, 43).

8.3. Post’s Contributions to the Metatheory
of the Propositional Calculus

Post (1921) represent a qualitative change with respect to the previous studies
of axiomatic systems for the propositional calculus by Russell, Sheffer, and
Nicod. Post begins by explicitly stating the difference between proving results
in a system and proving results about a system. He emphasizes that his results
are about the system of propositional logic, which he takes in the version offered
in Principia but regards it as a purely formal system to be investigated.97 A
basic concept introduced by Post is that of a truth table development. Post
claims no originality for the concept, which he attributes to previous logicians.
He denotes the truth value of any proposition p by + if p is true and by − if p
is false.

The notion of truth table is then applied to arbitrary functions of the
form f(p1, p2, . . . , pn) of n propositions built up from p1, p2, . . . , pn by means
of arbitrary applications of ∼ and ∨. Because each of the proposition can
assume either + or − as values, there are 2n possible truth configurations for
f(p1, p2, . . . , pn). In general there will be 22n possible truth tables for functions
of n arguments. Let us call such truth tables of order n. Post proves first
of all that for any n, to every truth table of order n there is at least one
function f(p1, p2, . . . , pn) which has it for its truth table. He then distinguishes
three classes of functions: positive, negative, and mixed. Positive functions are
those that always take + (this is the equivalent of Wittgenstein’s propositional
tautologies as defined in the Tractatus (1921, 1922), say, p ∨ ∼p, negative
functions are those that always take − (say, ∼(p ∨ ∼p)), and mixed are those
functions that take both +’s and −’s (e.g., p ∨ p).

Post’s major theorem then proves that a necessary and sufficient condition
for a function f(p1, p2, . . . , pn) to be a theorem of the propositional system of
Principia is that f(p1, p2, . . . , pn) be positive (i.e., all its truth values be +).
In our terminology, f(p1, p2, . . . , pn) is a theorem of propositional logic if and
only if f(p1, p2, . . . , pn) is a tautology. The proof makes use of the possibility of
transforming sentences of the propositional calculus into special normal forms.
Post emphasizes that the proof of his theorem gives a method both for deciding
whether a function f(p1, p2, . . . , pn) is positive and for actually writing down
a derivation of the formula from the axioms of the calculus. Nowadays the
property demonstrated by Post is called (semantic) completeness, but Post
uses the word “completeness” in a different sense. He uses the word to discuss
the adequacy of a system of functions to express all the possible truth tables
(this is nowadays called truth-functional completeness). In this way he shows
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not only that through the connectives of Principia (∼ and ∨) one can generate
all possible truth tables but also that there are only two connectives which
can, singly, generate all the truth tables. One is the Sheffer stroke, and the
other is the binary connective that is always false except in the case when
both propositions are false. The techniques used by Post are now standard,
and we will not rehearse them here. Rather, we would like to mention another
important concept introduced by Post. Post needed to introduce a concept of
consistency for arbitrary systems of connectives (which therefore might not
have negation as a basic connective). Because an inconsistent system brings
about the assertion of every proposition, he defined a system to be inconsistent
if it yields the assertion of the variable p (which is equivalent to the derivability
of every proposition if the substitution rule is present). From this notion
derives our notion of Post-completeness: A system of logic is Post-complete if
every time we add to it a sentence unprovable in it, we obtain an inconsistent
system. Post proved that the propositional system of Principia is thus both
semantically complete and Post-complete.

Another powerful generalization was offered by Post in the last part of
his article. There he defines m-valued truth systems, that is, system of truth
values where instead of two truth values (+ and −), we have finitely many
values. This development is, together with (Łukasiewicz 1920b), one of the
first studies of many-valued logics (see itinerary VII).

One final point about Post. Although the truth table techniques he developed
belong squarely to what we call semantics, this does not mean that Post was
after an analysis of logical truth or a “semantics.” Rather, his interest seems
to have been purely formal and aimed at finding a decision procedure for
provability (see Dreben and van Heijenoort 1986, 46).

To sum up: By 1921 the classical propositional calculus has been shown to
be consistent, semantically complete, Post-complete, and truth-functionally
complete. Moreover, Bernays improved the presentation of the calculus given
in Principia by showing that if one deletes associativity from the system, one
obtains an axiomatic systems, all of whose axioms are independent.

8.4. Semantical Completeness of First-Order Logic
With the work by Bernays (1918, 1926) and Post (1921), the notions of Post-
completeness and semantic completeness had been spelled out with the required
precision. After the recognition of first-order logic (“functional calculus” or
“restricted functional calculus”) as an important independent fragment of logic,
due in great part to Hilbert’s 1917–1918 lectures and Hilbert and Ackermann
(1928), the axiomatic investigation of first-order logic could also be carried
out.

Chapter 3 of Hilbert and Ackermann (1928) became the standard exposition
of the calculus. In section 9 of the chapter, Hilbert and Ackermann show that
the calculus is consistent (by giving an arithmetical interpretation with a
domain of one element). Then it is shown, crediting Ackermann for the proof,
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that the system is not Post-complete. To pose the completeness problem for
first-order logic, it was necessary to identify the appropriate notion of validity
[Allgemeingültigkeit]. This notion seems to be have been defined for the first
time by Behmann (1922). It turns out that Behmann’s approach to the decision
problem led to the notion of validity for first-order formulas (with variables for
predicates) and for second-order formulas. This is well captured in Bernays’s
concise summary of the work:

In the decision problem we have to distinguish between a narrower
and a wider formulation of the problem. The narrower problem
concerns logical formulas of the “first order,” that is, those in which
the signs for all and exist (universal and existential quantifiers)
refer only to individuals (of the assumed individual domain); the
logical functions occurring here are variables, with the exception of
the relation of identity (“x is identical with y”), which is the only
individual [constant] relation admitted. The task consists in finding
a general procedure which allows to decide, for any given formula,
whether it is valid [allgemeingültig], that is, whether it yields a
correct assertion [richtige Aussage] for arbitrary substitutions of
determinate logical functions.

One arrives at the wider problem by applying the universal
and the existential quantifiers in connection to function variables.
Then one considers formulas of the “second order” in which all
variables are bound by universal and existential quantifiers, in
whose meaning therefore nothing remains undetermined except for
the number of individuals which are taken as given at the outset.
For an arbitrary given formula of this sort one must now decide
whether it is correct or not, or for which domains it is correct.
(Bernays 1928a, 1119–1120)

A logical formula, in this context, is one that is expressible only by means of
variables (both individual and functional), connectives, and quantification over
individual variables, that is, there are no constants (see Hilbert and Ackermann
1928, 54). With this in place, the problem of completeness is posed by Hilbert
and Ackermann as the request for a proof that every logical formula (of the
restricted functional calculus) which is correct for every domain of individuals
(Individuenbereich) be shown to be derivable from the axioms by finitely many
applications of the rules of logical inference (68).98

Hilbert and Ackermann also posed the problem to show the independence
of the axioms for the restricted functional calculus. Both problems were solved
in 1929 by Kurt Gödel in his dissertation and published in “The completeness
of the axioms of the functional calculus of logic” (1929, 1930a). The solution
to the completeness problem is the most important one. As there exist already
several expositions of the proof (Kneale and Kneale 1962; Dreben and van
Heijenoort 1986) we can simply outline the main steps of the demonstration.
Let us begin with the axioms for the system:
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1. X ∨X → X,

2. X → X ∨ Y ,

3. X ∨ Y → Y ∨X,

4. (X → Y ) → (Z ∨X → Z ∨ Y ),

5. (x)F (x) → F (y),

6. (x)[X ∨ F (x)] → X ∨ (x)F (x).

Rules of inference:

1. From A and A→ B, B may be inferred.

2. Substitution for propositional and functional variables.

3. From A(x), (x)A(x) may be inferred.

4. Individual variables (free or bound) may be replaced by any others (with
appropriate provisos).

A valid formula (allgemeingültige Formel) is one that is satisfiable in every
domain of individuals. Gödel’s completeness theorem is stated as:

Theorem I Every valid formula of the restricted functional calculus is provable.

If a formula A is valid, then A is not satisfiable. By definition “A is refutable”
means “A is provable.” This leads Gödel to restate the theorem as follows:

Theorem II Every formula of the restricted functional calculus is either refut-
able or satisfiable (and, moreover, satisfiable in the denumerable domain of
individuals).

Suppose in fact we have shown Theorem II. To prove Theorem I, assume that
A is universally valid. Then A is not satisfiable. By Theorem II, it is refutable,
that is, it is provable that A. Thus, it is also provable that A.

We can thus focus on the proof of Theorem II and, without loss of generality,
talk about sentences rather than formulas. The first step of the proof consists
in reducing the complexity of dealing with arbitrary sentences to a special
class in normal form. The result is an adaptation of a result given by Skolem
in 1920. Gödel appeals to the result (from Hilbert and Ackermann 1928) that
for each sentence S there is an associated normal sentence S∗ such that S∗ has
all the quantifiers at the front of a quantifier-free matrix, and it is provable
that S∗ ↔ S. Gödel then focuses on sentences that in addition to being in
prenex normal form are such that the prefix of the sentence begins with a
universal quantifier and ends with an existential quantifier. Let us call such
sentences K-sentences.

Theorem III establishes that if every K-sentence is either refutable or satis-
fiable, so is every sentence. This reduces the complexity of proving Theorem II
to the following.
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Every K-sentence is either satisfiable or refutable. The proof is by induction
on the degree of the K-sentence, where the degree of a K-sentence is defined
by counting the number of blocks in its prefix consisting of universal quantifiers
that are separated by existential quantifiers. The inductive step is quite easy
(Theorem IV). The real core of the proof is showing the result for K-sentences
of degree 1:

Theorem V Every K-sentence of degree 1 is either satisfiable or refutable.

Proof: Assume we have a K-sentence of degree 1 of the form

(P )M = (x1) . . . (xr)(Ey1) . . . (Eys)M(x1, . . . , xr, y1, . . . , ys).

For the sake of simplicity, let us fix r = 3 and s = 2.
Select a denumerable infinity of fresh variables z0, z1, z2, . . . . Consider

all 3-tuples of z0, z1, z2, . . . obtained by allowing repetitions of the variables
and ordered according to the following order: 〈zk1 , zk2 , zk3〉 < 〈zt1 , zt2 , zt3〉
iff (k1 + k2 + k3) < (t1 + t2 + t3) or (k1 + k2 + k3) = (t1 + t2 + t3) and
〈k1, k2, k3〉 precedes 〈t1, t2, t3〉 in the lexicographic ordering. In particular, the
enumeration begins with 〈z0, z0, z0〉, 〈z0, z0, z1〉, 〈z0, z1, z0〉, and so on. Let wn
be the nth triple in the enumeration.

We now define an infinite sequence of formulas from our original sentence
as follows:

M1 =M(z0, z0, z0; z1, z2)
M2 =M(z0, z0, z1; z3, z4) &M1

...
Mn =M(wn; z2(n−1)+1, z2n) &Mn−1.

(Recall that our example works with s = 2).
Notice that the variables appearing after the semicolon are always fresh

variables that have neither appeared before the semicolon nor in previous
Mi’s. Moreover, in each Mi except M1 all the variables appearing before the
semicolon have also appeared previously.

Now define (Pn)Mn to be (Ez0)(Ez1) . . . (Ez2n)Mn. Thus, (Pn)Mn is a
sentence all of whose variables are bound by the existential quantifiers in its
prefix.

With the above in place, Gödel proves (Theorem VI) that for every n,
(P )M implies (Pn)Mn. The proof, which we omit, is by induction on n and
exploits the specific construction of the Mn’s. The important point here is that
the structure of the Mn’s is purely propositional. Thus each Mn will be built
out of functional variables P1(xp1 , . . . , xq1), . . . , Pk(xpk , . . . , xqk) (of different
arity) and propositional variables X1, . . . , Xl, (the elementary components,
all of which are already in M) by use of “or” and “not.” At this point we
associate with every Mn a formula Bn of the propositional calculus obtained
by replacing all the elementary components by propositional variables in such a
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way that to different components we associate different propositional variables.
Thus, we can exploit the completeness theorem for the propositional calculus.
Bn is either satisfiable or refutable.

Case 1. Bn is refutable. Then (Pn)Mn is also refutable and so is

(x1) . . . (xr)(Ey1) . . . (Eys)M(x1, . . . , xr; y1, . . . , ys).

Case 2. No Bn is refutable. Thus they are all satisfiable. Thus for each n,
there are systems of predicates defined on the integers {0, . . . , ns} and truth
values t0, . . . , tl for the propositional variables such that a true proposition
results if in Bn we replace the Pi’s by the system of predicates, the variables
zi by the natural numbers i, and Xi by the corresponding ti.

Thus, for each Mn we have been able to construct an interpretation, with
finite domain on the natural numbers, which makes Mn true. The step that
clinches the proof consists in showing that since there are only finitely many
alternatives at each stage n (given that the domain is finite) and that each
interpretation that satisfies Mn+1 makes true the previous Mn’s, it follows
that there is an infinite sequence of interpretations S1, S2, and so on. such
that Sn+1 contains all the preceding ones. This follows from an application of
König’s lemma, although Gödel does not explicitly appeal to König’s result.
From this infinite sequence of interpretations it is then possible to define a sys-
tem satisfying the original sentence (x1) . . . (xr)(Ey1) . . . (Eys)M(x1, . . . , xr;
y1, . . . , ys) by letting the domain of interpretation be the natural numbers
(hence a denumerable domain!) and declaring that a certain predicate appear-
ing in M is satisfied by an n-tuple of natural numbers if and only if there
is at least an n such that in Sn the predicate holds of the same numbers.
Similarly the propositional variables occurring inM are given values according
to whether they are given those values for at least one Sn. This interpretation
satisfies (P )M .

This concludes the proof. Gödel generalizes the result to countable sets of
sentences and to first-order logic with identity. The former result is obtained as
a corollary to Theorem X, which is what we now call the compactness theorem:
For a denumerably infinite system of formulas to be satisfiable, it is necessary
and sufficient that every finite subsystem be satisfiable.99

8.5. Models of First-Order Logic
Although we have already discussed the notion of Allgemeingültigkeit in the
presentation of the narrow functional calculus in Hilbert, it will be useful to
go back to it to clarify how models are specified for such languages.

One first important point to notice is that both in Hilbert and Ackermann
(1928) and in Bernays and Schönfinkel (1928), the problem of Allgemeingül-
tigkeit is that of determining for logical expressions that have no constants
whether a correct expression results for arbitrary substitution of values for
the (predicate) variables. As a result, an interpretation for a logical formula
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becomes the assignment of a domain together with a system of individuals and
functions. For instance (x)(F (x) ∨ F (x)) is, according to Bernays-Schönfinkel,
allgemeingültig for every domain of individuals (i.e., by substituting a logical
function for F one obtains a correct sentence). Tarski (1933b, 199, n. 3) points
out that what is at stake here is not the notion of “correct or true sentence in
an individual domain a” because the central concept in Hilbert-Ackermann
and Bernays-Schönfinkel is that of sentential functions with free variables and
not that of sentence (Tarski implies that one can properly speak of truth
of sentences only; this is also in Ajdukiewicz 1921). For this reason, Tarski
says, these authors use allgemeingültig, as opposed to richtig or wahr. This is,
however, misleading in that richtig and wahr are used by the above-mentioned
authors all over the place. Tarski is nevertheless right in pointing out that when,
for a specific individual domain, we assign an interpretation to F , say X (a
subset of the domain), we are still not evaluating the truth of (x)(F (x)∨F (x)),
because the latter expression is not a sentence as F is free in it.100

In Gödel’s dissertation we find the following presentation of the notion of
satisfaction in an interpretation:

Let A be any logical expression that contains the functional variables
F1, F2, . . . , Fk, the free individual variables x1, x2, . . . , xl, the
propositional variables X1, X2, . . . , Xm, and otherwise, only bound
variables. Let S be a system of functions f1, f2, . . . , fk (all defined
in the same universal domain), and of individuals (belonging to the
same domain), a1, a2, . . . , al, as well as propositional constants,
A1, A2, . . . , Am.

We say that this system, namely (f1, f2, . . . , fk, a1, a2, . . . ,
al, A1, A2, . . . , Am) satisfies the logical expression if it yields a
proposition that is true (in the domain in question) when it is
substituted in the expression. (Gödel 1929, 69)101

We see that also in Gödel’s case the result of substituting objects and functions
into the formula is seen as yielding a sentence, although properly speaking
one does not substitute objects into formulas. Unless what he means is that
symbols denoting the objects in the system have to be substituted in the
formula. Lack of clarity on this issue is typical of the period.

8.6. Completeness and Categoricity
In the introductory remarks to his “Untersuchungen zur allgemeinen Axioma-
tik,” written around 1927–1929, Carnap wrote:

By means of the new investigations on the general properties of
axiomatic systems, such as, among others, completeness, monomor-
phism (categoricity), decidability [Entscheidungsdefinitheit], consis-
tency and on the problems of the criteria and mutual relationships
between these properties, it has become more and more clear that
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the main difficulty lies in the insufficient precision of the concepts
applied. (Carnap 2000 [1927–1929], 59)

Carnap’s work remained unpublished at the time, except for the programmatic
(1930), but the terminological and conceptual confusion reigning in logic had
been remarked by other authors. Let us first pursue the development of the
notions of completeness and categoricity in the 1920s and early 1930s.

Recall the notion of completeness found in the postulate theorists (see
section 1.4): A complete set of postulates is one such that its postulates are
consistent, independent of each other, and sufficient, where “sufficiency” means
that only one interpretation is possible.

According to contemporary terminology, a system of axioms is categorical
if all its interpretations (or models) are isomorphic. In the early part of the
twentieth century it was usually mentioned, for example, that Dedekind had
shown that every two interpretations of the axiom system for arithmetic are
isomorphic. One thing on which there was already clarity is that two isomorphic
interpretations make the same set of sentences true. We know today that issues
of categoricity are extremely sensitive to the language and logic in which the
theory is expressed. Thus the set of axioms for first-order Peano arithmetic is
not categorical (an immediate consequence of the Löwenheim–Skolem theorem
and/or of Gödel’s incompleteness theorem) but second-order arithmetic is
categorical (at least with respect to standard second-order models). This
sheds light on some of the early confusions. One such confusion was the
tendency to infer the possibility of incompleteness results from the existence
of nonisomorphic interpretations. Consider Skolem (1922): “Since Zermelo’s
axioms do not uniquely determine the domain B, it is very improbable that
all cardinality problems are decidable by means of these axioms.”

As an example he mentions the continuum problem.102 The implicit assump-
tion here is that if a system is not categorical, then there must be sentences
A and ¬A such that one of the interpretations makes A true and the other
makes ¬A true. That the situation is not as simple became clear only very
late. In 1934, Skolem proved that there are nonisomorphic countable models
of first-order Peano arithmetic which make true exactly the same (first-order)
sentences. In later developments, the notion of elementary equivalent models
was introduced to capture the phenomenon (see following discussion).

To gauge what the issues were surrounding a proper understanding of cate-
goricity, let us look at how von Neumann deals with categoricity (1925). In
the first part of his article, von Neumann discusses the Löwenheim–Skolem
theorem, which shows that every set of first-order sentences that is satisfied
by an infinite domain can also be satisfied in a denumerable domain. This
immediately implies that no first-order theory which admits a nondenumerable
interpretation can be categorical (in our sense). This should settle the prob-
lem of categoricity for the axioms being discussed by von Neumann. Indeed,
von Neumann draws the right conclusion concerning the system of set theory:
“We now know that, if it is at all possible to find a system S satisfying the
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axioms, we can also find such system in which there are only denumerably
many I-objects and denumerably many II-objects” (von Neumann 1925, 409).
Why then, in the following section (§6), does he discuss the issue of categoricity
again? A careful reading shows that he is appealing to categoricity as nondis-
junctiveness (see Veblen 1904), that is, an axiom system is categorical if it is
not possible to add independent axioms to it.

An early attempt to provide a terminological clarification concerning differ-
ent meanings of completeness is found in the second edition of Einleitung in
die Mengenlehre (1923), where Fraenkel distinguishes between completeness
in the sense of categoricity and completeness as decidability (Entscheidungs-
definitheit).103 Both concepts of completeness are also discussed in Weyl (1927),
but Weyl rejects completeness as decidability (for every sentence A, one should
be able to derive from the axioms either A or ¬A) as a “philosopher’s stone.”104

The only meaning of completeness that he accepts is the following: “The final
formulation is thus the following: An axiom system is complete when two
(contentual) interpretations of it are necessarily isomorphic” (Weyl 1927, 22).
In this sense, he adds, Hilbert’s axiomatization of geometry is complete.

In the third edition of Einleitung in die Mengenlehre (1928), Fraenkel
adds a third notion of completeness, the notion of Nichtgabelbarkeit (“non-
forkability”), meaning essentially that every two interpretations satisfy the
same sentences (today we call this “semantic completeness”). Carnap (1927)
claims that the first two notions are identical, and in 1930, he claimed to have
proved the equivalence of all three notions (which he calls monomorphism,
decidability, and nonforkability). The proofs were supposed to be contained in
his manuscript “Untersuchungen zur allgemeinen Axiomatik,” but his approach
there is marred by his failure to distinguish between object language and
metalanguage, and between syntax and semantics, and thus to specify exactly
to which logical systems the proofs are supposed to apply (for an analysis of
these issues see Awodey and Carus 2001; Carnap’s unpublished investigations
on general axiomatics are now edited in Carnap 2000 [1927–1929]). Gödel,
however, had access to the manuscript and, in fact, his (1929) dissertation
acknowledges the influence of Carnap’s investigations (as does Kaufmann 1930).
Awodey and Carus (2001, 23) also point out that Gödel’s first presentation
of the incompleteness theorem in Königsberg in 1930 (see Gödel 1995, 29
and the introduction by Goldfarb) was aimed specifically at Carnap’s claim.
Indeed, when speaking of the meaning of the completeness theorem for axiom
systems, he pointed out that in first-order logic monomorphicity (Carnap’s
terminology) implies (syntactic) completeness (Entscheidungsdefinitheit). If
syntactic completeness also held of higher-order logic then (second-order) Peano
arithmetic, which by Dedekind’s classical result is categorical, would also turn
out to be syntactically complete. But, and here is the first announcement of
the incompleteness theorem, Peano’s arithmetic is incomplete (Gödel 1930a,
28–30).

An important result concerning categoricity was obtained by Tarski in
work done in Warsaw between 1926 and 1928. He showed that if a consistent
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set of first-order propositions does not have finite models, then it has a
nondenumerable model (upward Löwenheim–Skolem). This shows that no first-
order theory that admits of an infinite domain can be categorical (kategorisch).
The result was mentioned publicly for the first time in 1934 in the editor’s
remarks at the end of Skolem (1934). A proof by Malcev stating that, under the
assumptions, the theory has models of every infinite cardinality was published
in (1936);105 this result was apparently also obtained by Tarski in his Warsaw
seminar (see Vaught 1974, 160). Other results that Tarski obtained in the
period (1927–1929) include the result that a first-order theory that contains
as an extra-logical symbol “<” and that is satisfied in the order type ω is
also satisfied in every set of order type ω + (ω∗ + ω)τ , where ω∗ is the reverse
of the standard ordering on ω, and τ is an arbitrary order type. This was
eventually to lead to the notion of elementary equivalence, defined for order
types in the appendix to Tarski (1936a). This allowed Tarski to give a number
of nondefinability results. In the same appendix he shows that, using η for
the order type of the rationals, every order type of dense order is elementarily
equivalent to one of the following types: η, 1+η, η+1, and 1+η+1 (which are
not elementary equivalent to each other). He thus concluded that properties
of order types such as continuity or nondenumerability cannot be expressed in
the language of the elementary theory of order. Moreover, using the elementary
equivalence of the order types ω and ω + (ω∗ + ω), he also showed that the
property of well ordering is not expressible in the elementary theory of order
(Tarski 1936a, 380).

One of the techniques investigated in Tarski’s seminar in Warsaw was what
he called the elimination of quantifiers. The method was originally developed in
connection to decidability problems by Löwenheim (1915) and Skolem (1920).
It basically consists in showing that one can add to the theory certain formulas,
perhaps containing new symbols, so that in the extended theory it is possible
to demonstrate that every sentence of the original theory is equivalent to a
quantifier-free sentence of the new theory. This idea was cleverly exploited
by Langford to obtain, for instance, decision procedures for the first-order
theories of linear dense orders without endpoints, with first but no last element
and with first and last element (1927a) and for the first-order theory of linear
discrete orders with a first but no last element (1927b). As Langford emphasizes
(1927a), he is concerned with “categoricalness,” that is, that the theories in
question determine the truth value of all their sentences (something he obtains
by showing that the theory is syntactically complete). Many such results were
obtained afterward, such as Presburger’s (1930) elimination of quantifiers
for the additive theory of the integers and Skolem’s (1929b) for the theory
of order and multiplication (but without addition!) on the natural numbers.
Tarski himself announced in 1931 to have obtained, by similar techniques, a
decision procedure for elementary algebra and geometry (published however
only in 1948). Moreover, he extended the results by Langford to the first-
order theory of discrete order without a first or last element and to the
first-order theory of discrete order with first and last element. This work is
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relevant to the study of models in that it allows the study of all the complete
extensions of the systems under consideration and leads naturally to the notion
of elementary equivalence between relational structures (for order types) that
Tarski developed in his seminar. This work also dovetails with Tarski’s “On
certain fundamental concepts of metamathematics” (1930b), where for instance
he proves Lindenbaum’s result that every consistent set of sentences has a
complete consistent extension. For reason of space, Tarski’s contributions to
metamathematics during this period cannot be discussed in their full extent,
and we limit ourselves here to his definition of truth.106

Another important result concerning categoricity, or lack thereof, was ob-
tained by Skolem (1933, 1934) (Skolem speaks of “complete characterizability”).
The results we have mentioned so far, the upward and downward Löwenheim–
Skolem theorems are consistent with the possibility that, for instance, there is
only one countable model, up to isomorphism, for first-order Peano arithmetic.
What Skolem showed was, in our terminology, that there exist countable mod-
els of Peano arithmetic that are not isomorphic. He constructed a model N∗
of (classes of equivalence of) definable functions (hence the countability of the
new model) which has all the constant functions ordered with the order type of
the natural numbers and followed by nonstandard elements, which eventually
majorize the constant functions, for instance, the identity function (for details
see also Zygmunt 1973). Indeed, Skolem’s result states that no finite (in 1933)
or countable (in 1934) set of first-order sentences can characterize the natural
numbers. The 1934 result implies that N∗ can be taken to make true exactly
those sentences that are true in N .

8.7. Tarski’s Definition of Truth

The most important contribution to semantics in the early thirties was made
by Alfred Tarski. Although his major work on the subject, “The concept of
truth in formalized languages,” came out in 1933 in Polish (1935 in German),
Tarski said that most of the investigations contained in it date from 1929.
However, the seeds of Tarski’s reflection on truth were planted early on by the
works of Ajdukiewicz (1921) and the lectures of Lesńiewski.107

Tarski specifies the goal of his enterprise at the outset:

The present article is almost wholly devoted to a single problem—
the definition of truth. Its task is to construct—with reference
to a given language—a materially adequate and formally correct
definition of the term “true sentence.” (Tarski 1933a, 152)

A materially adequate definition is one that for each sentence specifies under
what conditions it must be considered true. A formally correct definition is
one that does not generate a contradiction and uses only certain concepts
and rules specified in advance. One should not expect the definition to give a
criterion of truth. It is not the role of the definition to tell us whether “Paris
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is in France” is true but only to specify under what conditions the sentence is
true.

Tarski begins by specifying that the notion of truth he is after is the one
embodied in the classical conception of truth, where a sentence is said to
be true if it corresponds with reality. According to Tarski, the definition of
truth should avoid appeal to any semantical concepts, which have not been
previously defined in terms of nonsemantical concepts. In Tarski’s construction,
truth is a predicate of sentences. The extension of such a predicate depends on
the specific language under consideration; thus the inquiry is to take the form
of specifying the concept of truth for specific individual languages. The first
section of the paper describes at length the prospects for defining truth for a
natural language and concludes that this is a hopeless task. Let us see what
motivates this negative conclusion. Tarski first proposes a general scheme of
what might count as a first approach toward a definition of the expression “x
is a true sentence”:

(∗) x is a true sentence if and only if p.

Concrete definitions are obtained by substituting for “p” any sentence and
for “x” the name of the sentence. Quotation marks are one of the standard
devices for creating names (but not the only one). If p is a sentence, we can
use quotation marks around p to form a name for p. Thus, a concrete example
of (∗) could be

(∗∗) “It is snowing” is a true sentence if and only if it is snowing.

The first problem with applying such a scheme to natural language is that
although (∗) looks innocuous, one needs to be wary of the possibility of
the emergence of paradoxes, such as the liar paradox. Tarski rehearses the
paradox and notices that at a crucial point one substitutes in (∗) for “p” a
sentence, which itself contains the term “true sentence.” Tarski does not see
a principled reason that such substitutions should be excluded, however. In
addition, more general problems stand in the way of a general account. First
of all, Tarski claims that if one treats quotation mark names as syntactically
simple expressions the attempt to provide a general account soon runs into
nonsense. Therefore, he points out that quotation mark names have to be
treated as complex functional expressions, where the argument is a sentential
variable, p, and the output is a quotation mark name. The important fact
in this move is that the quotation mark name “p” now can be seen to have
structure. According to Tarski, however, even in this case new problems
emerge, for example, one ends up with an intensional account, which might be
objectionable (even if p and q are equivalent, their names, “p” and “q,” will
not be). This leads Tarski to try a new strategy by attempting to provide a
structural definition of true sentence which would look roughly as follows:

A true sentence is a sentence which possesses such and such struc-
tural properties (i.e., properties concerning the form and arrange-
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ment in sequence of the single part of the expression) or which can
be obtained from such and such structurally described expressions by
means of such and such structural transformations. (Tarski 1933a,
163)

The major objection to this strategy is that we cannot, due to the open nature
of natural languages, specify a structural definition of sentence, let alone of true
sentence. Moreover, natural languages are “universal,” that is, they contain
such terms as “true sentence,” “denote,” “name,” and so on, which allow for
the emergence of self-reference such as the one leading to the liar antinomy.
Tarski concluded:

If these observations are correct, then the very possibility of a
consistent use of the expression “true sentence” which is in harmony
with the laws of logic and the spirit of everyday language seems to
be very questionable, and consequently the same doubt attaches to
the possibility of constructing a correct definition of this expression.
(Tarski 1933a, 165)

Thus, the foregoing considerations explain a number of essential features of
Tarski’s account. First, the account will be limited to formal languages. For such
languages it is in fact possible to specify the syntactic rules that define exactly
what a well-formed sentence of the language is. Moreover, such languages are
not universal, that is, one can keep the level of the object language and that
of the metalanguage (which is used to describe the semantic properties of the
object language) separate. When we talk about theories specified in a certain
language, then we distinguish between the theory and the metatheory, where
the latter is used to study the syntactic and semantic properties of the former.

Tarski provides then the definition of truth for a specific language, that
is, the calculus of classes, but the treatment is extended in the later sections
of the essay to provide a definition of truth for arbitrary languages of finite
type. One important point stressed by Tarski is that the definition of truth is
intended for “concrete” deductive systems, specifically, deductive systems that
are interpreted. For purely formal systems, Tarski claims that the problem of
truth cannot be meaningfully raised.

The calculus of classes is a subtheory of mathematical logic that deals
with the relationships between classes and the operation of union, intersec-
tion and complement. There are also two special classes, the universal class
and the empty class. The intuitive interpretation of the theory that Tarski
has in mind is the standard one with the individual variables ranging over
classes of individuals. In the following we give an (incomplete) sketch of the
structure of the language L of the calculus of classes (with only instances of
the axioms) and of the metalanguage, ML, in which the definition of truth is
given. It should be pointed out that Tarski does not completely axiomatize the
metalanguage, which is presented informally, and he uses the Polish notation
in his presentation.
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The Language of the Calculus of Classes

Variables: x′, x′′, x′′′, . . .

Logical constants: N [negation], A [disjunction], Π [universal quantifier]; rela-
tional constant: I [inclusion]

Expressions and formulas are defined as usual.

Logical axioms: ANAppp [∼(p ∨ p) ∨ p], etc.

Proper axioms: Πx1Ix1x1 [every class is included in itself];
Πx′x′′x′′′ANIx′x′′ANIx′′x′′′Ix′x′′′ [transitivity of I], etc.

Rules of inference: substitution, modus ponens, introduction, and elimination
of Π.

The Metalanguage

Logical constants: not, or, for all

Relational constants: ⊆
Class theoretical terms: ∈, individual, identical (=), class, cardinal number,

domain, etc.

Terms of the logic of relations: ordered n-tuple, infinite sequence, relation,
etc.

Terms of a structural descriptive kind: ng [for N ]; sm [for A], un [for Π], vk
[the kth variable], x � y [the expression that consists of x followed
by y], etc. These form names of object-language expressions in the
metalanguage.

Auxiliary symbols are introduced to give metatheoretical shorthands for
whether an expression is an inclusion, a negation, a disjunction, or
a universal quantification. They are: x = ιk,l iff x = (in � vk) � vl,
x = y iff x = ng � y; x = y + z iff x = (sm � y) � z); x = ∩ky iff
x = (un� vk)� y.

Variables:

1. a, b [names for classes of an arbitrary character]
2. f , g [sequences of classes]
3. k, l, m, n [natural numbers and sequences of natural numbers]
4. t, u, w, x, y, z [expressions]
5. X, Y [sequences of expressions]

The Metatheory

Logical axioms: not (p or p) or p, etc.

Axioms of the theory of classes: for all a, a ⊆ a etc.
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Proper axioms: several axioms characterizing the notion of expression. Intu-
itively, this is the smallest class X containing ng, sm, ∩, ι, vk, such that
if x, y are in X then x � y is in X.

With this in place, we can give names in ML to every expression in L. For
instance, NIx′x′′ is named in ML by ((ng� in)� v1)� v2 or ι12. We can
now define the notions of the following.

Sentential function (Definition 10): Sentential functions are obtained by the
closure of expressions of the form ιik under negation, disjunction, and
universal quantification.

Sentence: A sentential function with no free variables is a sentence.

Axioms: A sentence is an axiom if it is the universal closure of either a logical
axiom or of an axiom of the theory of classes.

Theorems: A sentence is a theorem if it can be derived from the axioms
using substitution, modus ponens, introduction, and elimination rules
for universal quantifier.

With this machinery in place (all of which is purely syntactical), Tarski
proceeds to give a definition of truth for the calculus of classes. The richness
of the metalanguage provides us both with a name of the sentence and a
sentence with the same meaning (a translation into the metalanguage) for
every sentence of the original calculus of classes. For instance, to ‘Π v′Iv′v′’
in L corresponds the name ∩1ι11 and the sentence “for all a, a ⊆ a.” The
schema (∗) should now be recaptured in such a way that for any sentence of
the calculus of classes its name in the metalanguage appears in place of x and
in place of p we have the equivalent sentence in the metalanguage:

∩1ι11 is a true sentence if and only if for all a, a ⊆ a.

What is required of a satisfactory truth definition is that it contains all
such equivalences in its extension. More precisely, let Tr denote the class of all
true sentences and S the class of sentences. Then Tr must satisfy the following
convention.

Convention T A formally correct definition of the symbol “Tr” formulated in
the metalanguage, will be called an adequate definition of truth if it has the
following consequences:

α. all sentences obtained from the expression “x ∈ Tr if and only if p”
by substituting for the symbol “x” a structural-descriptive name of any
sentence of the language in question and for the symbol “p” the expression
that forms the translation of this sentence into the metalanguage;

β. the sentence “for any x, if x ∈ Tr then x ∈ S” (in other words, Tr ⊆ S).
(Tarski 1933a, 188)
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Ideally, one would like to proceed in the definition of truth by recursion on the
complexity of sentences. Unfortunately, on account of the fact that sentences
are in general not obtained from other sentences but rather from formulas
(which, in general, may contain free variables), a recursive definition of “true
sentence” cannot be given directly. However, complex formulas are obtained
from formulas of smaller complexity, and here the recursive method can be
applied. For this reason Tarski defines first what it means for a formula to be
satisfied by given objects. Actually, for reasons of uniformity, Tarski defines
what it means for an infinite sequence of objects to satisfy a certain formula.
Definition of satisfaction (Definition 22): Let f be an infinite sequence of
classes, and fi the ith coordinate. Satisfaction is defined inductively on the
complexity of formulas (denoted by x, y, z).

Atomic formulas: f satisfies the sentential function (ιk,l) iff (fk ⊂ fl).
Molecular formulas:

a. for all f , y: f satisfies y iff f does not satisfy y;

b. for all f , y, z: f satisfies y + z iff f satisfies y or f satisfies z;

c. for all f , y, k: f satisfies ∩ky iff every sequence of classes that differs
from f at most in the kth place satisfies the formula y.

This definition is central to Tarski’s semantics, since through it one can
define the notions of denotation (the name “c” denotes a, if a satisfies the
propositional function c = x), definability, and truth. A closer look at the
definition of satisfaction shows that whether a sequence satisfies a formula
depends only on the coordinates of the sequence corresponding to the free
variables of the formula. When the formula is a sentence, there are no free
variables, and thus either all sequences satisfy it or no sequence satisfies it.
Correspondingly, we have the definition of truth and falsity for sentences given
in Definition 23: x is a true sentence iff x is a sentence and every infinite
sequence of classes satisfies x. Tarski then argues that the definition given is
formally correct and satisfies Convention T.

Among the consequences Tarski draws from the precise definition of the class
of true sentences is the fact that the theorems of the calculus of classes are a
proper subset of the truths of the calculus (under the intended interpretation).

Nowadays such definitions of satisfaction and truth are given by first speci-
fying what the domain of the interpretation is, but Tarski does not do that.
He speaks of infinite sequences of classes as if these sequences were taken
from a universal domain. Indeed, on p. 199 of his essay, Tarski contrasts his
approach with the relativization of the concept of truth to that of “correct
or true sentence in an individual domain a.” This is the approach, he points
out, of the Hilbert school in Göttingen and contains his own approach as a
special case. Of course, Tarski claims to be able to give a precise meaning
of the notions (Definitions 24 and 27) that were used only informally by the
Hilbert school.108
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The remaining part of the essay sketches how to generalize the approach to
theories of finite order (with a fixed finite bound on the types) and points out
the limitations in extending the approach to theories of infinite order. However,
even in the latter case Tarski establishes that “the consistent and correct
use of the concept of truth is rendered possible by including this concept
in the system of primitive concept of the metalanguage and determining its
fundamental properties by means of the axiomatic method” (266).

By far the most important result of the final part of the essay is Tarski’s
celebrated theorem of the undefinability of truth, which he obtained after read-
ing Gödel’s paper on incompleteness.109 Basically, the result states that there
is no way to express Tr(x) as a predicate of object languages (under certain
conditions) without running into contradictions. In particular, for systems of
arithmetic such as Peano arithmetic, this says there is no arithmetical formula
Tr(x) such that Tr(x) holds of a code of a sentence just in case that sentence
is true in the natural numbers.

We have seen that Tarski emphasized that through the notion of satisfaction
other important semantic notions, such as truth and definability, can be also
defined. Thus, the work on truth also provided an exact foundation for (1930a)
and (1931), on definable sets of real numbers and the connection between
projective sets and definable sets, and to the general investigation on the
definability of concepts carried out by Tarski in the mid-1930s.

One of the most important applications of the new semantic theory was the
notion of logical consequence (1936b). Starting from the intuitive observation
that a sentence X follows from a class of sentences K if “it can never happen
that both the class K consists only of true sentences and the sentence X is
false” (414), Tarski made use of his semantical machinery to give a definition
of the notion of logical consequence. First he defined the notion of model.
Starting with a class L of sentences, Tarski replaces all nonlogical constants
by corresponding variables, obtaining the class of propositional sentences L′.
Then he says:

An arbitrary sequence of objects which satisfies every sentential
function [formula] of the class L′ will be called a model or realization
of the class L of sentences (in just this sense one usually speaks of
an axiom system of a deductive theory). (Tarski 1936b, 417)

From this he obtains the notion of logical consequence: “The sentence X
follows logically from the sentence of the class K if and only if every model
of the class K is also a model of the sentence X” (Tarski 1936b, 417). There
are several controversial issues concerning the exact interpretation of Tarski’s
theory of truth and logical consequence; these cannot be treated adequately
within the narrow limits of this exposition.110

In any case, the result of Tarski’s investigations for logic and philosophy
cannot be overestimated. The standard expositions of logic nowadays embody,
in one form or another, the definition of truth in a structure, which ultimately
goes back to Tarski’s article. Tarski’s article marks also an explicit infinitistic
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attitude to the metatheoretical investigations, in sharp contrast to the finitistic
tendencies of the Hilbert school. As a consequence the definition of truth is
often nonconstructive. Often, but not always: In the particular case of the
calculus of classes, Tarski shows that from the definition of truth one can
also extract a criterion of truth; but he also remarks that this depends on
the specific peculiarities of the theory and in general this is not so. Finally,
Tarski’s definition of truth and logical consequence have shaped the discussion
of these notions in contemporary philosophy and are still at the center of
current debates.
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1. Each author has been responsible for specific sections of the essay: PM for
I–III, VII, and VIII; RZ for itineraries V and VI; and CB for itinerary IV. While
responsibility for the content of each section rests with its author, for the sake
of uniformity of style we use “we” rather than “I” throughout. A book-length
treatment of the topics covered in itinerary IV is Badesa (2004). Itinerary V contains
passages from Richard Zach, “Completeness before Post: Bernays, Hilbert, and the
development of propositional logic,” The Bulletin of Symbolic Logic 5 (1999) 331–366,
© 1999, Association for Symbolic Logic, which appear here with the kind permission
of the Association for Symbolic Logic. Itinerary VI contains passages from Richard
Zach, “The practice of finitism: Epsilon calculus and consistency proofs in Hilbert’s
program,” Synthese 137 (2003), 79–94, © 2003, Kluwer Academic Publishers, which
appear here with the kind permission of Kluwer Academic Publishers.

2. On Zermelo’s contribution to mathematical logic during this period see Peckhaus
(1990, chapter 4); see also Peckhaus (1992).

3. In 1914, Philip Jourdain drew the same distinction but related it to two different
conceptions of logic:

We can shortly but very accurately characterize the dual development of
the theory of symbolic logic during the last sixty years as follows: The
calculus ratiocinator aspect of symbolic logic was developed by Boole,
De Morgan, Jevons, Venn, C. S. Peirce, Schröder, Mrs Ladd Franklin
and others; the lingua characteristica aspect was developed by Frege,
Peano and Russell. (Jourdain 1914, viii)

Couched in the Leibnizian terminology, we thus find the distinction of logic as
calculus versus logic as language, which van Heijenoort (1967b) made topical in the
historiography of logic.

4. On Peano’s contributions to logic and the foundations of mathematics and
that of his school the best source is Borga et al. (1985), which also contains a
rich bibliography. For Peano’s contributions to logic and the axiomatic method, see
especially Borga (1985), Grattan-Guinness (2000), and Rodriguez-Consuegra (1991).
See also Quine (1987).
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5. This idea of Padoa is at the root of a widespread interpretation of axiomatic
systems as propositional functions, which yield specific interpreted theories when the
variables are replaced by constants with a definite meaning. This view is defended in
Whitehead (1907), Huntington (1913), Korselt (1913), Keyser (1918b, 1922), and
Ajdukiewicz (1921). Such an interpretation also influences the development of the
notion of model in Carnap and Tarski.

6. A similar result is stated which shows that the set of basic propositions of
a system is irreducible, that is, that no one of them follows for the others: “To
prove that the system of unproved propositions [P ] is irreducible it is necessary and
sufficient to find, for each of these propositions, an interpretation of the system of
undefined symbols that verifies the other unproved propositions but not that one”
(1901, 123).

7. See also Hilbert’s lectures on geometry, Hilbert (2004).
8. On the various meanings of completeness in Hilbert, see Awodey and Reck

(2002, 8–15) and Zach (1999).
9. On the debate that opposed Hilbert and Frege on this and related issues, see

Demopoulos (1994).
10. Padoa later criticizes Hilbert for claiming that there might be other ways

of proving the consistency of an axiom system. After Hilbert’s talk in 1900, Peano
claimed that Padoa’s lecture would give a solution to Hilbert’s second problem.
Hilbert was not present at the, lecture but the only proof of consistency given
by Padoa for his system of integers was by interpreting the formal system in its
natural way on the domain of positive and negative integers. It is hard to believe
that this led to an acrimonious article in which Padoa (1903) attacked Hilbert for
not acknowledging that his second problem was only a “trifle.” After a refusal to
buy into the hierarchical conception of mathematics displayed by the reduction of
the consistency of geometry to arithmetic, Padoa stated that Hilbert could modify
at will all the methods used in the theory of irrational numbers but that this
would never give him a consistency proof. Indeed, only statements of inconsistency
and dependence could be solved by means of deductive reasonings, not issues of
consistency or independence. According to Padoa, a consistency proof could only
be obtained by displaying a specific interpretation satisfying the statements of the
theory. Hilbert never replied to Padoa; in a way, the problem Padoa had raised was
also a result of the vague way in which Hilbert had conjectured how it could be
solved. It should be pointed out that Pieri (1904) takes position against Padoa on
this issue remarking that perhaps one could find a direct proof of consistency for
arithmetic by means of pure logic.

11. On the relationship between the axiom of completeness and the metalogical
notion of completeness, see section 5.3.

12. We will follow, for consistency, Awodey and Reck (2002) when providing the
technical definitions required in the discussion. An axiomatic theory T is called
categorical (relative to a given semantics) iff all models of T are isomorphic.

13. An axiomatic theory is called semantically complete (relative to a given
semantics) if any of the following four equivalent conditions hold:

1. For all formulas ϕ and all models M , N of T , if M |= ϕ, then N |= ϕ.
2. For all formulas ϕ, either T |= ϕ or T |= ¬ϕ.
3. For all formulas ϕ, either T |= ϕ or T ∪ {ϕ} is not satisfiable.
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4. There is no formula ϕ such that both T ∪ {ϕ} and T ∪ {¬ϕ} are satisfiable.

14. This idea is expressed quite clearly in Bôcher (1904, 128).
15. “Suppose we express a law by a formal sentence S, and A is a structure.

Different writers have different ways of saying that the structure A obeys the law.
Some say that A satisfies S, or that A is a model of S. Many writers say that the
sentence S is true in the structure A. This is the notion in the title of my talk. This
use of the word true seems to be a little over fifty years old. The earliest occurrence I
find is ‘wahr in N∗’ in a paper of Skolem (1933) on non-standard models of arithmetic
(Padoa in [1901] has ‘vérifie’ [p. 136])” (Hodges 1986, 136).

16. A few more examples. “The assignment of an admissible meaning, or value,
to each of the undefined elements of a postulate system will be spoken of as an
interpretation of the system. By ‘admissible’ meanings are meant meanings that
satisfy the postulates or that, in other words, render them true propositions” (Keyser
1918a, 391).

“The logical structure of axiomatic geometry in Hilbert’s sense—analogously to
that of group theory—is a purely hypothetical one. If there are anywhere in reality
three systems of objects, as well as determined relationships between these objects,
such that the axioms hold of them (this means that by an appropriate assignment of
names to the objects and relations the axioms turn into true statements [die Axiome
in wahre Behauptungen übergehen]), then all theorems of geometry hold of these
objects and relationships as well” (Bernays 1922, 192).

17. For Russell’s abandonment of idealism, see Hylton (1990).
18. For recent work on reconstructing Frege’s system without Axiom V, see

Demopoulos (1995) and Hale and Wright (2001).
19. For an overview of the role of paradoxes in the history of logic see Cantini

(2008). See the references given in section 2.1 for extensive analyses of the paradoxes.
20. For a survey of the history of predicativity, see Feferman (2004a).
21. For Poincaré on predicativity, see Heinzmann (1985).
22. See Chihara (1973), de Rouilhan (1996), and Thiel (1972) for detailed analyses

of the various versions of the vicious circle principle.
23. There is even disagreement as to whether the types are linguistic or ontological

entities and on the issue of whether the type distinction is superimposed on the
orders or vice versa; see Landini (1998) and Linsky (1999).

24. On Russell’s reasons for ramification, see also Goldfarb (1989).
25. See the extensive treatment in Grattan-Guinness (2000), and also Potter

(2000) and Giaquinto (2002). Recent work has also been directed at studying the
differences between the first and second edition of Principia; see Linsky (2004) and
Hazen and Davoren (2000). The reader is also referred to the classic treatment by
Gödel (1944). Hazen (2004) has pursued Gödel’s suggestion that there is a new
theory of types in the second edition.

26. We disagree with those who claim that metatheoretical questions could not be
posed by Russell on account of his “universalistic” conception of logic. However, a
detailed discussion of this issue cannot be carried out here. For this debate, see van
Heijenoort (1967b), Dreben and van Heijenoort (1986), Hintikka (1988), Goldfarb
(1979, 2001), de Rouilhan (1991), Tappenden (1997), Rivenc (1993).

27. On the development of set theory see, among others, Dauben (1971), Ferreiros
(1999), Garciadiego (1992), Grattan-Guinness (2000), Kanamori (2003), Hallett
(1984), and Moore (1982).
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28. On Zermelo’s role in the development of set theory and logic, see also Peckhaus
(1990).

29. It should be pointed out that Russell had independently formulated a version
of the axiom of choice in 1904.

30. The best treatment of the debate about the axiom of choice and related
debates is Moore (1982).

31. On the antinomy see Garciadiego (1992). The antinomy is a transformation of
an argument of Burali-Forti, made by Russell. If there were a set Ω of all ordinals,
then it can be well ordered. Thus it is itself an ordinal, that is, it belongs and it does
not belong to itself.

32. On the connection between Weyl (1910) and (1918), see Feferman (1988).
33. On Zermelo’s reaction to Skolem’s paradox, see van Dalen and Ebbinghaus

(2000).
34. Studies on the independence of the remaining axioms of set theory were

actively pursued. See for instance Fraenkel (1922a).
35. On Mirimanoff, see the extended treatment in Hallett (1984).
36. On replacement, see Hallett (1984).
37. On von Neumann’s system and its extensions, see Hallett (1984) and Ferreiros

(1999).
38. Zermelo investigated the metatheoretical properties of his system, especially

issues of categoricity (see Hallett 1996).
39. In 1870, Peirce used the word “relative” in place of “relation” employed by

De Morgan. In 1903 (367n3), Peirce called De Morgan his “master,” and regretted
his change of terminology.

40. To our knowledge, van Heijenoort was the first to grasp the real historical
interest of Löwenheim’s paper. In “Logic as Calculus and Logic as Language” (1967b)
he noted the elements in Löwenheim’s paper that made it a pioneering work, deserving
a place in the history of logic alongside Frege’s Begriffsschrift and Herbrand’s thesis.
For the history of model theory, see Mostowski (1966), Vaught (1974), Chang (1974),
the historical sections of Hodges (1993), and Lascar (1998).

41. For a detailed exposition and defense of the thesis presented in this contribution,
see Badesa (2004).

42. On Tarski’s suggestion, McKinsey (1940) had given an axiomatization of the
theory of atomic algebras of relations. The 45 years that Tarski mentions is the time
elapsed between the publication of the third volume of Vorlesungen and McKinsey’s
paper. A brief historical summary of the subsequent developments can be found in
Jónsson (1986) and Maddux (1991).

43. It cannot be said to be totally algebraic, given the absence of an algebraic
foundation of the summands and productands that range over an infinite domain.

44. Traditionally, “logic of relatives” is used to refer to the calculus or, depending
on the context, to the theory of relatives. Our use of this expression is not standard.

45. Schröder showed how to develop the logic of predicates within the logic of
binary relatives in his Vorlesungen 1895, §27. The proof that every relative equation
is logically equivalent to a relative equation in which only binary relatives occur is
due to Löwenheim (1915, Theorem 6).

46. Quantifiers were introduced in the algebraic approach to logic by Peirce (1883,
464). The word quantifier was also introduced by him in 1885 (183).

47. Expressions of the form A ⊂= B (called subsumptions) are also used as
formulas, but the canonical statements are the equations. Depending on the context,
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the subsumption symbol (⊂= ) denotes the inclusion relation, the usual ordering on
{0, 1}, or the conditional. Löwenheim does not consider this symbol to belong to the
basic language of the logic of relatives; this explains why he does not take it into
account in the proof of his theorem.

48. In 1920 Skolem used Zählaussage instead of Löwenheim’s Zählausdruck. Gödel
erroneously attributes the term Zählaussage to Löwenheim (Gödel 1929, 61–62).

49. In fact, Skolem (1922, 294) used the term Lösung (solution) to refer to the
assignments of truth values to the relative coefficients that satisfy a given formula in
a domain.

50. He probably intended not only to simplify the proof but also to make it more
rigorous, but he did not doubt its correctness. See, for example, Skolem (1920, 254;
1922, 293; and 1938, 455–456).

51. Löwenheim also generalized (1) to the case of formulas with multiple quantifiers,
but this generalization is trivial. For typographical reasons, we use Σ in place of
Löwenheim’s double sigma.

52. See van Heijenoort (1967a, 230), Wang (1970, 27), Vaught (1974, 156), Goldfarb
(1979, 357), and Moore (1988, 122).

53. See van Heijenoort (1967a, 229–230) and Moore (1988, 121).
54. Which the possible systems are depends on whether the fleeing indices are

functional terms. More exactly, certain alternatives are only possible when fleeing
indices are not functional terms. For example, a system of equalities in which 1 = 2
and 3 = 4 is not compatible with a functional interpretation of the fleeing indices,
because 3 = k1 and 4 = k2. Löwenheim repeatedly insists that two different numerals
can denote the same element without placing restrictions on this, but he does not
explicitly clarify which systems of equalities are admissible.

55. Skolem (1929a) proved again the weak version of the theorem. In this paper,
Skolem corrects some deficiencies of his previous proof in 1922 (Wang 1974, 20ff.) and
introduces the functional form. As it is well known, the functional form of a formula
such as ∀x∃y∀z∃uA(x, y, z, u) is ∀x∀zA(x, f(x), z, g(x, z)). Skolem (1929a) states
explicitly the informal procedure to which Gödel refers, but some of his assertions
reveal that he lacks a clear understanding of the completeness problem.

56. The use of substitution is indicated at the beginning of *2. A substitution
rule was explicitly included in the system of Russell (1906b), and Russell also
acknowledged its necessity later (e.g., in the introduction to the second edition of
Principia). For a discussion of the origin of the propositional calculus of Principia
and the tacit inference rules used there, see O’Leary (1988).

57. This becomes clear from Bernays (1918), who makes a point of distinguishing
between correct and provable formulas, “to avoid a circle.” In Hilbert (1920a, 8), we
read: “It is now the first task of logic to find those combinations of propositions,
which are always, that is, without regard for the content of the basic propositions,
correct.”

58. This connection between the completeness theorem and the completeness
axiom is tenuous: Hilbert’s completeness axioms do not in general guarantee the
categoricity of the axiom systems, nor its completeness in the sense that the system
proves or disproves every statement. See Baldus (1928) for a counterexample and
Awodey and Reck (2002) for more detailed discussion.

59. Note that here, as indeed in Post (1921), syntactic completeness only holds if
the rule of substitution is present.
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60. Post (1921) gives the same definition and establishes similar results; see
section 8.3.

61. The interested reader may consult Kneale and Kneale (1962, 689–694) and, of
course, Bernays (1926). The method was discovered independently by Łukasiewicz
(1924), who announced results similar to those of Bernays. Bernays’s first system
defines Łukasiewicz’s three-valued implication.

62. Gödel (1932b) quotes the independence proofs given by Hilbert (1928a).
63. These results extend the method of the previous sections insofar as the

independence of rules is also proved. To do this, it is shown that an instance of
the premise(s) of a rule always takes designated values, but the corresponding
instance of the conclusion does not. This extension of the matrix method for proving
independence was later rediscovered by Huntington (1935).

64. This is not stated explicitly, but is evident from the derivation on p. 11.
65. Paul Bernays, notes to “Mathematische Logik,” lecture course held win-

ter semester 1929–30, Universität Göttingen. Unpublished shorthand manuscript.
Bernays Nachlaß, ETH Zürich Archive, Hs 973.212. The signs & and ∨ were first used
as signs for conjunction and disjunction in Hilbert and Bernays (1923b). The third
axiom of group I and the second axiom of group V are missing from the system given
in Hilbert and Bernays (1934). The first (Simp), third (Comm), and fourth axiom
(Syll) of group I are investigated in the published version of the Habilitationsschrift
(Bernays 1926), but not in the original version (1918).

66. Hilbert (1905a, 249); see Zach (1999, 335–336) for discussion.
67. See Mancosu (1999a) for a discussion of this talk.
68. For extensive historical data as well as an annotated bibliography on the

decision problem, both for classes of logical formulas as well as mathematical theories,
see Börger et al. (1997).

69. On Curry’s work, see Seldin (1980).
70. For more details on the work of Hertz and Gentzen, see Abrusci (1983) and

Schröder-Heister (2002).
71. On the ε-calculus, see Hilbert and Bernays (1939) and Avigad and Zach (2002).
72. Hilbert (1920b, 39–40). Almost the same passage is found in Hilbert (1922c,

1127–1128).
73. In a letter to Hilbert dated June 27, 1905, Zermelo mentions that he is still

working on a “theory of proofs” which, he writes, he is trying to extend to “ ‘indirect
proofs’, ‘contradictions’ and ‘consistency’ ” (Hilbert Papers, NSUB Göttingen, Cod
Ms Hilbert 447:2). Unfortunately, no further details on Zermelo’s theory are available,
but it seems possible that Zermelo was working on a direct consistency proof for
Hilbert’s axiomatic system for the arithmetic of the reals as discussed by Hilbert
(1905a).

74. Hilbert developed a second approach to eliminating ε-operators from proofs
around the same time, but the prospects of applying this method to arithmetic were
less promising. The approach was eventually developed by Bernays and Ackermann
and was the basis for the proof of the first ε-theorem in Hilbert and Bernays (1939).
On this, see Zach (2004).

75. See Zach (2004) for an analysis of this proof and a discussion of its importance.
76. Von Neumann (1927) is remarkable for a few other reasons. Not only is the

consistency proof carried out with more precision than those of Ackermann, but so is
the formulation of the underlying logical system. For instance, the set of well-formed
formulas is given a clear inductive definition, application of a function to an argument
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is treated as an operation, and substitution is precisely defined. The notion of axiom
system is defined in very general terms, by a rule that generates axioms (additionally,
von Neumann remarks that the rules used in practice are such that it is decidable
whether a given formula is an axiom). Some of these features von Neumann owes to
König (1914).

77. This is problem IV in Hilbert (1929).
78. See Gödel’s recollections reported by Wang (1996, 82–84).
79. On the reception of Gödel’s incompleteness theorems more generally, see

Dawson (1989), and Mancosu (1999b, 2004).
80. On Brouwer’s life and accomplishments see van Atten (2003), van Dalen

(1999), and van Stigt (1990). For an account of the foundational debate between
Brouwer and Hilbert see Mancosu (1998a) and the references contained therein.

81. A good account of the French intuitionists is found in Largeault (1993a, 1993b).
82. On the Kantian themes in Brouwer’s philosophy see Posy (1974) and van

Atten (2003, ch. 6).
83. Troelstra (1982) gives a detailed account of the origin of the idea of choice

sequences.
84. On Brouwer’s intuitionistic mathematics see van Atten (2003), van Dalen

(1999), Dummett (1977), Franchella (1994), van Stigt (1990), and Troelstra and van
Dalen (1988).

85. Indeed, in intuitionistic mathematics one can actually prove the negation of
certain valid classical principles. For instance, one can prove in intuitionistic analysis
that “it is not the case that every real number is either rational or irrational.” These
counterexamples are called strong counterexamples, and they are consequences of
mathematical principles, such as the continuity principle, that are proper to intuition-
ism (as opposed to other forms of constructive mathematics or classical mathematics).
Brouwer gave the above-mentioned counterexample in his 1928 publication. On the
continuity principle in intuitionistic analysis, see van Atten (2003, ch. 3), and on the
difference between weak and strong counterexamples, see van Atten (2003, chs. 2,
4, 5).

86. The best historical account of the debates surrounding intuitionism in the
1920s is Hesseling (2003).

87. We refer the reader to Thiel (1988), Mancosu and van Stigt (1998), and
Hesseling (2003) for a more detailed treatment.

88. In Mancosu (1998a, 280) it was stated by mistake that Church had committed
a faux pas at this juncture.

89. We should remark that Kolmogorov (1925) rejects the principle “ex falso
sequitur quolibet,” which he however accepts in 1932. There is some contemporary
discussion on whether the principle is intuitionistically valid. For a first introduction
see van Atten (2003, 24–25).

90. Gentzen (1933a) (in collaboration with Bernays) had arrived at the same result,
but Gentzen withdrew the article from publication after Gödel’s paper appeared
in print. The similarity between Gödel’s and Gentzen’s articles is striking. This
parallelism can be explained by noting that both of them relied on the formalization
of intuitionistic logic given by Heyting (1930a) and the axiomatization of arithmetic
given by Herbrand (1931a).

91. See Mancosu (1998b) on finitism and intuitionism in the 1920s.
92. On all these contributions, see the useful introductions by Troelstra in (Gödel

1986).
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93. On Łukasiewicz’s logical accomplishments and the context in which he worked
see Woleński (1989).

94. Słupecki, like Łukasiewicz, used the Polish notation; for the reader’s benefit,
we have used the Principia notation in this section.

95. Among the few variations one can mention “concrete representation” (Veblen
and Young 1910, 3; Young 1917, 43). It should be pointed out here that although
the word “model” was widespread in physics (see, e.g., “dynamical models” in Hertz
1894) it is not as common in the literature on non-Euclidean geometry, where the
terminology of choice remains “interpretation” (as in Beltrami’s 1868 interpretation
of non-Euclidean geometry). However, “Modelle,” that is, desktop physical models,
of particular geometrical surfaces adorned the German mathematics departments of
the time. Many thanks to Jamie Tappenden for useful information on this issue.

96. Following Russell, structure-theoretic terminology is found all over the epis-
temological landscape. See, for instance, Carnap’s Der logische Aufbau der Welt
(1928).

97. A similar approach is found in Lewis (1918, 355).
98. See Dreben and van Heijenoort (1986, 47–48) for a clarification of some delicate

points in Hilbert and Ackermann’s statement of the completeness problem.
99. In the 1929 dissertation, the result for countable sentences is obtained directly

and not as a corollary to compactness. For the history of compactness, see Dawson
(1993).

100. The notion of allgemeingültig can be relativized to specific types of domains.
So, for instance, (Ex)F (x) ∨ (x)F (x) is allgemeingültig for those domain consisting
of only one element. See Bernays and Schönfinkel (1928, 344).

101. Gödel did not provide the foregoing explanations in the published version of
the thesis (1930a), but the same definition occurs in later published works (Gödel
1933b, 307), where the same idea is used to define the notion of a model over I (a
domain of individuals).

102. An early case is Weyl (1910) and concerns the continuum problem. Weyl
says (p. 304) that the continuum problem will not admit a solution until one adds to
the system of set theory an analog of the opposite of Hilbert’s completeness axiom:
From the domain of Zermelo’s axioms one cannot cut out a subdomain which already
makes all the axioms true.

103. Nowadays we call the second notion “syntactic completeness.” As the notion
of categoricity as isomorphism is already found, among other places, in Bôcher (1904),
Huntington (1906–1907), and Weyl (1910) (also Weyl 1927), we cannot agree with
Howard (1996, 157), when he claims that Carnap (1927) is “the first place where
the modern concept of categoricity, or monomorphism in Carnap’s terminology, is
clearly defined and its relation to issues of completeness and decidability clearly
expounded. Moreover, it was through Carnap’s relations with Kurt Gödel and Alfred
Tarski that the concept of categoricity later made its way into formal semantics.”
The first conjunct is made false by the references just given, the second by the fact
that Carnap’s claims as to the equivalence of categoricity and decidability turned out
to be unwarranted. As for Carnap’s influence, it is certainly the case that Tarski was
familiar with the concept of categoricity before he knew of Carnap’s investigations
(see Tarski 1930b, 33). Howard’s article is to be recommended for exploring the
relevance of the issue of categoricity for the natural sciences. On completeness and
categoricity see Awodey and Carus (2001), Awodey and Reck (2002), and also Read
(1997).
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104. Weyl’s reflection on Entscheidungsdefinitheit are related to the great attention
given to this notion in the phenomenological literature, including Husserl, Becker,
Geiger, London, and Kaufmann.

105. See the review by Rosser (1937).
106. Scanlan (2003) deals with the influence of Langford’s work on Tarski. See

Zygmunt (1990) on Presburger’s life and work. Tarski’s early results are discussed
by Feferman (2004b), who uses them to reply to some points by Hodges (1986).
On Tarski’s quantifier elimination result for elementary algebra and geometry, see
the extensive study by Sinac.eur (2007). For a treatment of the main concepts of
the methodology of deductive sciences according to Tarski, see Czelakowski and
Malinowski (1985) and Granger (1998).

107. One should also not forget the possible influence of Łukasiewicz; see Woleński
(1994). On the Polish school see Woleński (1989, 1995).

108. For the interpretation of the differences between the original article (1933b)
and the claims made in the postscript in 1935, see de Rouilhan (1998).

109. Gödel was aware of the result before Tarski published it; see the discussion
in Murawski (1998). However, the author makes heavy weather of Gödel’s use of the
word richtig as opposed to wahr. To this it must be remarked that richtig is used in
opposition to falsch throughout the writings of the Hilbert school. Moreover, Gödel
himself speaks of wahr in his dissertation (Gödel 1929, 68–69). See also Feferman
(1984).

110. On the issue of whether Tarski defines truth in a structure, see Hodges (1986)
and Feferman (2004b). On logical consequence, see, among the many contributions,
Etchemendy (1988, 1990), Ray (1996), Gomez-Torrente (1996), Bays (2001), and
Mancosu (2006).
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10

Set Theory, Model Theory,
and Computability Theory
Wilfrid Hodges

This chapter surveys set theory, model theory, and computability theory: how
they first emerged from the foundations of mathematics, and how they have
developed since. There are any amounts of mathematical technicalities in the
background, but I try to highlight those themes that have some philosophical
resonance. Readers who find I said too little on some topic are encouraged to
explore the references.

1. The Architecture of Modern Mathematics
The term “mathematical logic” apparently first saw the light of day in a
footnote of a paper of De Morgan (1858, p. 78 of [1966]). De Morgan hoped
that mathematicians would succeed in wresting the study of argument forms
away from the philosophers, because mathematicians are better at detecting
significant patterns. De Morgan’s coinage went unnoticed; in any case it had
little connection with the modern use of the phrase.

In the very different climate of the 1890s, the Italian mathematician Peano
proudly put “mathematical logic” into the titles of several of his papers (for
example 1891 and 1896–1897). This work of Peano was a direct ancestor of
modern model theory and axiomatic set theory. The path from Peano to these
two disciplines is worth tracing. Only part of it lies within logic; changes in
the broad shape of mathematics are at least as important.

Peano’s colleague Pieri said at the beginning of his analysis of projective
geometry as “a logico-deductive system” (Pieri 1898, 6):

The chief feature of the primitive objects of any hypothetico-
deductive system is that they can be interpreted arbitrarily, within
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certain limits imposed by the primitive propositions (axioms or
postulates). . . . the Reader is allowed to assign to [the primitive]
words and signs an arbitrary meaning, so long as this meaning is
compatible with the general properties imposed on these entities
by the primitive propositions.

Having said that much, Pieri proceeded to make deductions from his axioms
without any regard for interpretations (though they briefly appeared again as
a technical device for proving independence of axioms). Of course any formal
statement deduced from the primitive propositions must be true in any allowed
interpretation A. But this route yields no information about the relations
between A and any other allowed interpretation B. (See also §1.2 in Mancosu,
Zach, and Badesa 2009.)

Russell (1903, ch. xiv) was deeply impressed by Pieri’s work. Unlike Pieri,
Russell concentrated at once on the allowed interpretations, which he called
“geometries.” He showed in detail how one could regard a geometry as a set-
theoretical object consisting of sets and relations built up from its set of points.
This was prophetic but probably quite unmotivated at the time.

In group theory the situation was subtly different. The class of (abstract)
groups is defined by a set of axioms, just as the class of geometries. But
already Galois in 1832 studied relationships between one group and another,
so Pieri’s approach would have been useless for him. Late nineteenth-century
group theorists agreed that a group is a “system of objects,” but it wasn’t
the custom to explain in set-theoretic terms what a “system of objects” is.
Burnside (1897, ch. ii), for example, evaded the question neatly by defining
a group as a set of permutations of a given set, satisfying certain conditions.
Since it was intuitively obvious how to compose two permutations or invert one,
there was no cause for him to spend any time on the set-theoretic “relations”
that occupied Russell.

During the first half of the twentieth century, the scenery changed slowly
but relentlessly. It became the custom to study classes of structures and
the homomorphisms between structures in a class. Some new branches of
algebra, such as ring theory, were organized along these lines from the start.
In geometry itself the conversion to the new style was complete by the time of
Artin (1957). We probably owe commutative diagrams to lectures of Hurewicz
around 1940. Category theory, which gives equal status to structures and to
structure-preserving maps between them, followed in 1942 (Mac Lane 1971, 29).

Even after these changes, most working mathematicians saw set theory as
irrelevant to their practice. However, it came to light that some questions
within mathematical disciplines depended on unresolved problems about the
universe of sets. Some notable examples were:

a. Vitali (1905) used the Axiom of Choice to show the existence of a non-
Lebesgue-measurable set of real numbers. In the relatively new topic of
infinite abelian groups, Kaplansky (1954, 6) described Zorn’s Lemma
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(a form of the Axiom of Choice) as “an axiom like other axioms needed
to set up the foundations of mathematics,” but unlike the other axioms
he was careful to indicate where he used this one.

b. In the late 1950s, Łoś found he was unable to complete a theorem on
abelian groups without making the set-theoretic assumption that there
are no measurable cardinals (a kind of large cardinal, see section 4). In
1983 Eda showed how to plug the gap. Eklof and Mekler (1990) discuss
Łoś’s and Eda’s work.

c. The Continuum Hypothesis is the hypothesis that ω1 = 2ω in cardinal
arithmetic. Sierpiński (1934) proved a number of theorems on topological
and combinatorial properties of the real numbers, assuming the Contin-
uum Hypothesis. During the 1960s it was shown by forcing (section 3)
that many of the results in his book are not provable without some form
of this hypothesis.

To apply set-theoretic assumptions, one had to regard the structures involved
as particular objects within the universe of sets. This didn’t mean that the
specialists in these various branches of mathematics had to adopt set-theoretic
notation; but it did mean that they needed to be sure that at least someone
else could formalize their work within axiomatic set theory.

Bernays (Bernays and Fraenkel 1958) described the required translations
into set-theoretic language as “embodying” in set theory. For example (1958
vii.§5), he gave detailed examples of the set-theoretic translation in the case
of algebraic structures. Thus he brought up to date the account in Russell
(1903).

These developments led to a new picture of the logical structure of mathe-
matics. The picture is not associated with anybody’s name in particular; it
just happened. In 1936 it was still possible for Tarski to present mathematics
as a collection of “deductive systems,” each with its own axioms. But from the
1950s onward, classical mathematics had just one deductive system, namely,
first-order Zermelo–Fraenkel Set Theory with Choice (ZFC—one writes ZF for
the theory without the Axiom of Choice). The axioms of the more algebraic
branches of mathematics, for example, group theory or geometry, became set-
theoretic definitions of classes of structures within the universe of set theory.
A structure satisfying a set of axioms was called a model of these axioms.
Epistemologically, all axioms except those of set theory became definitions, so
the question of their truth completely vanished; at best one could ask whether
they defined what they were intended to define. Ontologically, real numbers
and all elements of structures were sets, so all problems about the nature of
the subject matter reduced to questions about the nature of sets.

Not everybody accepted this set-theoretic picture of mathematics. Some con-
structive mathematicians preferred to work within their own styles of system;
see von Plato (2009). But also some classical mathematicians experimented
with alternatives, such as toposes (section 4).
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2. A Catalogue of Sciences
The American Mathematical Society (the AMS) has for decades maintained a
Subject Classification which catalogs the different areas of mathematics. We
can learn the shape of mathematical logic by following the development of this
catalog.

Logic appeared in the 1950 Subject Classification as “Foundations.” In 1952
the first two categories were

Logic and Foundations

Set theory

What came under these two heads?
Broadly, Logic and Foundations covered the topics discussed in Mancosu,

Zach, and Badesa (2009), so far as these topics were still mathematically active.
What Mancosu et al. (2009) describe as “Zermelo’s Axiomatization of Set
Theory and Related Foundational Issues” was certainly an active area, but
for the AMS it was not a part of set theory. Set theory was a mathematical
discipline that included, for example, the contents of Hausdorff’s text (1927).
For Hausdorff, the heart of set theory lay in the theory of cardinal and
ordinal numbers, the cardinalities of power sets, and descriptive set theory
(essentially the topology and combinatorics of the real numbers—see Kechris
1995). Hausdorff mentions Zermelo just twice, once to introduce Zermelo’s
well-ordering principle and once to note that he will not explore Zermelo’s
axiomatics. By 1952, set theory also included Ramsey theory and other topics
that today are commonly grouped under combinatorial set theory or infinitary
combinatorics. It was possible to pursue all these topics as parts of naive set
theory, that is, without formalized axioms (Halmos 1974).

Sometime in the early 1960s it became common for mathematical logicians
to classify themselves into four main groups: model theorists, set theorists,
recursion theorists, and proof theorists. This classification is still standard
today. It first reached the ASL Subject Classification in 1973, when the section
“Logic and Foundations” became subdivided at two levels. The higher level
divisions were

Philosophical and critical

Classical logical systems

Nonclassical formal systems

Proof theory

Constructive mathematics

Recursion theory

Methodology of deductive systems

Model theory



Set Theory, Model Theory, and Computability Theory 475

Algebraic logic
Set theory

Proof theory and constructive mathematics overlapped each other; from 1980
they were combined in one subsection. Algebraic logic was a minority interest
but significant enough to include. There were some relevant developments in
other parts of the 1973 Subject Classification too: Group Theory sprouted
a subsection “Metamathematical considerations,” and Computer Science ac-
quired subsections on “Algorithms,” “Computational complexity and efficiency,”
and “Theorem proving.” The 1980 Subject Classification replaced “Logic and
Foundations” with “Mathematical Logic and Foundations,” and included
“Nonstandard models” as a new subsection.

The 2000 Subject Classification saw two further changes. “Recursion the-
ory” was renamed “Computability and recursion theory.” This was at least
partly a response to a growing feeling among recursion theorists that their
subject should have been called computability theory (see Soare 1996). The
second change was that Set Theory disappeared as a separate section in the
Classification, and survived only as a branch of logic. Presumably the reason
was that it had become impossible to distinguish between logicians’ set theory
and anybody else’s. Three examples will suffice. First, in 1975 the logician
Martin (1975) proved that all Borel games are determined. This result is
useful for logicians, but its proof needs no specifically logical methods and
no abnormal axioms. Second, the logician Shelah (1994) published a range
of results, mostly discovered by himself, about the cofinalities of cartesian
products of ordinals. Though questions in logic had led him to this theory,
he commented, “Cantor should have no problems understanding and (so I
feel) appreciating the theorems and even most proofs in this book” (1994, xi).
Third, various people found “logical” proofs of results that had been proved
earlier in the nonlogical tradition of set theory; see, for example, Simpson’s
logical recasting of Nash-Williams theory in the appendix to Mansfield and
Weitkamp (1985).

The main shaping of mathematical logic took place in the interval between
two classic textbooks, Kleene’s Introduction to Metamathematics (1952) and
Shoenfield’s Mathematical Logic (1967). Shoenfield’s book is still suitable as
an introduction; the Association for Symbolic Logic and A. K. Peters reissued
it in 2001.

3. Set Theory I: Building Models
As the axioms of set theory came to carry a greater load of mathematics, it
was increasingly necessary to justify them. They should be intuitively true and
they should allow one to deduce anything needed in any acceptable branch of
mathematics. Also, a traditional task of foundations has been to demonstrate
the independence of an axiom from other axioms, that is, to show that it is
not logically deducible from the other axioms.
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Mancosu, Zach, and Badesa (2009) carry the story up to 1930. Most of the
work after this date took the axioms of ZF as given; one wanted to know what
else followed from ZF and what didn’t. (Some authors used axiomatic systems
that were equivalent to ZF but had two sorts of individual: sets and classes.
Two-sorted systems largely dropped out of use in the 1960s.)

The first major advance after 1930 was Gödel’s slim but deep monograph
(1940) on the constructible universe. Gödel worked in his own two-sorted
system, but it’s conventional to state his results in terms of ZF. He showed
how, within the formal language of ZF, one can define a class L of sets so
that L together with the restriction to L of the membership relation ∈ also
satisfies the axioms of ZF. Given any model M of ZF, L (more precisely LM,
the interpretation in M of the definition of L) forms a definable substructure
of M that is also a model of ZF. Definable substructures of a model of ZF
which are provably models of ZF in their own right are known as inner
models.

Gödel’s inner model L, known as the constructible universe, has further
important properties. (See Devlin 1984 for an introduction.) An ordinalL (i.e.,
an ordinal in the sense of the model L) is the same thing as an ordinal. The
model LL is again L. There is a formula that defines a bijection between the
class of ordinals and the whole of L. Using this formula, we can write an axiom
“V = L” (the Axiom of Constructibility), which says that every set is in L;
since LL = L, L itself satisfies this axiom. From “V = L” one can deduce many
other statements. Gödel himself deduced the Axiom of Choice (easily—the
formula listing all the sets in L makes choices for us). He also deduced the
Generalized Continuum Hypothesis (GCH for short), which says that for every
infinite cardinal κ, κ+ (the next cardinal after κ) is equal to 2κ (the number of
subsets of a set of cardinality κ). Gödel showed that if ZF is consistent, then
so is ZF with “V = L” added: If we have a contradiction from ZF + “V = L,”
then we can write down a proof from ZF that the contradiction holds in L,
and this shows that ZF itself is inconsistent. As a corollary, if ZF is consistent
then so are ZFC and ZFC + GCH.

A subtle analysis by Jensen (1972) revealed several combinatorial principles
that are true in L; the most famous are box and diamond (� and ♦), and
some combinatorial devices known as morasses. These principles settle many
previously open mathematical questions, and in most cases we now know that
the answers to these questions don’t follow from ZFC alone, or even from ZFC
+ GCH. Two famous examples are that Suslin continua (which are distinct
from but in many ways similar to the real line) exist and that Whitehead’s
problem in abelian groups has a positive solution. The Whitehead problem is
only one example of the deep relations between abelian groups and infinitary
combinatorics; see Eklof (1980).

The fact that LL equals L puts severe limits on consistency proofs by inner
models. For example, if we assume “V = L,” then it follows that every inner
model is the entire universe. So to prove that a set-theoretic statement φ is
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consistent with ZF, in cases where φ is inconsistent with “V = L,” we need
another method. It took over 20 years to find one. But Cohen (1963) finally
made the breakthrough.

Levy, Solovay, Shoenfield, and others refined Cohen’s method, and the
following scheme emerged. We take a model M of ZFC (the ground model) and
a partially ordered set P, which is an element in M ; P is called the notion of
forcing, and its elements are called conditions. Together M and P determine a
language L known as the forcing language; L is a language for set theory, and
elements ofM serve as constant symbols in L. A relation “p forces φ,” between
conditions p and sentences φ of L, is defined in M ; the most significant clause
in the definition is

p forces ¬φ if and only if there is no condition q �P p such that q
forces φ.

Now if M itself is countable, then from outside M we can build up, in a
countable sequence of steps, a set G of conditions so that (among other things)
for every sentence φ of L, exactly one of φ and ¬φ is forced by some condition
in G. We take the set {φ : some condition in G forces φ }, and we read it as a
description of a structure N . All this can be arranged so that N is in fact a
model of ZFC extending M (but not adding any new elements of any member
of M), N has the same ordinals as M , and N contains G. We write N as
M [G], and we call it a generic extension of M ; the set G is called the generic
set. Because G is defined from outside M , there is no guarantee that G is a
set in M , and in fact we easily ensure that it is not in M .

If M is a model of “V = L,” then M [G] has the same ordinals as M but
extra elements (for example G), and so “V = L” is false in M [G]. This proves
that “V = L” is not deducible from ZFC. By working a little harder, we can
build a model of ZFC in which the Continuum Hypothesis fails, too. An extra
twist, using permutation groups, yields modified generic extensions in which
the Axiom of Choice fails. In short, Cohen had found a very flexible way of
proving independence results in set theory. His method is known as forcing.

Cohen assumed he had a countable model of ZFC. This is a stronger
assumption than the truth of ZFC itself; if ZFC entailed the existence of a
countable model of ZFC, it would entail the consistency of ZFC, and hence by
Gödel’s Second Incompleteness Theorem, ZFC would be inconsistent. Cohen
himself pointed out a way around this problem. To show the consistency of ZFC
with the statement “V �= L,” by the Compactness Theorem for first-order logic
(section 6) we need only show that this statement is consistent with every finite
subset T of ZFC. But in ZFC we can prove the existence of a countable model
M of U , where U is a finite subset of ZFC large enough to ensure that M [G]
is a model of T and “V �= L.” (Also in forcing we normally assume that M
is a transitive model, i.e., that its elements are genuinely sets, the membership
relation is genuine membership, and every member of an element of M is also
an element of M . These stronger assumptions are justified in the same way.)
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Scott discovered another way around the problem. Given M , we build in M
a complete boolean algebra B and give each sentence φ of the forcing language a
boolean value |φ|B in B. Choosing a generic set is equivalent to finding a generic
(i.e., suitably well-behaved) ultrafilter G on B; the sentences true in M [G] will
be those whose boolean values lie in the ultrafilter. Cohen’s construction is
a special case; for each notion of forcing P there is a corresponding complete
boolean algebra B. But Scott’s method is more general than Cohen’s. If |φ|B is
not the top element of B, this fact already shows that φ is not deducible from
ZFC, whether or not we can find a generic ultrafilter on B. Scott’s approach is
known as boolean-valued models.

Among several extensions of Cohen’s ideas, probably the most important
is iteration. Instead of taking a sequence of generic extensions M , M [G],
M [G][G′], we reach M [G][G′] as M [G�] in a single step, by finding the generic
set G� in a composite notion of forcing. More generally we can pack a transfinite
sequence of generic extensions into a single step; see for example Jech (1986).
The result is a battery of techniques that have allowed set theorists to prove
the consistency and independence of most of the problems in descriptive set
theory left open by the set theorists of the 1920s. One of the most powerful
iteration techniques is the proper forcing of Shelah (1998).

Forcing axioms are set-theoretic statements that sum up the things made
true by some form of forcing. The earliest examples were a cluster of statements
known as Martin’s Axiom, which sum up the effects of forcing with c.c.c. notions
of forcing. For example, to prove that the statement “There are no Suslin
continua” is consistent with ZFC, we need only deduce the statement from
Martin’s Axiom. Martin’s Maximum is a stronger version of Martin’s Axiom;
we need large cardinals (see the next section) to prove its consistency. A related
notion is the Ω-logic of Woodin; if φ is a theorem of Ω-logic in some model M
of ZFC, then φ remains a theorem of Ω-logic in every generic extension of M .
Woodin (1999) makes sophisticated applications of this range of ideas.

Jech (1997) is a general reference covering the constructible universe and
forcing.

4. Set Theory II: Large Cardinal and Other Axioms
In general a proof that neither φ nor ¬φ follows from ZFC gives us no clue
whether φ is in fact true. If we want to settle the question, we need new
arguments.

Not all set theorists agree that the choice of set-theoretic axioms is a matter
of truth or falsity. Of those who do, many have respected the advice given by
Gödel (1947). First, Gödel urged set theorists to explore axioms that express
that “very great cardinal numbers” exist. The intuitive basis for such axioms is
that the universe of sets has no upper bound; the axioms “assert the existence
of still further iterations of the operation ‘set of.’ ” Second, he suggested
that axioms can justify themselves by their “fruitfulness in consequences
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and in particular in ‘verifiable’ consequences, i.e., consequences demonstrable
without the new axiom, whose proofs by means of the new axiom, however, are
considerably simpler and easier to discover, and make it possible to condense
into one many different proofs.”

In the spirit of Gödel’s first proposal, logicians began to explore the conse-
quences of assuming that there exists a measurable cardinal (i.e., a cardinal
whose power set carries a countably complete nonprincipal ultrafilter). Ulam
had introduced measurable cardinals in 1930. By 1964 it was known that if
there are any measurable cardinals at all, the smallest one κ must be very large;
for example, there must be κ strongly inaccessible cardinals less than it. Scott
(1961) showed, by considering an ultrapower of the universe by a countably
complete ultrafilter (see section 6.1), that there are no measurable cardinals in
Gödel’s constructible universe L. Subsequent work of Gaifman, Rowbottom,
Silver, and Solovay showed that if there is a measurable cardinal, then there
is a nonconstructible Δ1

3 set of natural numbers (known as 0	, see section 8
for Δ1

3) which encodes a description of L as an Ehrenfeucht-Mostowski model
(see section 6.3) with spine containing all the uncountable cardinals. One
consequence is that ωL1 , the cardinal ω1 in the sense of L, is tiny compared
with ω1 itself. Jech (1997) surveys all this work.

Jensen’s covering lemma (see Dodd 1982) classified all models of ZFC into
two classes. If a model of ZFC contains 0	, then its cardinals are widely different
from those of L, as we have just seen for ω1. On the other hand, if the model
M doesn’t contain 0	, then for every uncountable set X of ordinals in the
model, there is in LM a set of ordinals Y of the same cardinality as X, with
X ⊆ Y ; it follows that cardinalities and cofinalities are nearly the same in
LM as they are in M . Subsequent work by Jensen, Dodd, Mitchell, Steel,
and others showed that there is a similar dichotomy for models of set theory
containing a measurable cardinal. Further dichotomies of the same kind exist
for stronger large cardinal assumptions, but they become harder to describe
as the assumptions grow stronger. In each case one has to find an inner model
called a core model, which plays a role analogous to L. See Zeman (2002).

Mycielski and Steinhaus (1962) suggested an axiom broadly in the spirit of
Gödel’s second proposal. LetX be a set of infinite sequences of natural numbers.
Suppose two players take turns to choose natural numbers n0, n1, n2, . . . ;
suppose we reckon that the first player wins this game if the resulting infinite
sequence is in X, otherwise the second player wins. Then we say that the game
is determined if one of the players has a strategy guaranteeing that he will win
regardless of how the other player plays. Mycielski and Steinhaus proposed
the axiom that for every such set X, the game is determined. Their axiom is
known as the Axiom of Determinacy, AD for short.

The axiom AD is inconsistent with the Axiom of Choice, but it has a number
of very pleasant consequences, for example, that every set of real numbers has
a Lebesgue measure. (ZFC entails that all analytic sets of reals are Lebesgue
measurable, but in L there is a Δ1

2 set of reals that is not Lebesgue measurable.)
A weaker statement is ADL(R), which states that AD is true in the universe
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of sets constructible in the sense of Gödel but starting from the set R of real
numbers. There is no reason to think that this weaker axiom is inconsistent
with ZFC. Mycielski and Steinhaus expressed the hope that descriptive set
theorists might be able to assume ADL(R) and then work inside L(R), thus
getting most of the benefits of AD.

Gödel’s two proposals came together in a satisfying way during the 1980s.
There is a type of large cardinal called a Woodin cardinal; Woodin cardi-
nals have many measurable cardinals below them. Martin, Steel, and Woodin
succeeded in showing from ZFC that if there are infinitely many Woodin car-
dinals with a measurable cardinal above them, then ADL(R) is true. Woodin
also showed that the theory ZFC + “There are infinitely many Woodin cardi-
nals” is consistent if and only if ZF + AD is consistent. See Kanamori (1994,
§32).

In line with Gödel’s suggestions, one might read these results of Woodin et
al. as reasons for adopting ADL(R) as an axiom. Woodin (2001) has pressed
the matter further. He argues that we are now in sight of being able to
decide whether the Continuum Hypothesis is true or false. Gödel himself in
1970 submitted for publication a paper giving “considerations leading to the
probable conclusion that the true power of the continuum is ℵ2” (Gödel 1995,
405–422). He withdrew the paper when an error came to light, but some set
theorists still hope that the intuition behind it can be rescued.

Most set theorists now accept ZFC as the standard framework. It includes
the Axiom of Choice; in fact several well-known theorems of classical pure
mathematics turned out to be equivalent to the Axiom of Choice, in the sense
that each of them together with the axioms of ZF entails Choice. Examples
are: Tikhonov’s theorem that every product of compact topological spaces
is compact; Krull’s theorem that every commutative ring with 0 �= 1 has a
maximal ideal; the theorem that every vector space has a basis. Details of
these three results and others are in Rubin and Rubin (1985).

ZFC also includes the Axiom of Foundation, which guarantees that there
are no infinite descending sequences of members:

· · · ∈ a2 ∈ a1 ∈ a0.

This useful axiom allows us to use induction on the ordinals, in analogy with
induction on the natural numbers, to prove theorems about all sets. But
the truth of the axiom is hardly an issue of principle. Within any model
M of the other axioms of ZF, we can pick out an inner model satisfying
Foundation, and (given Choice) this inner model contains an isomorphic copy
of any mathematical structure in M. So the use of set theory with axioms
contradicting Foundation, as in Aczel (1988), need not imply any opposition to
ZFC. As Aczel shows, non–well-founded models have applications in computer
science, where they provide intuitive representations of infinite processes.

Reinhardt (1974) explored axioms for set theory in a style proposed earlier
by Ackermann. These axioms can be read as saying that the universe of sets
has an invisible top: For example, there is no largest infinite cardinal, but the
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universe itself can’t be the first place where this is true, so there must be within
the universe a cardinal such that there is no largest cardinal below it, that is,
a limit cardinal. Although this framework looks at first very different from
ZFC, Reinhardt showed that natural versions of Ackermann’s idea lead either
to a theory equivalent to ZFC or to ZFC with some large cardinal axioms.

Quine’s (1937) set theory New Foundations (NF for short) was much harder
to digest. Its consistency relative to ZFC is still an open problem. Specker
(1953) showed that NF implies the negation of the Axiom of Choice. See Forster
(1995) for further information.

The notion of a topos arose first in category-theoretic work of Grothendieck
and his colleagues, as part of a program to integrate algebraic geometry with
the theory of sheaves. In 1970, Lawvere and Tierney extracted the first-order
part of the Grothendieck definition of a topos, and described the models of
their axioms as elementary toposes. A model of set theory can be construed
as an elementary topos; but elementary toposes in general have no notion of
element, and they encode an “internal logic” which need not be two-valued.
Lawvere urged that elementary toposes are a better foundation than ZFC for
mathematics. He pointed to the successes of category theory in homing in on
mathematically interesting notions. More controversially he added (1971):

[Developing and transforming] “set theory” requires taking account
of the experience that the main pairs of opposing tendencies in
mathematics take the form of adjoint functors, and frees us of the
mathematically irrelevant traces (∈) left behind by the process of
accumulating (∪) the power set (P ) at each state of a metaphysical
“construction.”

The axioms of elementary topos theory are equiconsistent with a form of
set theory that has a weak comprehension axiom in place of Separation and
Replacement. See Johnstone (1977, ch. 9).

5. Model Theory I: From Deductive Systems
to Formal Theories

The name “theory of models” comes from Tarski (1954). But a better date
for the birth of the new subject is 1950, when Abraham Robinson (1950) and
Tarski addressed the International Congress of Mathematicians at Harvard. The
theme of both their talks was that the general theory of deductive systems, as it
had been built up by logicians working in the foundations of mathematics, had
reached a point where it was ready for “effective application . . . to mathematics
proper” (to cite Robinson’s opening paragraph). Mal’tsev (1941) in the Soviet
Union had already launched the same program, but it took some time for his
work to be recognized in the West.

The new discipline was a branch of pure mathematics with no philosophical
content and no connection with foundations. One could hardly say the same



482 The Development of Modern Logic

of the theory of deductive systems that had given rise to it. In this section
we discuss how the old foundational discipline metamorphosed into the new
mathematical one. The next section reports the main technical achievements
of model theory.

During the 1930s Tarski was working on a project to give definitions of
central concepts in the foundations of mathematics, in terms of notions from set
theory and syntax. In his textbook (1936), he explained that each deductive
system has a set of “primitive terms” whose meanings “seem to us to be
immediately understandable,” and a set of “axioms” which “we accept as true
without establishing them in any way” (p. 110 of the 1994 translation). How
does one choose the axioms? Tarski’s teacher Leśniewski had expressed the
view that

every language system, even the most formalized, says “something”
“about something.” . . . any formalized theory consists of state-
ments endowed with meaning, and not of “more or less picturesque
formulas.” (Woleński 1989, 145)

This was a key part of Leśniewski’s “intuitionistic formalism,” which Tarski
(1983, 62) said he endorsed.

Tarski’s view here had two major flaws. In the first place, we can’t formalize
the notions of “immediately understandable” and “accepting as true” in terms
of notions from set theory and syntax. So the crucial notion of a deductive
system remains formally undefined. In the second place, as we saw in section 1,
group theory studies not just a single group at a time but also relations
between several groups. The only appropriate way to treat a deductive system
whose axioms are those of group theory (or indeed those of any algebraic
theory) would be to agree with Pieri, and against Leśniewski, that there is
no fixed interpretation. Tarski admitted this last point already in (1936, 119f.
of the 1994 translation), but he offered no repair of his general framework to
accommodate it.

This background explains the extraordinary definition of “model” that
Tarski was using in the late 1930s, as reported by Mancosu, Zach, and Badesa
(2009) on their final page. His problem was to formalize the idea of “changing
the meanings of the primitive terms.” Since he had no formal description of
what counted as assigning the original meanings, he could hardly define how
to change them. So he physically removed the primitive terms and replaced
them by higher-order variables, and then invoked the notion of satisfaction.
This elaborate rigmarole survived as late as Mostowski’s textbook (1948).

In Hodges (2004) I analyzed how the progress of theorems made Tarski’s
definitions of the 1930s steadily less usable in practice. Around 1950, he
consciously made the break. In future, deductive systems (now called simply
theories) are sets of sentences of a formal language. A mathematician might
choose to assign fixed meanings (and the theory would then have a standard
or intended model), but the meanings are no part of the theory itself. The
truth definition is recast with a distinguished set of nonlogical constants
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(the primitive terms). The notion of model is defined in terms of functions
assigning set-theoretic objects to these constants. The notions of meaning and
reference vanish into set theory. Tarski reports the final outcome in Tarski and
Vaught (1957). In a footnote added to a translation of a paper in 1956 (1983,
62), Tarski stated that he no longer subscribed to Leśniewski’s intuitionistic
formalism.

Robinson had no such adjustments to make. His notion of model came from
Carnap (1942). Carnap had long since rejected the view that mathematics
consists of “statements endowed with meaning”; in 1935 (36) he had said, “The
formal sciences do not have any objects at all; they are systems of auxiliary
statements without objects and without content.” Incidentally Robinson also
took from Carnap’s semantics the idea of adding constant symbols to the
formal language as names of the elements of a structure. Robinson’s technique
of diagrams, which he used for constructing models of a theory with given
structures as substructures, rests directly on this idea.

Philosophers studying model-theoretic work of the 1950s have sometimes
been tempted to read into it some of the earlier foundational concerns. For
example in Tarski, Mostowski, and Robinson (1953, 8) we learn that “A
sentence Φ is said to be a logical consequence of a set A of sentences if it is
satisfied in every realization R in which all sentences of A are satisfied.” In
other words, a formal sentence is a logical consequence of a formal theory if
and only if every model of the theory is also a model of the sentence. One
should be clear that Tarski is simply giving a convenient name to a useful
model-theoretic relation. His definition is formally close to the characterization
he proposed for logical consequence in the 1930s, but in 1953 he is not making
a claim about any preexisting notion of logical consequence—any more than I
express my view of the Royal Family by calling my dog Prince.

6. Model Theory II: The Technical Results
Model theory inherited several important mathematical results from the foun-
dational research of the period 1920–1940. One result central to the later
theory was the fact (proved by Gödel in his doctoral thesis in 1930) that if
T is a first-order theory, φ is a first-order sentence and every model of T is
a model of φ, then T has a finite subset U such that all models of U are
models of φ. This became known as the Compactness Theorem. Gödel proved
it only for languages with countably many symbols. Mal’tsev (1936) (and later
but independently Abraham Robinson and Henkin) extended the result to
first-order languages of arbitrary cardinality.

Robinson saw how to use the Compactness Theorem to find a structure that
satisfies all the same first-order sentences as the ordered field of real numbers,
but has extra elements that can’t be identified with any real numbers. These
extra elements are said to be nonstandard. Some of them must be infinitesimal,
that is, greater than 0 but smaller than 1/2, 1/4, 1/8, and so on. Robinson
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also realized that one can use infinitesimals in very much the way that Leibniz
had proposed, for proving theorems of differential and integral calculus. The
theorems so proved would transfer back to the “genuine” field of real numbers,
provided that they can be written as first-order sentences. See Bell (1998) for
the resulting Nonstandard Analysis.

In the same spirit, one can study nonstandard models of first-order arith-
metic or of any other first-order description of some known mathematical
structure. Work in this area led Paris and Harrington (1977) to their sup-
plement to Gödel’s First Incompleteness Theorem: They found a previously
known mathematical theorem that can be stated as a first-order sentence about
the natural numbers but can’t be proved from first-order Peano Arithmetic.
See Kaye (1991) for more on nonstandard models of arithmetic.

Model theory also inherited from general algebra some set-theoretic con-
structions: cartesian product, substructure, generating set, unions of chains,
isomorphism, embedding, and homomorphism. A theorem of Birkhoff (1935)
said that a class of algebras is closed under homomorphic images, substruc-
tures, and cartesian products if and only if it is the class of models of a set of
universally quantified equations. This was a model-theoretic result ahead of
its time.

What follows is a sample of typical model-theoretic questions. Marker (2002)
is a broad and up-to-date text; Hodges (1997) is a gentler introduction, and
Chang and Keisler (1973) is the classic textbook. Here I concentrate on first-
order model theory. Barwise and Feferman (1985) report on a wider range of
logics; for work in progress on the model theory of Banach algebras one should
try a Web search with the keywords “Henson” and “Iovino.”

6.1. What Are the Significant Maps between Structures?
An elementary embedding from a structure A to a structure B is a homomor-
phism f such that if elements of A satisfy a first-order formula in A, then their
images under f satisfy the same formula in B. If A here is a substructure of
B and f is the inclusion map, we say that B is an elementary extension of A.
Robinson used these notions implicitly in his doctoral thesis in 1949. Tarski and
Vaught (1957) defined them explicitly and proved their fundamental properties.
For example their version of the Downward Löwenheim-Skolem Theorem says,
in its simplest case, that if A is an infinite structure whose first-order language
has at most countably many nonlogical constants, then A is an elementary
extension of some structure B with only countably many elements. Their
Theorem on Unions of Elementary Chains is a tool for building up arbitrarily
large elementary extensions of any infinite structure. The theorem stating the
existence of these elementary extensions is known as the Upward Löwenheim-
Skolem Theorem (though it was proved by Tarski, and Skolem rejected it for
foundational reasons). In the mid-1950s another construction to prove the
same theorem came to light: One took a cartesian power AI of the structure
A and used an ultrafilter D on the index set I to form a homomorphic image
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AI/D in which A was elementarily embedded. The structure AI/D is known
as an ultrapower of A; Chang and Keisler (1973) analyze it in detail.

Robinson observed that all embeddings between algebraically closed fields
are elementary embeddings. This was the first of a long sequence of translations
between model-theoretic and algebraic notions. One of the most influential
was Macintyre’s (1971) demonstration that an infinite field is algebraically
closed if and only if its first-order theory is ω-stable (see section 6.4).

6.2. What Is Elementary Equivalence?
Two structures A, B are said to be elementarily equivalent, in symbols A ≡ B,
if they have the same language and the same sentences of this language are true
in both of them. Tarski introduced this notion informally but quite precisely
in 1930 (before he had a truth definition adequate for formalizing it). In 1946
(Sinaceur 2000), he asked for a “theory” of elementary equivalence. By the 1950s,
this request had hardened into the question of giving purely structural necessary
and sufficient conditions for two structures to be elementarily equivalent.

Answers of two kinds were found. The first is the back-and-forth criterion. It
was discovered by the French-Algerian logician Fraïssé (and later rediscovered
by the Kazakh logician Tǎımanov). As Ehrenfeucht pointed out, it can be
thought of as a game: Two players take turns to pick elements of the structures,
the first from either structure and then the second from the other structure.
At each stage the second player has to choose so that the elements chosen so
far in one structure exactly match those chosen in the other; if she fails to do
this, she loses. The two structures are elementarily equivalent if and only if the
second player has a strategy that ensures she never loses. The back-and-forth
criterion adapts to other languages besides first-order, and works equally well
for finite and infinite structures. It has become an important tool of theoretical
computer science. See Ebbinghaus and Flum (1999).

Lindström (1969) found an unexpected application of the back-and-forth
criterion. He showed that if a logic contains first-order logic, is closed under
first-order operations (such as conjunction and quantification), and obeys
analogs of the Compactness Theorem and the Downward Löwenheim-Skolem
Theorem (for example), then the logic expresses nothing that can’t already be
expressed with first-order formulas. It seemed to some that his results might
form a mathematical proof that first-order logic is in some sense the basic logic;
though closer reflection makes one wonder whether satisfying the Compactness
Theorem is really a mark of “the basic logic,” whatever that might mean. But
Lindström did inspire valuable work on the comparison of different logics,
much of which is reported in Barwise and Feferman (1985).

Ultrafilters gave a second answer to Tarski’s question. Two structures A and
B are elementarily equivalent if and only if there are a set I and an ultrafilter D
on I such that the two ultrapowers AI/D and BI/D are isomorphic. This was
proved first under special set-theoretic assumptions by Keisler, and then from
ZFC by Shelah; see Chang and Keisler (1973, §6.1). In a precise technical sense
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known as saturation, ultrapowers tend to be “rich in elements.” This richness
of the ultrapowers AI/D and BI/D allowed Keisler and Shelah to find, for
every element of one ultrapower, a corresponding element of the other.

6.3. Model-Theoretic Constructions
What methods of construction are available to produce a model of T , where T
can be any (or any suitable) first-order theory? We have already mentioned
three such methods: Robinson diagrams, unions of elementary chains, ultra-
powers. Three others worth noting are omitting types, Fraïssé limits, and the
Ehrenfeucht-Mostowski construction.

The opposite of a saturated structure is one that is missing some types of
element; we say it omits them. Vaught (1961) showed how to construct models
of a theory that have countably many elements and omit a given countable
set of types. Some other model-theoretic constructions, notably the finite
forcing of Abraham Robinson, are close analogs of Vaught’s construction. One
can express the common feature of these constructions as a game; see Hodges
(1985).

Fraïssé observed that we can build a countable densely ordered set without
endpoints by taking a family of finite ordered sets and slotting them into each
other in all possible ways. His generalization of this construction is known
as Fraïssé limits. Further generalizations are due to Jónsson, Shelah, and
Hrushovski for a wide range of model-theoretic purposes.

The Ehrenfeucht-Mostowski construction was perhaps the most surprising
discovery in early model theory. For any consistent theory T with infinite mod-
els, and any linearly ordered set (I,<), we can build a model of T around the
set I (the spine or indiscernible sequence) so that the behavior of each element
of the model is completely determined by the way it is attached to the spine.
For example every order-automorphism of (I,<) induces an automorphism of
the model. The resulting Ehrenfeucht-Mostowski models generally omit many
types; in this way they are a kind of opposite to ultrapowers, which tend to
omit few types. See Marker (2002, ch. 5).

6.4. Categoricity
Let κ be an infinite cardinal. We say that a theory T in a countable first-order
language is κ-categorical if T has models with κ elements, but any two such
models are isomorphic. We say T is uncountably categorical if it is κ-categorical
for all uncountable cardinals κ. (Necessarily then T is complete, because other-
wise it would have two models that are not elementarily equivalent, and by the
Upward Löwenheim-Skolem Theorem these two models would have elementary
extensions with the same number of elements.) Morley (1965) provided a
powerful range of techniques for analyzing the models of an uncountably cate-
gorical theory. This paper and subsequent work by Marsh, Baldwin, Lachlan,
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and Zilber gave us a compelling picture of how these models are built up. At
their core they have a geometric structure called a strongly minimal set, which
is determined once we know its dimension; the rest of the model is closely
tied to this set. Thanks to this work, model theorists became more interested
in the models than in the theory, and they began to speak of the models
themselves as “uncountably categorical structures.” Buechler (1996) gives a
modern account of Morley’s results.

Morley’s paper generated two programs of research. The first was due to
Shelah. As Shelah noted, knowing that a theory is uncountably categorical
gives a vast amount of information about its models, but knowing that it is
not uncountably categorical tells us almost nothing. He urged that it would be
better to find a wider class than that of uncountably categorical theories, in
such a way that we get the maximum amount of information both from knowing
that a theory is in the class, and from knowing that it is not. Typically a theory
in the class—a “good” theory—would have its models so tidily arranged that
we can catalog them with parameters, like the dimension of a vector space.
A theory outside the class—a “bad” theory—would have a chaotic family of
models; for example, we should be able to show that it has two models that are
not isomorphic but are very hard to tell apart. For any countable first-order
language, Shelah found such a division of the class of complete theories into
a “good” class and a “bad” class, and he called it the main gap. The full
definition of the main gap is complicated, but the heuristic was very successful
in generating new techniques, both on the “good” side and on the “bad.” He
reported his main results in 1990. In more recent work, which continues to the
present, he extended these ideas to logics in which the Compactness Theorem
fails, and more generally to classes of structure that are defined by closure
under certain general constructions rather than by the truth of sentences of
any formal language.

The second program was mainly due to Zilber. His idea was not to broaden
the class of uncountably categorical theories but to refine it. He introduced
a classification of these theories into three types, according to the lattices of
definable sets in their models: disintegrated (typical case an infinite set with
no structure), modular (typical case a vector space), and nonmodular (typical
case an algebraically closed field). This description gave new information, or
at least a new viewpoint, on various classical structures arising in algebraic
geometry and field theory. A striking success was Hrushovski’s use of this
machinery to complete the proof (previously given only in some special cases)
of the Mordell-Lang conjecture on function fields; the book by Bouscaren
(1998) surveys Hrushovski’s argument. This area of research remains very
active, but is too technical to explore further here. Wagner (2000) reports one
important direction.

The terminology in this area has shifted with changing interests. After
Morley’s work, Rowbottom classified theories according to the cardinalities
of the families of definable relations on their models; a theory with small
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families on models with κ elements was said to be κ-stable, and in consequence
this branch of model theory became known as stability theory. But Shelah
preferred the name classification theory for the general study of classifications
of theories as good/bad. The purely first-order branch of stability theory that
used Zilber’s modular/nonmodular distinction became known as geometric
stability theory (Pillay 1996). More general is geometric model theory, which
includes the program begun by Van den Dries, Pillay, and Steinhorn, to study
o-minimal structures. These are structures carrying a definable linear ordering,
and their definable subsets are finite unions of singletons and open intervals in
the ordering; the field of real numbers is the paradigm example. The theories
of o-minimal structures are always unstable and hence on the bad side of
Shelah’s main gap; nevertheless, these structures turn out to be very tractable
and there are important examples. See Van den Dries (1998).

7. Computability Theory I: The Notion of Computability
Set theory and model theory were created in response to developments within
mathematics as a whole. Not so recursion theory: This theory sprang up quite
suddenly in the 1930s, and provided answers to questions that nobody had
seen any reason to ask.

In 1936, Alan Turing, then a student at Cambridge University, published a
paper (Turing 1936) in which he characterized the class of functions whose
domains and values consist of strings of symbols from a finite alphabet and
which can be mechanically computed by a human being. According to his
analysis, the human being can only survey a bounded part of the calculation
at any one time, and (so far as the calculation is concerned) he can only be
in one of a finite number of mental states at any one time; the number of
states depends on the function being computed. What he does at any stage
in the calculation depends on what he can see on the paper and the state of
his mind at the time, and the only things he can do are to shift his attention
to a different part of the calculation, add or erase a symbol, or move to a
different mental state. Turing showed that the functions computable in this
way are exactly those calculated by a certain type of machine, now known as
a Turing machine. Turing also showed that for any alphabet A of symbols,
there is a Turing machine (a universal Turing machine) that, given as input a
second Turing machine for calculating with symbols in A and a possible input
to the second machine, computes whatever value the second machine would
compute when given that input. He showed that there is no possible Turing
machine which, given a second Turing machine for calculating with A and
a possible input, will always answer the question whether or not the second
machine computing with that input will ever complete its calculation. (This is
the halting problem for Turing machines.) A function computed by a Turing
machine is said to be Turing-computable, or more briefly computable. See Sieg
(1994) on Turing’s analysis.
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When the alphabet A is suitable for describing natural numbers (for example
{0, 1} for naming numbers in binary notation), the everywhere-defined Turing-
computable functions are exactly the generalized recursive functions that
Gödel (1934) had introduced in connection with his incompleteness theorem
(though without anything like Turing’s analysis of computability). Kleene
(1943), starting out from Gödel’s definition but dropping the assumption that
the functions are defined everywhere, defined the class of partial recursive
functions, which were soon seen to be exactly the Turing-computable functions.
Later the word “partial” was dropped. Kleene, Péter, and others built up
a mathematical theory of recursive functions, for which see Rogers (1967).
Particularly important in this theory are Kleene’s fixed point theorems, which
he himself referred to as the “recursion theorems” (1952, 348, 352f.); they say
that recursive functions can be constructed as fixed points of certain kinds of
operation. The entire theory generalizes from sets of natural numbers to n-ary
relations on natural numbers, for any fixed natural number n.

Turing’s Thesis is the claim that independent of Turing we have an intuitive
notion of an effectively computable function, and Turing’s analysis exactly
captures this class of functions. (On Turing’s Thesis and the related Church’s
Thesis, see Davis 1982.) This kind of claim is impossible to verify. Work
like Turing’s has a power of creating intuitions. As soon as we read it, we
lose our previous innocence. Certainly people have had vague but suggestive
ideas of mechanical computation for many centuries. Already in the thirteenth
century Robert Kilwardby (1976, 62) said, “The art of mathematical algorithms
is part of arithmetic proper; it is a practical and mechanical speciality of
arithmetic.” But we will see that there are plenty of non–Turing-computable
functions that with hindsight one might count as Kilwardby-computable. In
the years immediately before Turing’s paper, other researchers working on the
mathematical analysis of algorithms made assumptions completely at odds
with Turing’s. For example Hermann (1926) assumed that we can compute
with the elements of any field (in other words, with any object whatever,
concrete or abstract), but she demanded that we can calculate in advance
a finite upper bound on the number of steps required in each computation.
Herbrand, in a letter to Gödel in 1931, required that we can show by an
intuitionistic proof that each function that we use in a computation has a
unique calculable value at each argument (Gödel 2003, 14f.). Turing’s work
doesn’t show that these conditions were wrong; the moral is only that there
was no single intuition to be formalized. In fact, a large part of computability
theory since Turing has been devoted to bringing out other intuitions.

A natural line of research is to find other mathematical characterizations of
the class of computable functions. Some characterizations used other kinds
of machine. Teachers of computability theory tend to like the limited register
machines of Shepherdson and Sturgis (1963). A radically different kind of
machine is a quantum computer (Nielsen and Chuang 2000); these machines
use quantum theory to improve the efficiency of calculations dramatically, but
the functions calculated are exactly the computable functions.
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It makes sense to ask whether we can reach a different class of functions
by formalizing what can be “physically calculated,” not necessarily in the
digital style of a Turing machine. For example, one can write down differential
operators whose integral eigenvalues are not listed by any computable function,
and maybe some of these operators have physical significance. See Pour-El
and Richards (1989) for more on this theme. Gandy (1980) and Davies (2001)
examine what can be computed by machines in a Newtonian universe.

One can also look for other purely mathematical characterizations of Turing’s
functions. There are three notions, any one of which is definable in terms
of either of the other two. The first is computable functions; the second is
computably enumerable sets, which are sets X such that some Turing machine
outputs 1 if and only if it is given an input in X; the third is computable sets,
which are sets X such that some Turing machine outputs 1 if it is given an input
in X, and 0 if it is given an input that uses the appropriate alphabet but is not
in X. A set is computable if and only if both it and its complement (within the
set of strings from the appropriate alphabet) are computably enumerable. Post
(1944) created a beautiful mathematical theory of computably enumerable
sets; part of the beauty is that we can handle them securely without having
to write out yards of machine code, as one generally has to do when working
with Turing machines.

Computably enumerable sets appear in many parts of mathematics. One
striking example is the theorem of Matiyasevich (1993): A set X of natu-
ral numbers is computably enumerable if and only if there is a finite set
E(x, y1, . . . , yn) of polynomial equations with integer coefficients and indeter-
minates x, y1, . . . , yn such that a natural number n is in X if and only if the set
of equations E(n, y1, . . . , yn) has some solution in integers. (A set of natural
numbers meeting this condition is said to be diophantine.) Matiyasevich’s
theorem gives a negative solution to Hilbert’s Tenth Problem (Browder 1976):
Find an algorithm to determine whether a given diophantine equation has a
solution, or show that there is no such algorithm.

By implication, Turing’s paper characterized two other notions besides
“computable function”; it also characterized “algorithm” (viz. Turing machine,
given by its set of instructions) and “computation” (viz. run of a Turing machine
on a given input). Unfortunately these further characterizations are very bad
from the point of view of computer science. Turing machine instructions are
written in machine code; they owe much more to the architecture of a Turing
machine than they do to the idea behind the algorithm. This puts them at the
wrong level of abstraction. Kolmogorov and Uspensky (1958) made the first
attempt to remedy this fault. Work continues; it seems necessary to distinguish
between serial, parallel, and distributed computation. Relevant papers are
Blass and Gurevich (2004) and Moschovakis (2001).

To return to Hermann: It seemed to her that one can meaningfully talk
about calculations with elements of an arbitrary field. And so it has seemed
to many other people. For example, Euclid’s algorithm for polynomials of
one variable doesn’t require us to be able to write down the coefficients of
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the polynomials. The same applies to various well-known matrix algorithms,
for example, Gaussian elimination. Probably the most general notion of com-
putability in this direction is one that describes computation on a structure,
counting the primitive operations of the structure as computable. Moschovakis
(1974) writes in such a setting; he defines computability in terms of inductive
definability, an idea that builds on Kleene’s first recursion theorem.

If the entities that one computes with have some related structure, then
computations can use this. For example computation with reals can use the
arithmetic of the reals. Blum, Cucker, Shub, and Smale (1998) describe a
notion of computation on real numbers that is meant to capture the “real
number algorithms” of classical mathematics. Other mathematical entities with
associated structure are functions and ordinals. Kleene made the breakthrough
to computation on higher-type objects (functions, sets of sets, etc.) in a series of
papers in the 1950s. Sacks (1990) studies notions of computing on higher-type
objects and ordinals; see also Normann (1980). In the 1960s, Kripke and Platek
independently showed that large parts of classical recursion theory generalize
from ω to ordinals that satisfy certain closure conditions; these ordinals are
known as admissible ordinals. Barwise (1975) was an influential exposition of
this theory.

Constructive mathematicians of various hues have reconstructed various
parts of classical mathematics so as to use only methods that they find
acceptable. To some extent, classical mathematicians can simulate this kind
of reconstruction by restricting themselves to structures whose domains and
operations are recursive, either literally or in some generalized sense. In settings
of this kind, some classical theorems survive and others don’t, and it is often
hard to predict which. One example was the recursive model theory initiated
by Mal’tsev (1961). The two volumes of Ershov et al. (1998a, 1998b) form an
encyclopedia of recursive mathematics.

8. Computability Theory II: Hierarchies and Degrees
Borel (1898, 46) introduced a hierarchy of subsets of the set R of real numbers.
At the bottom level are the F sets; these are the topologically closed sets. The
Fσ sets are the countable unions of F sets. Then Fσδ sets are the countable
intersections of Fσ sets. And so on, alternating countable unions and countable
intersections. Taking unions at limit ordinals, one can iterate this construction
into the transfinite ordinals, and new sets of reals appear at every step before
ω1. The sets gathered up in this way are called the Borel sets. They have
many pleasant properties; for example, they are all analytic (see the end of
this section), and all analytic sets are Lebesgue measurable.

The Borel hierarchy had a huge influence in logic. Within computability the-
ory, we can imitate it with subsets of the set ω of natural numbers, provided
that we take “computable” unions and intersections rather than arbitrary
countable ones. The trick is to make the definition for n-ary relations, simulta-
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neously for all n; then we drop a dimension each time we take a union or an
intersection. To be precise, let C be the set of all computable relations on ω.
The Σ0

1 relations are those of the form

{ (x0, . . . , xn−1) : for some xn, (x0, . . . , xn) ∈ R },
where R is in C. Then the Π0

2 relations are those of the form

{ (x0, . . . , xn−1) : for every xn, (x0, . . . , xn) ∈ R },
where R is in Σ0

1; and so on, alternating “some” and “every.” If we start with
“every” and then take “some” and so on, we get the hierarchy Π0

1, Σ0
2, and

so on. We write Δ0
n for Π0

n ∩ Σ0
n. One easily shows that both Π0

m and Σ0
m

are subsets of Δ0
m+1, for all m 	 0, so that we have an interlocking double

hierarchy. The relations that appear at some finite stage in this hierarchy are
said to be arithmetical.

Kleene (1943) showed that the computably enumerable sets are the subsets
of ω that are in Σ0

1, and the computable sets are those in Δ0
1. So the hierarchy

generalizes the notion of computability: As n increases, the sets in Σ0
n are in

some sense less and less computable. As Kleene demonstrated, a diagonalization
argument (as in the proof of Gödel’s incompleteness theorem) shows that new
relations enter the hierarchy at each level as n increases. It was natural to
extend the hierarchy into the transfinite, like Borel’s hierarchy. A problem was
that one needed computable ways of climbing up to limit ordinals. (Church
and Kleene 1937 first formulated this problem; today it spills over into proof
theory.) The hierarchy gives out at a countable ordinal ωc1, known as the
least noncomputable ordinal. The sets of natural numbers gathered up in
the hierarchy before ωc1 are known as the hyperarithmetical sets. These sets
reappear in several guises in higher recursion theory.

We can guess that if X and Y are arithmetical sets, and Y is higher in
the hierarchy than X, then information about Y might allow one to calculate
what is in X, but not vice versa. There are many ways of making this picture
more precise, and each of them corresponds to some notion of “degrees.” For
example, suppose we design a machine that is like a Turing machine, except
that it is allowed to consult an “oracle for Y ” that, given a number k, will
answer 1 if k is in Y and 0 otherwise. If some machine of this description will
calculate for us whether or not any given natural number is in X, then we
say that X is Turing reducible to Y , in symbols X �T Y . We say two sets of
natural numbers are Turing equivalent if each of them is Turing reducible to
the other. This is an equivalence relation on the set of sets of natural numbers,
and its equivalence classes are known as Turing degrees. Turing reducibility
induces a partial ordering, in fact an upper semilattice, on the set of Turing
degrees. One can refine the semilattice by using more delicate reducibilities;
for example, we say X is many-one reducible to Y (X �m Y ) if there is a
computable function f such that for all n,

n ∈ X if and only if f(n) ∈ Y.
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The corresponding degrees are called many-one degrees. The diagonalization
that led one up the arithmetical hierarchy yields for each degree d a degree d′
called the jump of d; d′ is strictly higher than d in the partial ordering �T .
All of this first appeared in Post (1944) and Kleene and Post (1954), and it
constitutes the subject matter of degree theory, or more elaborately the theory
of degrees of unsolvability.

Post (1944) raised the question whether all computably enumerable but
noncomputable sets belong to the same Turing degree. This was the famous
Post’s problem, answered negatively in 1956 by the American Friedberg and
the Russian Muchnik, both under the age of 20. These two researchers inde-
pendently found the same ingenious argument known as the priority method.
Their discovery provoked a torrent of work on the structure of the degrees,
and of the computably enumerable degrees in particular. Shoenfield, Sacks,
Yates, and Lachlan led the field. Conjectures of Shoenfield stimulated further
work, and soon Lerman (1983) and Soare (1987) were able to report detailed
descriptions of the degrees.

Around 1970 people began to study some much stricter types of reducibility,
mostly defined in terms of Turing machines with severe limits on the space and
time available to them. These allowed a classification of problems according to
their computational complexity; see Garey and Johnson (1979). But complexity
theory is generally assigned to combinatorics and theoretical computer science
rather than logic.

In a different direction, the definition of the arithmetical hierarchy was
adapted to consider relations in P(ω)m×ωn for any finite m and n. Identifying
real numbers with subsets of ω, one could define a computable hierarchy on the
real numbers. It is known as the computable Borel hierarchy; we recover the
original Borel hierarchy by allowing real number parameters. The hierarchy of
sets of reals Σ1

n, Π1
n is defined like Σ0

n, Π0
n but with set quantifiers in place

of number quantifiers. This hierarchy is known as the light-face projective
hierarchy. The bold-face projective hierarchy Σ1

n, Π1
n is the same but with

real number parameters allowed. The sets in Σ1
1 are those known to the early

descriptive set theorists as the analytic sets, and the Borel sets are exactly
those in Δ1

1 = Π1
1 ∩Σ1

1. These definitions put the resources of computability
theory at the disposal of descriptive set theory. Moschovakis (1980) is an
important text in this area.

Cooper (2003) is a general introduction to computability theory.
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11

Proof Theory of Classical
and Intuitionistic Logic
Jan von Plato

In this chapter, we are mainly concerned with the development of Gerhard
Gentzen’s (1909–1945) structural proof theory and its connections with in-
tuitionism. The latter is important in proof theory for several reasons. First,
the methods of Hilbert’s old proof theory were limited to the “finitistic” ones.
These methods proved to be insufficient, and they were extended by infinitistic
principles that were still intuitionistically meaningful. It is a general tendency
in proof theory to try to use as weak principles as possible. A second reason
for the importance of intuitionism for proof theory is that the proof-theoretical
study of intuitionistic logic has become a prominent chapter of logic, with
applications in computer science. For reasons of space and time, we do not
discuss the development of ordinal proof theory, or intuitionism beyond its
logic. (A brief historical outline of the former can be found in Pohlers 1986.)

1. Hilbert’s Old Proof Theory
Hilbert’s old proof theory was based on the formalization of logical inferences
through the axiomatic method. Formal proofs start with instances of the axioms
of logic, and the number of rules of inference is kept as low as possible. The
axiomatic method in logic was developed mainly by Frege, Peano, and Russell.
It is almost impossible to use it in the actual construction of logical proofs, but
it served the purposes of Hilbert’s metamathematics as far as pure logic was
concerned. The big questions of the consistency and completeness of the basic
logical systems, those of classical propositional and predicate logic, were settled
by 1930. The third big question, the existence of a decision method that answers
if a formula is a theorem of logic or not, was cleared in axiomatic studies by 1936.
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Intuitionistic logic, too, was studied by the axiomatic method. What the
axioms are, was established by Arend Heyting (1930). As a curiosity, it can be
pointed out that there is a characterization of intuitionistic logic within the
algebraic tradition of Ernst Schröder that antedates Heyting’s work by 11 years,
namely, Thoralf Skolem’s paper (1919). It gives the axioms of an algebraic
structure, today called Heyting algebra, that characterizes intuitionistic logic
in the same way as Boolean algebra characterizes classical logic.

The main open goal of Hilbert’s proof theory around 1930 was the consis-
tency problem of the arithmetic of natural numbers. Gödel’s second incom-
pleteness theorem (1931) showed that this goal cannot be reached by Hilbert’s
finitary methods. The result made it necessary to rewrite the aims of the
Hilbert school, even in quite a concrete sense: At the time, Paul Bernays had
almost finished the comprehensive presentation Grundlagen der Mathematik,
but had to redo the work that came out much later in two parts, in 1934 and
1939 (see Hilbert and Bernays 1934, preface). Hilbert himself did not take part
in this project, except for stating in a preface his disbelief in the finality of
Gödel’s results, a feeling not shared by Bernays or others of the Hilbert school.

2. Interpretation of Classical Logic in Intuitionistic Logic
Soon after Gödel’s results, it was realized that the consistency problem of arith-
metic is within the reach of intuitionistic reasoning. Gödel (1933a) himself and
Gentzen (1933) arrived at this insight, through the double-negation translation
of classical predicate logic into intuitionistic predicate logic. The first such
translation was invented by Andrei Kolmogorov (1925) in a paper that itself is
a predecessor to Heyting’s axiomatization of intuitionistic logic. Kolmogorov’s
paper, written in Russian, remained unknown well until the 1930s, as shown by
Gentzen’s letter to Bernays in 1938 (see Menzler-Trott 2001, 79). The paper
had, however, an indirect influence through Valeri Glivenko (1929), and in the
case of Gödel, through the manuscript version of Heyting (1934) that Gödel
read in the summer of 1932 (see Gödel 1995, 75, note y). Glivenko proved a
theorem now bearing his name, stating that if a negated formula is provable
in classical propositional logic, it is already provable in intuitionistic proposi-
tional logic. Only propositional but not predicate logic has this property. The
connection between Glivenko’s theorem and Kolmogorov’s double-negation
translation is close: By the latter, to each formula A, there is a formula of the
form ∼∼A∗ that is classically equivalent to A, and if A is classically provable,
∼∼A∗ is intuitionistically provable. For propositional logic, one can have A∗
equal to A. Now, if A is a classically provable negation, say, ∼B, then by above
∼∼∼B is intuitionistically provable. Because ∼∼∼B ⊃ ∼B is a theorem of
intuitionistic logic, ∼B is also intuitionistically provable.

In classical logic, the laws of excluded middle A ∨ ∼A and double negation
∼∼A ⊃ A are admitted. In intuitionistic logic, instead, these laws are not
assumed. In particular, because ∃xA ∨ ∼∃xA is not available, existence has
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always to be proved directly. The 1920s saw a bitter fight between Hilbert
and Brouwer, the former defending classical existence, the latter intuitionism.
Hilbert felt that intuitionism would “mutilate” existing mathematics into an
insignificant fragment.

Gödel and Gentzen showed that the intuitionistic restrictions on existence
proofs do not have the effect Hilbert feared as far as theories expressible in first-
order logic are concerned. In independent work, they defined translations that
give, for any formula A, a formula AG such that their equivalence is provable
in classical predicate logic. Furthermore, if A is a theorem of classical logic, AG
is a theorem of intuitionistic logic. The elementary arithmetic of the natural
numbers is expressible in the language of predicate logic. If a contradiction
is provable in classical arithmetic (Peano arithmetic), it is already provable
in arithmetic based on intuitionistic predicate logic. (This latter came to be
known as Heyting arithmetic.) Therefore, the consistency of classical arithmetic
reduces to that of intuitionistic arithmetic. Gentzen’s paper “On the relation
between intuitionistic and classical arithmetic” was already typeset in 1933
when he heard of Gödel’s paper with substantially the same result. Gentzen’s
withdrawal of publication was unfortunate, for a clarification on the pages of the
Mathematische Annalen of the relation of classical and constructive existence
proofs in arithmetic would have cleared many misunderstandings. Gödel in an
unpublished lecture of 1941 states that “nothing at all is lost by dropping the
law of excluded middle, but only the interpretation of the theorems has to be
changed” (see Gödel 1995, 189–190). The essential difference instead concerns
impredicativity: whether it is permitted to quantify over domains that have
not been generated by some inductive process.

3. The Beginnings of Structural Proof Theory
With the reduction of classical into intuitionistic arithmetic in mind, Gentzen
started in early 1932 a program for the solution of what was at the time the
main problem of proof theory and foundations of mathematics, the consistency
of classical arithmetic (see Gentzen’s letter to Hellmuth Kneser in Menzler-
Trott 2001, 35). Its first part consisted in the structural proof theory of
classical and intuitionistic predicate logic, finished in Gentzen’s doctoral thesis
“Untersuchungen über das logische Schliessen” (Investigations into logical
deduction) presented to the Göttingen faculty in June 1933 and published in
two parts (Gentzen 1934–1935). The work was followed by Bernays, but due
to the Nazi intrusion of the university, examination of the thesis was handled
by Hermann Weyl, who also seems to have written the report for the faculty.
(This document together with an explanation of the circumstances is found
in Menzler-Trott 2001, 39ff.). The thesis already contained the first steps in
the proof analysis of arithmetic. The arithmetic part of Gentzen’s program
was finished in late 1934 (letter to Kneser in Menzler-Trott 2001, 49) and
published, after the main proof was revised through criticisms by Bernays, in
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Gentzen (1936). The original proof can be found in Gentzen’s collected papers
(1969), and an account is given in Bernays (1970). Gentzen’s last and greatest
problem, the consistency of analysis, remains open today.

Gentzen (1934–1935) recast the presentation of logical inferences into a
system of natural deduction. It is natural in the simple sense of “being a
formalism as close to actual reasoning as possible” (Gentzen 1934–1935, in-
troduction). The structural analysis of proofs through natural deduction was
successful for intuitionistic logic, but for classical logic, Gentzen had to devise
a more general logical calculus, known as sequent calculus.

Gentzen’s main observation about “actual reasoning” in mathematics was
that it is hypothetical, based on the making of assumptions. As an example of a
formula to prove, consider A ∨B ⊃ C &D. According to Gentzen, the natural
way to proceed is to assume A ∨B to be the case, and then to consider what
can be done under this assumption. There are two possibilities. (1) A is the
case: The task is to prove C from assumption A and D from assumption A.
(2) B is the case: The task is to prove C from assumption B and D from
assumption B. If all of this succeeds, we have proved A ∨B ⊃ C &D with no
assumptions left open. Gentzen suggested that to each form of proposition,
A&B, A∨B, A ⊃ B, and so on, corresponds a principle of proof: namely, one
that gives the sufficient conditions for concluding the proposition. The rules
for the propositions are, with a line separating the premisses (one or two) and
the conclusion of the rule,

A B
A&B &I

A
A ∨B ∨I1

B
A ∨B ∨I2

[A]....
B
A ⊃ B ⊃I .

There are signs next to the inference line to indicate what rule has been
applied. Rule &I, conjunction introduction, tells that to prove A & B, it is
sufficient to have proved A and proved B. Next, to prove A∨B, it is sufficient
to have proved one of A and B. To prove A ⊃ B, it is sufficient to have proved
B from the temporary assumption A. The square brackets indicate that the
conclusion A ⊃ B does not depend on the temporary assumption A that
has been discharged. There are similar rules for the universal and existential
quantifiers.

The object of logic, in Gentzen’s view, is to study the general structure of
proofs. It is a complete break with the logicist tradition of Frege, Peano, and
Russell that Hilbert and his school had been pursuing and in which the notion
of logical truth is basic.

Proofs that follow a precise set of rules are called derivations, to distinguish
them from most of the informal proofs found in mathematics. The combination
of several steps of inference produces a tree-like figure. Given a derivation with
conclusion C, those top formulas in the derivation tree that have not been
discharged, are the open assumptions. If there are none, the conclusion is a
theorem.
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In addition to the introduction rules for each of the connectives, Gentzen
gives elimination rules that are reverses of sorts to the introduction rules,
where the major premisses are the formulas with the connective:

A&B
A

&E1
A&B
B

&E2
A ∨B

[A]....
C

[B]....
C

C
∨E A ⊃ B A

B
⊃E .

The rule for disjunction elimination is entirely natural, and we used it already
informally, where we had an assumption of the form A ∨ B. When A ∨ B
appears as the major premiss of an elimination step, there are two cases in the
proof, A and B, and if both lead to the same conclusion C, that conclusion
obtains irrespective of whether it was A or B that was the case. This is what
the discharge brackets indicate in the rule. The elimination rule for implication
is the same as modus ponens.

Gentzen’s main result about natural deduction is what is today called the
normal form theorem. For reasons to be explained soon, he only indicates the
result by one example in (1934–1935, II.5.1 3). By the theorem, derivations
in natural deduction can be transformed into a certain transparent form in
which no step of introduction is followed by a corresponding elimination. As
an example, assume there is an instance of &I followed by &E1:

....
A

....
B

A&B &I

A
&E1 .

This can be converted into the simpler form
....
A ,

and similarly in the other cases. The first derivation has a part, the derivation
of B, that has disappeared in the second derivation. Inspecting the rules of
natural deduction, the formulas above the inference lines of the I-rules are all
parts of the conclusion. Similarly, disregarding rule ∨E, which we set aside to
not complicate matters, the conclusions of the E-rules are all parts of premisses.
It can be shown that derivations in normal form contain no extraneous parts,
but all formulas are parts of the conclusion or of the open assumptions. This
is Gentzen’s famous subformula property of derivations in normal form, the
central tool in the analysis of proofs.

So far we have not shown any rules for negation. One way to handle negation
in natural deduction, suggested by Gentzen (1934–1935, II.5.2) and followed
by Dag Prawitz (1965), is to assume there is a proposition that is always false,
denoted ⊥. Now ∼A can be taken to be just A ⊃ ⊥, and negation introduction
is a special case of implication introduction, with B = ⊥. The rule of ex falso
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quodlibet is added: It is ⊥C (from falsity, anything follows). If a contradiction
such as A& ∼A is provable, by conjunction elimination also A and ∼A are
provable. Applying implication elimination to these two, ⊥ is provable. Then
it is provable by a derivation in normal form, and by the subformula property,
all formulas in the derivation are parts of the conclusion ⊥. But ⊥ has no
parts and there cannot be any such derivation, so that the consistency of the
system of rules of natural deduction can be concluded.

Before turning to Gentzen’s sequent calculus, we note the independent
development of systems of natural deduction by Stanislaw Jaskowski (1934).
This work contains no profound results on the structure of derivations, in
contrast to Gentzen. In Jaskowski’s systems, the formulas are arranged in a
linear numbered succession, a device that has been followed in many pedagogical
presentations of natural deduction. Gentzen himself had some doubts about the
tree-like arrangement of formulas in his natural deduction derivations, thinking
that such derivations “deviate from actual inference in which there necessarily
is a linear sequence of propositions, caused by the linearity of thinking” (1934–
1935, II.2.2). In the end of the 1930s, Gentzen found Jaskowski’s work and
considered its linear arrangement an improvement on the tree form (see
Mentzler-Trott 2001, 41, note 6).

4. Sequent Calculus
In sequent calculus Gentzen found a beautiful way of expressing the principles
of proof of classical logic. (Use of the word “sequent” as a noun was begun
by Stephen Kleene 1952a, 441. Gentzen’s “Sequenz” means “sequence.”) A
sequent is an expression of the form Γ → Δ, in which the antecedent Γ and
succedent Δ are lists of formulas. An account of the origins of sequent calculus,
in the work of Paul Hertz in the 1920s and in Gentzen’s first paper (1932),
can be found in Schroeder-Heister (2002).

If Δ has just one formula C, we have a single succedent sequent Γ → C. In
this case, the “Gentzen arrow” → can be taken as a notation that replaces
the vertical dots in the natural deduction rules for ⊃ I and ∨E. The former
becomes: If A → B, then → A ⊃ B. For the latter, we have that if A → C
and B → C, then A ∨B → C. Thus, sequent calculus formalizes the relation
of derivability of a formula from other formulas. It also generalizes derivability
into derivability of a finite number of cases instead of just one formula. With
arbitrary finite lists of formulas Γ, Δ, . . . on both sides of the derivability
symbol →, Gentzen’s logical rules for his classical sequent calculus LK are

Γ → Δ, A Γ → Δ, B
Γ → Δ, A&B

R&
A,Γ → Δ
A&B,Γ → Δ

L&1
B,Γ → Δ
A&B,Γ → Δ

L&2

A,Γ → Δ B,Γ → Δ
A ∨B,Γ → Δ

L∨
Γ → Δ, A

Γ → Δ, A ∨B R∨1
Γ → Δ, B

Γ → Δ, A ∨B R∨2
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A,Γ → Δ, B
Γ → Δ, A ⊃ B R⊃

Γ → Θ, A B,Δ → Λ
A ⊃ B,Γ,Δ → Θ,Λ

L⊃ .

The assumption of a formula A in natural deduction corresponds to the initial
sequent A→ A by which derivations start. (Nowadays such sequents are often
called “logical axioms.”) The rule of ex falso quodlibet can be given by letting
derivations start also with sequents of the form ⊥ → Δ. Gentzen himself did
not do this, but used rules for negation:

Γ → Δ, A
∼A,Γ → Δ

L∼
A,Γ → Δ

Γ → Δ,∼A R∼ .

In Gentzen’s thesis, the reading of sequents was not clear yet. Gentzen suggested
a reading of Γ → Δ as: The conjunction of formulas in Γ implies the disjunction
of formulas in Δ. The reading in terms of derivability of a number of cases
under open assumptions is suggested in Gentzen’s second paper on the proof
theory of arithmetic (1938).

In his 1936 paper on the consistency of arithmetic, Gentzen uses what is
today known as “natural deduction in sequent calculus style,” with sequents
of the form A1, . . . , Am → B. The calculus has single succedent sequents, but
the rules are those of natural deduction: Instead of the left rules of sequent
calculus one has, with Γ and Δ lists of formulas, two rules of conjunction
elimination concluding Γ → A and Γ → B from the premiss Γ → A&B, and
a rule of implication elimination concluding Γ,Δ → B from the two premisses
Γ → A ⊃ B and Δ → A. In this calculus, says Gentzen, the sequents are “a
formal expression of the meaning of a proposition in a proof in its dependency
on some assumptions” (1936, 5.21). The passage points at the possibility of
a proof-theoretical reading of single-succedent sequents, used for “indicating
fully the meaning of a proposition as it occurs in a proof” (ibid., 5.1).

In Gentzen’s second paper on the consistency of arithmetic, of 1938,
multisuccedent sequents are used (1938, 1.2):

In the previous work I had introduced the concept of a sequent,
with just one succedent formula, in its immediate connection to
the natural representation of mathematical proofs (1936, §5). It is
possible to arrive at the new, symmetric concept of a sequent also
from that same point of view, namely, by striving at a particularly
natural representation of the division into cases (see §4 of the
previous work, and in particular 5.26). Namely, a ∨-elimination
can now be represented simply as: From → A ∨ B one concludes
→ A,B, to be read as: “Both possibilities A and B obtain.”

Gentzen’s suggestion is that a sequent Γ → Δ gives a listing of the open cases
Δ under the open assumptions Γ. Logical rules change and combine open
assumptions and cases: For example, Gentzen’s left conjunction rules replace
the open assumption A or B by the open assumption A & B, and his right
disjunction rules change the open case A or B into the open case A∨B, and so
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on. There can also be an empty case representing impossibility, with nothing
on the right of the sequent arrow. Some care is needed in the above reading,
for the open cases are to be understood classically: It need not be decidable
which formula of Δ is the case.

Arnold Schmidt’s review of Gentzen’s thesis sheds some light on the inter-
pretation of sequents. Schmidt writes (1935, 145) that a sequent A1, . . . , Am →
B1, . . . , Bn means that “B1 or . . . Bn depends on the assumptions A1 and . . .
Am.” The Bj are referred to as “claims.” The interpretation in terms of the
truth of the implication A1 & · · ·&Am ⊃ B1 ∨ · · · ∨Bn is not explicitly given,
but it is referred to as “the trivial interpretation” (ibid., 146). Schmidt was
Gentzen’s contemporary in Göttingen.

The rules of natural deduction follow the standard pattern of introductions
and eliminations. There has been little development in these since Gentzen:
Some generalizations of elimination rules have been proposed, as in Schroeder-
Heister (1984), as well as different ways of handling the discharge of open
assumptions, as in Prawitz (1965) and Leivant (1979). The introduction and
elimination rules give intuitionistic logic, but the rule of double negation
elimination that leads to classical logic is of a different character as emphasized
by Gentzen (1934–1935, II.5.3). Prawitz (1965) was able to extend the normal
form theorem from intuitionistic logic to that part of classical logic that does
not use disjunction or existence. Normal derivations start with assumptions,
followed by E-rules, then the classical rule of double negation or indirect proof,
and last there follow I-rules.

On the side of sequent calculus, no comparable stability regarding the rules
has been achieved. Gentzen’s choice of his particular set of rules is dictated by
the requirements set by the proof of his cut elimination theorem, the Hauptsatz
(1934–1935, III.1.1). These rules have specific properties: In rule L ⊃, the
lists (contexts in today’s terminology) Γ, Θ, Δ, Λ in the two premisses are
independent and are added up in the conclusion. In the two other two-premiss
rules R& and L∨ instead, contexts are shared, the same in both premisses.

Gentzen designed the proof of the Hauptsatz so that its proof for his
intuitionistic sequent calculus, denoted LJ, is directly a special case of the
proof for the classical calculus LK. The calculus LJ is obtained from LK by
putting on the rules the requirement that each succedent of a sequent consist of
not more than one formula. It follows that there must be two right disjunction
rules and that the left implication rule must have independent contexts, for
otherwise there would be no single succedent instances of these rules. Gentzen
mentions as a second design principle that sequent calculus must display the
duality of & and ∨ (1934–1935, III.2.4). Because there must be two right
disjunction rules, there must be dually two left conjunction rules. In fact, all
the rules except L ⊃ and R ⊃ display the symmetry. Gentzen arranged the
rules in his table (1934–1935, III.1) in two columns that are dual mirror images
of each other. The structural rule of cut is self-symmetric. The implication
rules are an exception to symmetry and they are given last, separated from
the other rules. (Unfortunately the layout of the rules is not reproduced in the
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English translation of Gentzen’s papers.) Gentzen was very much struck by
the left-right symmetries of the classical sequent calculus LK. The emergence
of the symmetry in the case of the classical negation rules L∼ and R∼ made
him exclaim (1938, 1.6): “The special position of negation, which makes for an
annoying exception in the natural calculus, is lifted away as if by magic.”

It is certain that Gentzen considered various forms of rules, as that would
be the only way of arriving at the ones he had. For example, in his 1943 work
on transfinite induction, written around 1940, Gentzen removed rule L ⊃ by
allowing instead also initial sequents of the form A ⊃ B,A→ B. Incidentally,
this shows that the possiblity of invertible rules (see the following for this
notion) had not occurred to Gentzen.

Next we consider the structural rules of Gentzen’s sequent calculi. These
rules are those of weakening, contraction, exchange, and cut. Weakening is the
addition of superfluous assumptions: If Γ → Δ is derivable, then A,Γ → Δ
is. Second, by the rule of contraction, one concludes from A,A,Γ → Δ into
A,Γ → Δ. Mirror image rules hold for the succedent parts. The rule of exchange
permits us to change the order of formulas in the antecedent and succedent
parts of a sequent. The most important structural rule is cut that can be
informally motivated as follows.

Suppose that we have found a derivation of a result C from assumptions A,
Δ, so that A,Δ → C. If next we find a derivation of A from assumptions Γ,
these two are put together through the rule of cut:

Γ → A A,Δ → C
Γ,Δ → C Cut .

Gentzen’s Hauptsatz is the formulation of the normal form theorem within
sequent calculus. It is proved by giving an algorithm for eliminating all ap-
plications of the cut rule in derivations. An inspection of the rules of sequent
calculus shows that all formulas that appear in a cut-free derivation of a
sequent Γ → Δ, are subformulas of Γ or Δ. Gentzen was able to prove the
normal form theorem only for intuitionistic natural deduction, which is why
he developed the multisuccedent sequent calculus and proved cut elimination
for both intuitionistic and classical logic (see 1934–1935, introduction).

Gentzen’s thesis gives the rules of sequent calculus in two groups, the struc-
tural rules of weakening, contraction, exchange, and cut as the first group, and
the logical rules as the second. Two years later he calls the rules of weakening,
contraction, exchange, and change of bound variable “Strukturänderungen,”
structural modifications (1936, 5.22). All of these latter except weakening “do
not change the meaning of a sequent, . . . all these possibilities of modification
are of a purely formal nature. It is only because of special features of the
formalism that these rules must be expressly given” (ibid., 5.244). Gentzen’s
view of the purely formal nature of structural rules should be based on a
comparison between the situation in sequent calculus and in natural deduction.
The latter has no explicit structural rules. He describes the left and right rules
of sequent calculus as corresponding to the elimination and introduction rules
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of natural deduction, respectively, even if this correspondence is not quite
perfect (1934–1935, III.1.1; see also Schmidt 1935, 145). The reason for this
discrepancy lies in the form of rules &E and ⊃ E.

Gentzen’s thesis contained some of the first results on intuitionistic logic. If
a formula of the form A ∨ B is derivable, A or B already is derivable. This
follows from the cut elimination theorem, because the last rule has to be R∨1
or R∨2. This disjunction property of intuitionistic logic was also mentioned in
passing by Gödel (1932), without proof or even indication of how he knew the
result to hold true. A related result of Gentzen is a proof of the underivability,
by purely syntactic means of proof analysis, of the law of excluded middle.

The Hauptsatz also has as a corollary a positive solution to the decision
problem of intuitionistic propositional logic. The proof is not immediate, but
proceeds through a lemma showing that it is sufficient to apply the rule of
contraction on any given formula not more than twice in Gentzen’s intuitionistic
calculus LJ. (Incidentally, Dosen 1987 shows that this limit is optimal.) With
this restriction on contraction, it follows that the set of possible cut-free
derivation trees of a given sequent is bounded.

5. Later Developments in Structural Proof Theory
The first contributions to structural proof theory by others than Gentzen come
from the late 1930s. In 1944, Oiva Ketonen improved the rules of sequent
calculus by replacing some of Gentzen’s original rules for classical propositional
logic so that all rules became invertible, meaning that if a sequent of the form
of the conclusion is derivable, the sequent, or sequents, of the form of the
premiss is also derivable. The changed rules are

A,B,Γ → Δ
A&B,Γ → Δ

L&
Γ → Δ, A,B

Γ → Δ, A ∨B R∨
Γ → Δ, A B,Γ → Δ
A ⊃ B,Γ → Δ

L⊃ .

Each connective has just one left and right rule. Furthermore, all two-premiss
rules have shared contexts, and Ketonen obtains a fully invertible classical
propositional sequent calculus in which derivations are found by decomposing
the endsequent in any order whatsoever: Given a sequent Γ → Δ to be proved,
choose from Γ or Δ any formula with a connective. The corresponding rule
determines uniquely the premisses. Repeating this “root-first proof search,”
formulas are decomposed into parts until there is nothing to decompose. At this
stage, it can be determined if the original sequent Γ → Δ is provable or not,
by controlling if all topsequents are initial sequents. The process terminates
in the case of classical propositional logic in a bounded number of steps as
determined by the number of connectives in the given sequent.

Ketonen’s proof of invertibility of the rules used the structural rule of cut.
Later Kurt Schütte (1950) and Haskell B. Curry (1963) gave direct proofs of
invertibility, the latter with the explicit result that the inversions are height
preserving: If a given sequent is derivable in at most n steps, the premisses
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in a rule that can conclude that sequent also have a derivation in at most n
steps.

As noted, Gentzen (1934–1935) had proved the decidability of intuitionistic
propositional logic. A direct terminating method of proof search for intuition-
istic propositional logic, similar to Ketonen’s method for the classical calculus,
was found as late as around 1990, independently by Jörg Hudelmaier (1992)
and Roy Dyckhoff (1992). These discoveries follow a line of research from
Kleene (1952, 480ff., and 1952) who found a way of avoiding also Gentzen’s
structural rules of weakening and contraction in classical and intuitionistic
sequent calculus. If the rule of cut were indispensable, one could try to derive
a sequent Γ → Δ from two premisses with an arbitrary cut formula. The rule
of contraction has a similar effect: With it, root-first proof search could go on
forever, by the multiplication of formulas in sequents. A minor modification
concerns Gentzen’s exchange rules that permit the change of order of formulas
in sequents. These rules disappear through the use of “lists without order,” or
multisets as one says.

Research in sequent calculi from Gentzen on has led to the remarkable
sequent calculi known as G3 -calculi that have no structural rules. The logical
rules of the classical calculus G3c are, in their propositional part, the same
as Ketonen’s. For intuitionistic logic, there are both single succedent and
multisuccedent calculi G3i and G3im. The most remarkable property of these
calculi is the height-preserving admissibility of contraction, meaning that if
a sequent with a duplication of a formula is derivable, the sequent without
the duplication is derivable and the derivation of the latter is not a bigger
derivation than that of the former. This property and the exact form of the
calculi G3c and G3im are due to Albert Dragalin (1988, Russian original 1979),
and in the case of the intuitionistic single succedent calculus G3i, to Anne
Troelstra in Troelstra and Schwichtenberg (1996). The G3 -family of logical
calculi offers the strongest known methods for the structural analysis of proofs.

Gentzen had shown the disjunction property of intuitionistic propositional
logic. The related existence property follows easily through proof analysis in
intuitionistic sequent calculus: If ∃xA is derivable, there is some individual a
such that the instance A(a/x) is derivable. Thus, intuitionistic logic corresponds
on a formal level to the constructive notion of existence. Both properties were
generalized to hold also under assumptions if these do not contain, overtly or
hidden, any disjunctive or existential assumptions, by Ron Harrop (1960).

6. The Computational Semantics of Intuitionistic Logic
In the time of the beginning of intuitionistic logic, around 1930, Heyting and
Kolmogorov suggested an explanation of the principles of intuitionistic logic
in terms of the notion of proof. Also Gentzen makes in his doctoral thesis the
suggestion that the introduction rules give the meanings of the various forms of
propositions in terms of provability. These rules make more precise Heyting’s
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(1931) discussion. In Kolmogorov (1932), it is suggested that intuitionistic
logic is a logic of “problem solving”: The atomic formulas express the primitive
problems that have no logical structure. A& B expresses a problem that is
solved by solving A and B separately, A ∨B is solved by solving at least one
of A and B, and A ⊃ B is solved by reducing the solution of B to one of
A. Falsity ⊥ is an impossible problem that has no solution. In Kolmogorov’s
interpretation, the notion of a problem comes before the notion of a theorem:
A theorem can be considered that special case of a problem in which the task
is to find a proof. (A note in passing: The priority of problems versus theorems
was a much debated question in the times of Pappus already. Kolmogorov’s
interpretation dissolves that ancient dispute.) In Heyting (1931, 1934), a very
general explanation is given, in terms of Edmund Husserl’s theory of intentional
acts: The propositions of logic express expectations and proofs are acts that
fulfill these expectations.

The idea of intuitionistic logic as a “logic of provability” is explicit in
a one-page paper of Gödel’s (1933b) in which he adds a modal provability
operator to propositional logic and is able to interpret intuitionistic logic from
a classical point of view.

The crucial point of the “BHK-interpretation” (for Brouwer, Heyting, and
Kolmogorov) is the explanation of an implication. In Heyting’s (1931) terms,
A ⊃ B is proved by devising a method that reduces a proof of B to one of A.
In other words, given any proof of A, the method must give some proof of B.
There were doubts about this explanation, because it purports to explain what
a proof of an implication is by reference to an arbitrary proof, thus, possibly
a proof of an implication. The publication of Gödel’s collected papers has
brought to light some of his lectures from the late 1930s, and a lecture “In
what sense is intuitionistic logic constructive?” of 1941. Gödel develops as an
alternative to the seemingly circular BHK-interpretation what is known as the
functional or Dialectica interpretation of intuitionistic logic and arithmetic.
(The latter name refers to the journal in which Gödel [1958] finally published
his interpretation.)

If a formal system of proof is defined, such as that of natural deduction
for intuitionistic logic, the foregoing problem about implication can be solved.
There is a class of inductively defined finite formal derivations. The expla-
nation of what an arbitrary derivation is consists of two parts. Following
Michael Dummett (1975), derivations of a formula with an introduction rule
can be called canonical, and other derivations noncanonical. This fixes the
(outermost) form of canonical derivations. It is crucial that every noncanonical
derivation reduce to a canonical one; this is accomplished by a normal form
theorem.

The search for normal form theorems for various calculi has led to a hierarchy
of notions of growing strength: The first notion is the existence of a normal
form. In terms of sequent calculus, it corresponds to the closure of a system of
rules under the rule of cut: If a sequent is derivable, there exists a derivation
without the rule of cut. A result of this type can be proved by showing that the
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system is already complete without the rule of cut, so that its addition will not
make more sequents derivable. Gentzen’s (1934–1935) proof of the equivalence
of LK without cut and a Hilbert-style axiomatic classical calculus proves
closure under cut. Typically, later proofs of such results have used semantical
methods. In the notion of normalization (resp. cut elimination), it is required
that an algorithm be given for the transformation of a nonnormal derivation
(derivation with cuts) into a normal (cut-free) one. As noted, Gentzen was
able to prove normalization for intuitionistic natural deduction, even if he
only illustrated the result by an example. Normalization proofs were first
published by Prawitz (1965) and, in a somewhat more schematic form, by
Andres Raggio (1965). Strong normalization requires that the conversion into
normal (cut-free) form must terminate irrespective of the order in which the
various nonnormalities (cuts) are eliminated. Typically, this property holds for
calculi of natural deduction but fails for sequent calculi. The first proofs of
strong normalization were given by Jean-Yves Girard (1971), Per Martin-Löf
(1971), and Prawitz (1971). The relatively late appearance of these results has
been explained by those involved by the comment that “before those times,
nobody was interested in strong normalization” (Martin-Löf to the present
author in 2001). A final notion in this order is uniqueness of normal form: For
a given derivation, all conversion sequences terminate with the same normal
derivation. We shall soon see where the interest in strong normalization and
confluence came from, namely, the proof-theoretical notion of computation.

In 1969, William Howard made precise some of the ideas behind the BHK-
interpretation, in his paper “The formulae-as-types notion of construction.”
The paper circulated as a manuscript and was finally published as Howard
(1980). It established what came to be called the “Curry–Howard isomorphism”
or “Curry–Howard correspondence.” Curry’s role was that he suggested the idea
for implication in Curry and Feys (1958). Kleene’s (1945) notion of realizability
for intuitionistic arithmetic also anticipated the development (see also Kleene
1952a, §82). The basic idea of Curry and Howard is that a formula corresponds
to the set of its proofs. More precisely, to each formula A there is the set of
proofs of A in the sense of formal derivation. The notation a : A stands for “a is
a proof of A.” In terms of sets, the reading is “a is an element of the set A.” An
introduction rule shows how to construct a proof from proofs of components:
If a : A and b : B, then (a, b) : A&B. The operation of forming the pair (a, b)
is the construction that gives a proof of the conjunction A&B. If a : A, then
i(a) : A∨B, if b : B, then j(b) : A∨B. The two operations indicated by i and
j carry the information from which component of the disjunction the proof is
constructed, proof of A or proof of B. Implication is more difficult: Assume an
arbitrary proof x of A, so symbolically x : A. If you succeed in constructing
from x a proof b(x) of B, then the proof of A ⊃ B is written as (λx)b. This
is the lambda-abstract of the expression b(x) depending on the variable x, as
invented by Alonzo Church (1932) (see also Church 1941 and Barendregt 1997).
Set-theoretically, A&B is the Cartesian product of the sets A,B, and A ∨B
their (disjoint) union, and A ⊃ B the set of functions from A to B.
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As to the elimination rules, they show how to pass from an arbitrary proof
of a formula to its components: If x : A & B, then p(x) : A and q(x) : B
are the projection constructions that do this. For disjunction, the rule is too
complicated to be given here. For implication, using a suggestive symbol for
a member of A ⊃ B, if f : A ⊃ B and x : A, then f(x) : B. In terms of sets,
a proof f of A ⊃ B is a function f that transforms any proof x of A into
some proof f(x) of B. Thus, rule modus ponens is the same as the application
of a function. Implication introduction, then, is functional abstraction as
invented by Church. The rules of natural deduction become the rules of typed
lambda-calculus under the Curry–Howard correspondence.

Truth of a formula A is established by a proof a : A. Thus, A is true
corresponds to A being, when considered as a set, nonempty. Typed lambda-
calculus shows the rules of intuitionistic natural deduction to be sound under
the semantics given by the Curry–Howard correspondence. If the premisses of
a rule are assumed true, each of them has an element, and the rules show how
to construct an element of the conclusion that thereby also must be true.

In the natural representation of mathematical proofs, their characteristic
form is that a claim B follows under some conditions A, and this is expressed
concisely as the implication A ⊃ B obtained by the rule of implication intro-
duction. If at some stage the conditions A obtain, B follows by implication
elimination. The Curry–Howard correspondence gives this latter step as a
functional application: An argument a : A is fed into the function f : A ⊃ B,
and a value f(a) : B is obtained. Reasoning constructively, without use of
the classical law of excluded middle, the function f : A ⊃ B is an algorithm
or computable function. Gentzen’s idea of normalization, which is basically
the same thing as cut elimination, has the following specific meaning: Given
the function f : A ⊃ B and the argument a : A, normalization consists in
the computation of the value of f(a). The computation of the value of f(a)
is the same as the conversion of the nonnormal derivation into normal form,
which makes apparent the importance of strong normalization and uniqueness.
Formal proofs in intuitionistic natural deduction are computable functions.
Constructivity, which used to be the philosophical principle behind intuitionis-
tic logic and mathematics, now has the role of guaranteeing that computations
do not go on indefinitely, but terminate after some bounded number of steps.

Formal proofs in the sense of the Curry–Howard correspondence are often
called proof-objects. The idea of a functional hierarchy of such proof-objects
can also be found in Nicolaas de Bruijn (1970). He also introduces the notion of
dependent types, a notion found independently by Martin-Löf in 1970 (see his
1975). The Curry–Howard correspondence, or “propositions-as-sets” principle
and the construction of dependent types are at the basis of Martin-Löf’s
constructive type theory. Dependent types are families of sets indexed by a
set: Given a set A, B(x) is a set for each x : A. Quantifiers in type theory use
dependent types: They can be written as (∀x : A)B(x) and (∃x : A)B(x) (“for
all x in A, B(x); there is an x in A such that B(x)”). These quantifiers are
bounded to a set of values A that can vary within one formula. Implication turns
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out to be a special case of bounded universal quantification and conjunction a
special case of bounded existential quantification. These cases obtain when B
is a constant set over A. The language with dependent types goes beyond first
order logic in expressive power.

In recent decades, structural proof theory has found important applications
in computer science. Sequent calculus is at the basis of logic programming
(Prolog). Type theory, in turn, stems from natural deduction. In type theory,
we can read a formal proof as a program. Then a : A can be read as: Program a
executes the task expressed by the proposition A. In particular, with f :
A ⊃ B we have a program f , and given an input a, the program computes
an output f(a) through normalization of f(a) (see Martin-Löf 1982). The
correctness of a computer program can now be controlled in exactly the same
way in which the correctness of a formal mathematical proof can be controlled.
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Modal Logic from Kant
to Possible Worlds Semantics
Tapio Korte, Ari Maunu, and Tuomo Aho

1. Kant’s Theory of Judgment-Forms
Although in the Critique of Pure Reason Kant’s definition of logic as “the
science of the rules of the understanding in general” (A52=B76) is so wide that
according to it logic comprises much of epistemology, he also has a narrower
conception, which comes closer to our understanding of what logic is. Kant
uses two criteria to divide logic into subclasses. He calls logic general (die
allgemeine Logik) if it pays no attention to differences in objects of thinking;
that is, if it contains only “the absolutely necessary rules of thought without
which there can be no employment whatsoever of the understanding” (ibid.)
and is therefore concerned only with forms of judgments and leaves their
contents unattended. On the other hand, he calls logic pure (die reine Logik) if
it does not contain empirical rules of thinking, namely, rules that follow from
the psychological and physical conditions of thinking, but is concerned only
with the a priori principles of the understanding (A52–53=B76–77). According
to Kant, only logic that is general and pure can be considered as a proper
science. Nongeneral logics are Organa, instruments or aids, of special sciences
(A52=B76). Of nonpure logic, or applied logic (die angewandte Logik) as his
term goes, Kant says that it can work only as a kathartikon for a corrupted
understanding (A53=B78).

In agreement with the tradition of logic, Kant divides pure general logic1

into theories of concept (Begriff ), judgment (Urtheil), and inference (Schluss).

This chapter results from the collaboration of its writers in the following way: Korte is
responsibe for sections 1–5, Maunu for sections 6–9 and 11–12, and Aho for sections 10 and
13 and some material in sections 7 and 9.

516
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Kant argues that analogically the faculty of knowledge, or understanding in
a broad sense of the word, can be divided into three parts, namely, to the
faculties of understanding, judgment, and reason (A130–131=B169).2

From the standpoint of the whole project of Kant’s Critique, the second of
these faculties, the faculty of judgment, is the central one, since Kant holds
that all acts of the understanding—in a broad sense of the word—are reducible
to judgments and therefore, the understanding can be represented as a faculty
of judgment (A69=B94). Consequently, although Kant does not hold that logic
could be represented simply as a theory of judgment, it certainly forms the
most important and original part of his logic. Furthermore, as we shall see in
the sequel, it is Kant’s theory of judgment that most affected the development
of the nineteenth-century logic in Germany.

The main goal of Kant’s theory of judgment seems to be to reveal the formal
elements of judgments. According to this theory, every judgment consists of
three parts, namely, two representations and a copula which connects them.
The two representations Kant calls the matter (Materie) of a judgment. The
copula represents its form (Form), namely, the way in which the representations
are connected in a judgment (e.g., A266=B322; J, §18). The form of a judgment
is analyzed into four titles (Titeln), namely, “Quantity,” “Quality,” “Relation,”
and “Modality,” so that each title can have one of three possible values or
moments (Momente). This gives the possibility of 34 = 81 judgment-forms.3
The following table represents the judgment-forms with appropriate examples.4

Quantity universal “Every A is B”
particular “Some A is B”
singular “The A is B”

Quality affirmative “A is B”
negative “A is not B”
infinite “A is not-B”

Relation5 categorical “A is B”
hypothetical “If A then B”
disjunctive “A or B”

Modality problematic “A may be B”
assertoric “(It is true that) A is B”
apodeictic “A must be B”

One must be careful not to mix judgment-forms with grammatical forms,
because no one-to-one relationship is supposed to obtain between them. For
example, although the universal judgment-form is usually expressed with the
grammatical form “every S is P ,” this is not always the case: “A bird is an
animal” is an example of a sentence that can be used to express a universal
judgment, although it is not of the mentioned form. Similarly, “every figure
can be surrounded with twelve equilateral pentagons” expresses usually an
apodeictic judgment, although its grammatical form suggests that it is a
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problematic one; “the soul must be immortal,” on the other hand, can be taken
to express a problematic judgment, although it looks like an apodeictic one.6

Explanations that Kant gives for Quantity and Quality require knowledge
of some basic notions of traditional logic. He says that both in a singular
and in a universal judgment the predicate can be asserted of the subject
without exception, and this is because the subject of a singular judgment has
no extension whatsoever (A71=B96). Kant’s comment reflects his definition of
the concept of extension (Umfang, Sphäre), according to which the extension of
a concept consists, not of things that fall under it, as we are used to thinking,
but of concepts which are subordinate to it. Later this became the standard
definition of Umfang in nineteenth-century German logic and was accepted
among others by such prominent mainstream logicians as Drobish (1887, §25),
Ueberweg (1882, §53), and Sigwart (1872, §42).7 Of Quality, Kant says that
in an affirmative judgment the extension of the subject is thought “under
the sphere of a predicate,” in a negative one the subject “is put outside its
sphere,” and in an infinite judgment the subject is in the same way put to the
complement of the sphere of the predicate (J, §22).8

Kant explains that Relation concerns the relationship between material
elements of a judgment. The matter of a categorical judgment consists of two
concepts, which are related to each other as a predicate to a subject. In a
disjunctive judgment, two or more judgments, which constitute its matter, are
in “a relation of logical opposition to each other” and together they “occupy the
sphere of the proper cognition involved” (A73=B99). By “logical opposition,”
Kant means that the constituents of a disjunctive judgment exclude each other,
and by “the sphere of the proper cognition” he seems to refer to the content
of the disjunctive judgment as a whole. This seems to amount to nothing else
than that a disjunctive judgment is an exclusive disjunction of two or more
judgments. On the other hand, a disjunctive judgment was traditionally taken
to be a disjunction of judgments that have either a common subject or, in
rare cases, a common predicate. If this is also what Kant is after, his use of
the word “sphere” in this connection becomes more understandable, because
both “A is B or A is C” and “A is C or B is C” seem to have in some sense a
disjunctively divided concept as the predicate or as the subject, respectively.
Commonly used abbreviations like “A is B or C” and “A or B is C” reveal
this more explicitly.

Kant’s view on the nature of a hypothetical judgment is more obscure. He
says that in a hypothetical judgment neither the antecedent nor the consequent
is assumed to be true, but only the relation of consequence (Consequenz)
between them (A73=B98–99). Kant is not very specific about the nature
of this relation, but it is certain that the question is not about material
implication. He says that a hypothetical judgment expresses the relation of
a ground (Grund) to its consequence (Folge) (A73=B98). The relationship
between a ground and a consequence is a multifaceted relation in Kant’s
philosophy and it is difficult to say what he means by it in this connection.
However, the general feature of any kind of ground seems to be that the ground
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in some way determines (bestimmt) its consequence (see B112). It is not clear
whether in a hypothetical judgment the consequent is determined logically,
causally, or by some other means by the antecedent, but it is certain that
the relation of consequence is thought by Kant to be stronger than material
implication.

According to Kant, Modality differs from Quality, Quantity, and Relation
in that moments of the former contribute “nothing to the content of the
judgement (for, besides Quantity, Quality and Relation, there is nothing that
constitutes the content of a judgement)” (A74=B100). Kant’s claim is odd
since according to him we get the judgment-forms by abstracting “from all
content of judgement” (A70=B95), which seems to imply that none of the
judgment-forms contribute to the content of the judgment. This suggests that
Kant uses the term “content” equivocally. In the claim that judgment-forms
are abstracted from all content, Kant seems to mean with “content” what he
elsewhere calls “the matter” of a judgment. Then again, when he says that
modal judgment-forms add nothing to the content of a judgment he cannot
mean the matter of a judgment but rather that which he according to Jäsche
Logik calls “the thing about which we judge” (J, §30n1), namely, that which
is judged true in a judgment. Accordingly, when he now says that modal
judgment-forms contribute nothing to the content of a judgment he must mean
that modal judgment-forms are not ways in which the subject and predicate
of a judgment are connected, but that “modality concerns only the value that
the copula has in reference to thought as such” (A74=B100). This passage
sounds as if modal concepts were, according to Kant, epistemic concepts,9 so
that modal judgment-forms represent ways in which judgments are related to
the faculty of judgment in general. Closer scrutiny reveals, however, that this
is not the case.

Kant gives the following definitions of modal judgment-forms in the Critique
(A74–75=B100):

Problematic judgments are those in which “affirmation or negation is
taken as merely possible (optional).”
Assertoric judgments are those in which “affirmation or negation is viewed
as actual (true).”
Apodeictic judgments are those in which “affirmation or negation is
viewed . . . as necessary.”10

Kant specifies that by “possibility” he means in this connection “logical (which
is not objective) possibility,” with “truth” logical truth and with “necessity”
logical necessity (A75–76=B101).

By calling modal notions “logical,” Kant separates them from the concepts
of real modality, which he defines in the Postulates of Empirical Thought
(A218=B265–266):

1. That which agrees with formal conditions of experience, that is, with the
conditions of intuition and concepts, is possible.
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2. That which is bound up with the material conditions of experience, that
is, with sensation, is actual.

3. That which in its connection with actual is determined in accordance
with universal conditions of experience, is (that is, exists as) necessary.

Kant says that these postulates are needed, if the notions of possibility, ac-
tuality, and necessity “are not to have only logical significance, analytically
expressing the form of thought, but are to refer to the actuality, or necessity of
things” (A219=B267). A few pages later, he specifies that a concept is logically
possible if it does not contradict itself and that only “the simple-minded” mix
this with the concept of transcendental possibility of things (A244=B302). Ac-
cordingly, we have the following definitions of logical possibility, impossibility,
and necessity:

A judgment is logically possible, iff it does not contain a contradiction;

A judgment is logically impossible, iff it contains a contradiction;

A judgment is logically necessary, iff its negation contains a contradiction.

By supplementing the definitions of modal judgment-forms with these
explications of logical possibility and necessity, we get the following definitions
of problematic, assertoric, and apodeictic judgments:

A judgment is problematic, iff it is viewed as containing no contradiction;

A judgment is assertoric, iff it is viewed as true;

A judgment is apodeictic, iff its denial is viewed as containing a contra-
diction.

It is noteworthy that although logical possibility, truth, and logical necessity
might be objective properties of judgments, the corresponding modal forms are
not. They represent an attitude that the judging subject takes toward a judg-
ment. Accordingly, a judgment is problematic, assertoric, or apodeictic, if it is,
as Kant puts it, taken to be or viewed as being logically possible, true, or logically
necessary independently of what its logical nature in this respect really is.

On the basis of Kant’s definitions, one might feel justified to think that
problematic, assertoric, and apodeictic judgments are nothing but attributions
of possibility, truth, and necessity to a judgment and that one might find
such logical relations between them as are familiar to us in modern modal
logic. This is not, however, the case. According to Kant, both the antecedent
and the consequent of a hypothetical judgment are problematic judgments,
since in a hypothetical judgment the truth of neither is asserted (A75=B100).
Consequently, when somebody makes a problematic judgment, he does not
only judge that the judgment in question does not contain a contradiction but
also asserts that he does not take any other alethic modal attitude toward
it; that is, in a problematic judgment the judging subject asserts that he or
she withdraws from attributing truth, falsity, or necessity to the judgment.
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Therefore it is not true in Kant’s logic that assertoric or apodeictic judgments
imply problematic ones, in the manner in which necessity and truth imply
possibility in even the weakest systems of modern modal logic.

2. Theories of Judgment-Form after Kant
The basic idea of Kant’s theory of judgment—the idea that judgment-forms
can be analyzed into moments—maintained much of its charm until the latter
part of the nineteenth century,11 and only a few logicians before Frege were
willing to abandon the schema altogether.12 Still, one of the most conspicuous
trends in nineteenth-century logic was the dissatisfaction with the details of
Kant’s theory of judgment.

Not all judgment-forms were taken to be equally important. Kant himself
had already noticed that from the point of view of pure general logic there
is no difference between singular and universal judgment-forms and between
affirmative and infinite ones (A71–72=B96–97). In accordance with this, they
were not taken to be separate judgment-forms in the traditional formal logic
of the nineteenth century. The remaining four forms of Quality and Quantity,
namely, affirmative, negative, universal, and particular, had, in contrast, quite
a strong position. This was mainly due to the traditional theory of Aristotelian
syllogistic, which recognized only these judgment-forms.

From the standpoint of the theory of inference, modal judgment-forms
were perhaps among the least important. In spite of this, the theory of modal
judgment-forms was a subject that every respected theory of logic had to deal
with. Kant’s definition, according to which modal judgment-forms concern
the attitude we take to the logical status of contents of judgments, was quite
generally taken to mean that modality has something to do with certainty or
reliability. This conception is hinted at already in Jäsche Logik. According to
it, Kant held that opinion is constituted of problematic judgments, belief of
assertoric, and knowledge of apodeictic ones (J, IX). Friedrich Ueberweg, one
of the most influential traditional logicians in nineteenth-century Germany,
defined Modality along these lines. According to him, by using problematic
judgment-form, we express our uncertainty about whether the content of
the judgment matches reality, by assertoric judgments we express immediate
certainty based on perception, and by apodeictic ones that the judgment
can be proved to be true (Ueberweg 1882, §69). Perhaps not completely in
line with these definitions, Ueberweg holds that apodeictic judgments entail
both assertoric and problematic ones, and that assertoric judgments entail
problematic ones (Ueberweg 1882, §98). He does not, however, put forward any
special modal syllogisms, although he examines in detail how the modal form
of a premise affects the modal form of a conclusion in immediate inferences
(i.e., in one-premise inferences) (Ueberweg 1882, §82–98).

Although a psychological definition of Modality, like the one offered by
Ueberweg, was perhaps considered to be the standard definition in the first
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half of the nineteenth century (see Lange 1877, 33), at the end of the century
it was held mainly by such psychological logicians as Wundt (1880), Erdmann
(1892), and Lipps (1893). Most mainstream logicians either tried to define
modal notions in a more objective way or rejected the relevance of Modality
to logic altogether. A Herbartian logician, Moritz Drobisch, is an example
of the former attitude. He tied modal judgment-forms directly to notions
of logical necessity and possibility so that according to him a judgment is
apodeictic, if its negation contains a contradiction, and is problematic, if it
isn’t apodeictic and does not contain a contradiction (Drobisch 1887, §61–62).
He also studied how in some inferences the modal form of the conclusion
depends on modal forms of the premises. He did not, however, suggest any
special modal syllogisms.

That modal judgment-forms can be reduced to other forms was first sug-
gested by Adolf Trendelenburg in his widely celebrated Logische Untersuchun-
gen (1862). According to him, apodeictic, problematic, and assertoric judgments
express the same as corresponding universal, particular, and singular ones, re-
spectively (Trendelenburg 1862, 258–259).13 The idea was adopted by Friedrich
Lange and Christoph Sigwart. Lange argues that the concepts of necessity
and possibility are relevant in logic only under the framework of Aristotelian
metaphysics and that outside it Modality coincides with Quantity (Lange 1877,
40). Sigwart argues that Kant’s definition of a problematic judgment as a
judgment which is taken to be only possible is contradictory, since an essential
ingredient of any judgment is the acknowledgment of its truth (Sigwart 1873,
§31n3). Moreover, he holds that we are not free to choose whether to make a
judgment or not, and in this sense all judgments are necessary. Therefore, he
argues, there is no real difference between assertoric and apodeictic judgments
(Sigwart 1873, §31n4). Although he thereby excludes modal judgment-forms
from logic, he does not reject alethic modal notions from logic altogether
but suggests, presumably under Trendelenburg’s influence,14 that necessity
in logic is commonly expressed with universal judgments and possibility with
particular ones (Sigwart 1873, §33–34). We shall return to Sigwart’s view
shortly in connection with his suggestion that categorical judgments can be
reduced to hypothetical ones.

3. The Relationship between Categorical
and Hypothetical Judgments from Wolff to Herbart

Traditionally the theory of inference was split into two separate fields, of which
one, Aristotelian syllogistic, dealt exclusively with categorical judgments, and
the other, Stoic hypothetical syllogistic, dealt only with hypothetical judgments.
The division is still visible in Jäsche Logik according to which Kant held that
inferences are divided into categorical, hypothetical, and disjunctive ones
(J, §60). Because of this important role of Relation, the question whether
categorical and hypothetical judgment-forms really are separate or whether
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they can be reduced to each other or to some third form was an interesting
question. The reduction would have made possible a more unified theory of
inference by decreasing the number of fundamental inference schemas.

The suggestion that the division of judgments into hypothetical and categor-
ical ones is not fundamental was probably familiar to every logician of the early
nineteenth century who was sufficiently acquainted with the history of his own
discipline. This is because Christian Wolff argues in the eighteenth century
that from the point of view of logic there is no difference between hypothetical
and categorical judgments (Wolff 1754, 3. cap. §6–7).15 He explains that every
statement (Satz) contains a predication and the ground or reason (Grund) for
the predication. In universal judgments the ground belongs to the nature of
the subject and in particular judgments it does not. For example, the ground
for the predication of giving off heat is the warmth of a stone—a contingent
property of a stone. This predication is explicitly, and its ground implicitly,
contained in the particular statement

some stones give off heat.

On the other hand, because weight belongs to the nature of a stone, the
predication of heaviness of stones is a universal statement:

every stone is heavy.

Wolff holds further that every particular statement can be transformed into a
universal one by expressing the ground explicitly. The statement

every warm stone gives off heat

is the result of the universalization of the particular statement above. Finally,
the transformation of categorical statements into hypothetical ones happens by
putting the ground for the predication to the antecedent, and the predication
itself to the consequent of the statement. Accordingly, the statements above
can be transformed into

if a stone is warm then it gives off heat.
and

if a thing is made of stone then it is heavy.16

Kant was familiar with Wolff’s proposal, because according to both Jäsche
Logik and Wiener Logik Kant had explicitly commented on the question
whether “it is easy to transform a hypothetical proposition [Satz] into a
categorical one” (J, §25n2), that is, as Wiener Logik puts it, whether it is “the
same if I say, All men are mortal, or, If something is a man, then it is mortal”
(W, 934).

Kant, naturally, rejected the proposal. According to both Jäsche Logik and
Wiener Logik, he sought to justify the difference between hypothetical and
categorical judgments by referring to the observation that what is asserted
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in a hypothetical judgment is the truth, neither of the antecedent nor of the
consequent, but only of their connection, the consequential. In a categorical
judgment, Kant argues, not only the categorical connection between its subject
and predicate but also the concepts themselves are asserted, that is, thought of
under the category of Reality (J, §25; W, 936). In other words, Kant denies the
transformation of hypothetical judgments into categorical ones or vice versa
because he holds that universal categorical judgments entail the existence of
their subject, that is, that they have an existential import. He argues that the
judgment “every A is B” cannot be transformed into “if something is A then
it is B” because only the former entails the judgment that A exists.

The reason Kant holds that universal categorical judgments have existential
import is probably that it seems to follow from the principle dictum de omni et
nullo—the cornerstone of the theory of syllogism. According to this principle,
whatever holds generally of every member of some group holds separately of
each of them, and whatever is true of no member of some group is not true
of any of them. The dictum warranted, among other things, the inference ad
subalternatum, namely, the inference from a universal categorical judgment
“every A is B” to its particular counterpart “some A is B.” To deny that
universal categorical judgments have existential import seems to be to deny,
in the same breath, the validity of this inference and therefore the principle
dictum de omni et nullo as well. It is no wonder that the existential import
of universal categorical judgments seemed to be beyond doubt. Bolzano, for
example, states explicitly that the reason he does not accept transformations
between hypothetical and categorical judgments is that the truth of a universal
judgment, like “every griffin is a bird,” presupposes that there are griffins, since,
as Bolzano writes, “how else could logicians teach that from every universal
proposition the particular one can be deduced, if not because the proposition
‘every griffin is a bird’ already includes the proposition ‘some birds are griffins’?”
(Bolzano 1837, §225n).17

The existential import of universal categorical judgments does not, however,
follow directly from the inference of ad subalternatum and therefore not directly
from dictum de omni et nullo either. It does so only on the assumption
that particular categorical judgments have existential import, that is, on the
assumption that particular categorical judgments are judgments of existence.
Consequently, one could keep the principle dictum de omni et nullo and deny
that universal categorical judgments have existential import by denying that
particular judgments are existential judgments. This possibility was considered,
for example, by Leibniz.18

In the nineteenth century, the celebrated philosopher Johann Friedrich
Herbart used this strategy to argue that from the logical point of view there is
no fundamental difference between hypothetical and categorical judgments.
According to Herbart, both categorical and hypothetical judgments are combi-
nations of two concepts (Herbart 1813, §52). The difference between them is
that in a hypothetical judgment the constituents of the two connected concepts
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are expressed explicitly by using categorical judgments (Herbart 1813, §60).
That is, sentences

if A is B, then C is D,

and
AB is CD,

are two ways to express one and the same judgment. This deprives univer-
sal categorical judgments of existential import, as Herbart explicitly notes
(Herbart 1813, §53) and, through the inference ad subalternatum, from particu-
lar categorical judgments as well. For Herbart this is not a problem because for
him the particularity of a categorical judgment means only that the extension
(Umfang) of its subject is indeterminately limited (§56). Since the extension of
a concept consists, according to Herbart, of concepts that are subordinate to it
(§43), neither a particular categorical judgment nor its universal counterpart
contains an assertion that some object falls under its subject term.

The obvious motivation for Herbart to hold that there is no logical difference
between categorical and hypothetical judgments is that it makes possible to
merge the theories of categorical and hypothetical syllogisms and to get a
unified theory of inference. According to Herbart, the whole theory of syllogism
is based on two hypothetico-categorical syllogisms he calls inferences modo
ponente, namely,

A is B,
C is A,
thus C is B,

or, in a hypothetical form,

if D is E, then F is G,
if M is N , then D is E,
thus if M is N then F is G,

and modo tollente
A is B,
C is not B,
thus C is not A,

which in a hypothetical form is

if D is E, then F is G,
if M is N , then F is not G,
thus if M is N , then D is not E. (Herbart 1813, §65)
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Although Herbart’s general logical insight inspired some logicians to the
extent that we can talk of a special Herbartian school of logic,19 his view on
the relationship between hypothetical and categorical judgments and on the
unified theory of inference was not generally accepted. This is true even of
Herbart’s closest followers. Drobisch, for example, who was perhaps the best
known and the most respected of the Herbartian logicians, did not accept
Herbart’s view on hypothetical and categorical judgments (Drobisch 1887,
§41). By rejecting it, Drobisch gave up the possibility to continue Herbart’s
work on a unified theory of inference, although he otherwise had ambitions to
systematize the theory of inference (see Drobisch 1887, §84–113).

4. Toward the Theory of Quantification:
Sigwart on the Reduction of Categorical Judgments
to Hypothetical Ones

It took some 60 years from the publication of the first edition of Herbart’s
Lehrbuch for the question of the relationship between hypothetical and cate-
gorical judgments to be taken seriously under study again. This happened in
Christoph Sigwart’s Beiträge zur Lehre vom hypothetischen Urtheile (1871).
The main objective of Sigwart’s paper is to explore through the history of
the theories of a hypothetical judgment and to find a compromise between
Kant’s and Herbart’s extreme views on the relationship between categorical
and hypothetical judgments (Sigwart 1873, 248). According to Sigwart, there
is, pace Herbart, a logical difference between categorical and hypothetical
judgments, although the difference does not lie in the connection between the
constituents of a judgment as Kant had held (Sigwart 1871, 60). The difference
is more fundamental, since hypothetical judgments consist of categorical ones;
in a categorical judgment two concepts or ideas are connected, whereas in a
hypothetical judgment, two categorical judgments are connected. This is why
we can never get rid of the categorical judgment-form by reducing it to the
hypothetical one. In other words, hypothetical and categorical judgments are
not only different but are not even comparable, since they are not, so to say,
at the same level (ibid.).20

Although Sigwart partially agrees with Kant when he holds that there
is a logical difference between categorical and hypothetical judgments, he
agrees to some extent also with Herbart, since he holds that in some cases
categorical judgments can be transformed into hypothetical ones. Sigwart
divides categorical judgments into two classes. First, there are judgments in
which the predicate is predicated of the determinate subject or subjects, as is
the case when the judgment is singular or when the subject term is used as a
common proper name of several objects (Sigwart 1871, 62). Sigwart’s example
of the latter kind of judgment is:

all the planets circle the sun from west to east.
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In this, Sigwart argues, “planet” behaves like a common proper name of all
the objects of the solar system that we have discovered and decided to call
“planets.” The expression of the judgment is in fact an abbreviation of the
expressions “a1 circles the sun,” “a2 circles the sun,” and so on (ibid.). In this
sense of “planet” there are no unknown planets.21 Second, there are categorical
judgments in which the predicate is predicated of every object falling under
the subject concept. Sigwart’s example of this type of a judgment is:

planets are solid objects, which revolve around central bodies along
constant orbits determined by gravity.

According to Sigwart’s explanation, because in this case being a planet is
the ground for the attribution of the predicate, “planet” has the role of a
concept word and the predicate is attributed of every object which falls under
it (Sigwart 1871, 63). In his Logik, two years after the publication of Beiträge,
Sigwart calls the former type of universal judgments “empirically universal”
(empirisch allgemeine) and the latter “unconditionally universal” (unbedingt
allgemeine) (1873, §27n6).

Sigwart argues that unconditionally universal judgments can be transformed
into hypothetical ones. This happens by dividing the original categorical
predication in

every A is B

or
no A is B

into two predications, which are then connected by the relation of necessary
consequence (Sigwart 1871, 42, 52, 62–63):

if something is A, then it is B,

or

if something is A, then it is not B.

With the word “something” we express, according to Sigwart, that the predi-
cations, which constitute the hypothetical judgment, have “a single undefined
something” as a common subject (Sigwart 1871, 42). In his Logik Sigwart spec-
ifies the nature of this “indefinite something” and identifies it with variables as
they are used in “equations of geometry” and in “formulas of algebra” (Sigwart
1873, §36n10).

By means of this innovation, Sigwart is able to rationalize the theory of
inference. He anticipates the division of logic into propositional and predicate
logic in that he separates inferences in which categorical judgments are not
analyzed into parts (Sigwart 1873, §49), and those in which the parts of
judgments are relevant (ibid., §53). He introduces his theory of inference
starting from what we might call the theory of propositional inference and
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argues that it has only three fundamental rules, namely, modus ponens, modus
tollens, and the rule

If A holds then M holds
If M holds then X holds
Therefore, if A holds then X holds.

To be able to reduce the rules of categorical inference to these hypothetical
ones, he takes advantage of his idea on the hypothetical nature of univer-
sal judgments and adds the following rule of inference to the three purely
hypothetical ones:

If something is A then it is B
C is A
Therefore, C is B.

Sigwart goes through several other rules of inference, such as medieval conver-
sions, and although it is not clear whether he takes the rules to be derivable
from the four mentioned ones or whether he takes them to be independent, it
is obvious that he takes the mentioned rules as somehow fundamental. All the
same, Sigwart argues that the traditional theory of categorical syllogisms, on
which the theory of inference of mainstream German logic was still based in
the beginning of the 1870s, represents unnecessary specialization, überflüssig
Specialisierung, and can be reduced to these few hypothetical rules of inference
(Sigwart 1873, §54).

Despite appearance, Sigwart’s analysis of universal categorical judgments is
not a theory of quantification in the proper sense of the word. What the analysis
lacks is the universal quantifier; there is no overt expression of generality in
Sigwart’s analysis. Still, Sigwart holds that judgments of the form “if something
is A then it is B” express generality. This is possible because, according to
him, the relationship between the antecedent and consequent of a hypothetical
judgment is that of a necessary consequence, that is, “if something is A then
it is B” says that nothing can be A without being B, which is just another
way of saying that every A is B (Sigwart 1871, 62–63; 1873, §36n8). In this
way Sigwart puts into practise Trendelenburg’s claim that there is a close
connection between necessity and generality (Sigwart 1873, §33n9).

5. Frege’s Begriffsschrift
Frege’s Begriffsschrift came out in 1879. It contains a description of an ax-
iomatic logical system, a logical language as Frege wants to see it (Frege 1879,
IV), which consists of the signs for negation, material implication, identity,
functions, variables, and universal quantification. For propositional logic, Frege
introduces the following six axioms:
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p→ (q → p)22(A1)
(p→ (q → r)) → ((p→ q) → (p→ r))(A2)
(p→ (q → r)) → (q → (p→ r))(A3)
(p→ q) → (∼q → ∼p)(A4)
∼∼p→ p(A5)
p→ ∼∼p(A6)

and as the rule of inference modus ponens

(R1) p→ q, p � q
For quantified predicate logic with identity, Frege adds three further axioms:

∀xPx→ Pa(A7)
a = a(A8)
a = b→ (Pa→ Pb)(A9)

and the rule

(R2) p→ Pa � p→ ∀xPx
Kantian judgment-forms have no place in the Begriffsschrift. Frege argues,

first, that the division of judgments into universal and particular ones or into
affirmative and negative ones is misleading, since it is not judgments that are
universal, particular, affirmative, or negative but their contents. Second, Frege
argues, the whole difference between categorical, hypothetical, and disjunctive
judgments is merely grammatical and that in the Begriffsschrift no distinction
between problematic, assertoric, and apodeictic judgments is made (Frege
1879, 4–5).

Frege’s conception of Modality is in line with that of Trendelenburg, Sigwart,
and Lange. He argues that an apodeictic judgment has the same conceptual
content23 as the corresponding assertoric one because the former suggests,
but only suggests, that the judgment can be derived from some universal
judgment. Because only the conceptual content of a judgment is relevant from
the point of view of the Begriffsschrift there is no need to make a distinction
between assertoric and apodeictic judgments (Frege 1879, 4). Of problematic
judgments Frege says that they express either that the negation of a judgment
cannot be derived from a general law or that the negation of a judgment is
generally false (ibid.) and holds, presumably, that problematic judgments are
like apodeictic ones in that they add nothing to the conceptual content of
the judgment. Because every universal judgment can trivially be derived from
some universal judgment, namely, from itself, it follows that according to Frege
apodeictic and problematic judgments coincide with universal and particular
ones, respectively.

The obvious reason for Frege’s other claim—that the distinction between
categorical and hypothetical judgments is only a grammatical one—is that
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he has in mind only universal and particular judgments. It is true that in
Frege’s logic there are no universal or particular categorical judgments, because
he shows that universal and particular categorical judgments are in fact
hypothetical ones. According to him, the sentence

∀x(Px→ Qx)

expresses what the following natural language sentences do:

If something has the property P it also has the property Q,
Every P is Q,
All P ’s are Q’s. (Frege 1879, 23)

Correspondingly,
∼∀x(Px→ ∼Qx)

expresses the same as
Some P ’s are Q’s

or
It is possible that P is Q. (Frege 1879, 24)

As explained, the connection between universal and hypothetical judgments
was suggested by Sigwart eight years before Frege.24 However, Sigwart’s and
Frege’s analyses differ in two important respects. First, in Frege’s analysis
the connection between the antecedent and the consequent of a hypothetical
judgment is a material implication, whereas Sigwart takes it to be a strict
conditional. Second, Frege expresses generality explicitly with a quantifier,
while Sigwart has nothing like that. These differences are interconnected. To
recall, in Sigwart’s analysis it is unnecessary to express generality explicitly,
since due to the relation of necessary consequence between its antecedent and
consequent the statement “if something is P then it is Q” says that from
something being P it follows necessarily that it is Q as well; that is, it says
that all P ’s are Q’s without exception. This possibility is barred from Frege,
because in his analysis the relation between the antecedent and the consequent
of a hypothetical judgment is a material implication. He needs a quantifier to
express generality.

Interestingly, although Frege uses material implication, he seems to think
that when the antecedent and the consequent are tied up with a universal
quantifier the sentence expresses not only generality but necessity as well. This
is a direct consequence of Frege’s view that apodeictic judgments coincide
with universal ones. Accordingly, the difference between Sigwart’s and Frege’s
analyses is that Sigwart expresses generality with necessary consequence,
whereas Frege does the opposite and expresses necessary consequence with
generality. This is possible because in the Begriffsschrift the domain of discourse
is the universal class: “∀x(Px → Qx)” says that whatever is P is Q, which
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means that there cannot be a Q which is not also P (see, e.g., van Heijenoort
1967, 325).

The use of a quantifier to express necessary consequence is not limited to
analyses of universal judgments. In §11 of Begriffsschrift, Frege explains that
there are two different uses of letters in the Begriffsschrift: A letter can be
used as a variable, which is explicitly tied with a quantifier or it can be used as
a variable, that is implicitly tied with a quantifier that has the whole sentence
in its scope. Consequently, there are no schematic letters or free variables in
the Begriffsschrift. For example, letters in the first axiom of the Begriffsschrift,

a→ (b→ a)
are not schematic letters, but are used to abbreviate the following sentence:

∀xy(y → (x→ y))
Since Frege allowed quantification over functions and truth values as well as
over objects, the same holds good for any occurrence of a letter, which is not
explicitly tied with a quantifier, as is the case in the theorem (54),

a = a

or in the theorem (52):
a = b→ (Fa→ Fb)

In all these cases, italic letters, which look like schematic letters, are in fact
variables implicitly tied with quantifiers, because they are abbreviations for

∀x(x = x)

and
∀Fxy(x = y → (Fx→ Fy)

respectively.
One consequence is that sentential expressions of the Begriffsschrift are

not schemas, unlike sentential expressions in every other pre-Fregean logical
system, but full-blown sentences capable of being true or false. In this sense the
Begriffsschrift is, as Frege is eager to point out, a characteristica universalis, a
logical language, and not only a calculus ratiocinator, a logical calculus (Frege
1879, V).

Another consequence of this use of a quantifier is that in sentences of
the Begriffsschrift the sign for material implication can be used to express
logical consequence. For example, the theorem (52) says in post-Fregean terms
that “Fa→ Fb” expresses the truth in every interpretation in which “a = b”
expresses the truth, which means that “a = b → (Fa → Fb)” expresses the
truth no matter how “a,” “b,” and “Fx” are interpreted. This means that
despite the use of material implication, the relation of necessary consequence,
in the sense of a logical consequence, has an expression in the Begriffsschrift.
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6. C. I. Lewis and the Beginnings of Modern Modal Logic

Even though there are some anticipations in C. S. Peirce’s “Gamma Systems”
and also in the work of Hugh MacColl (in the series of papers between 1880
and 1906, and in MacColl 1906), modal logic, as contemporarily conceived,
is generally taken to begin with C. I. Lewis’s dissatisfaction with the notion
of implication in the “algebra of logic,” or the “calculus of propositions” (in
Whitehead and Russell 1910, in particular). Lewis (1912, 1918) holds, quite
plausibly, that the material implication (→) is unfitting if we want to “represent
the logical nexus of proof and demonstration” (Lewis 1918, 328); he therefore
introduces his strict implication (⇒) better to reflect the “ordinary meaning of
implication” (Lewis 1912, 359). Impressed by the formal calculus, he intends
to devise a logical system in which “[the] meaning of implication is precisely
that of ordinary inference and proof” (Lewis 1912, 359). Lewis notices that we
use sentences such as “Matilda loves me implies that I am beloved,” intending
these as some kind of inferences; logical calculus would be “more useful,” he
says, if it attended to these as well (Lewis 1912, 358).

In view of what was brought up in the previous section, Lewis’s claim that the
new development in logic misguidedly neglects inferential aspects is unjustified,
at least as far as Frege is concerned. This is because Lewis’s sentence involving
Matilda, for example, is formalizable in Frege’s Begriffsschrift language (in
effect) as “∀Lm(Lm → ∃xLx),” which appears to capture precisely what
Lewis is after (for in our contemporary terms this amounts to saying that
“Lm → ∃xLx” is a theorem, or that “∃xLx” may be inferred from “Lm”).
Thus, had Frege’s work been better known, or, as far as it was known, better
understood, the development of modal logic might have begun right from
Frege’s Begriffsschrift, that is, several decades before Lewis’s contribution.

In terms of the distinction that was to become standard later, Lewis (as
well as Frege) seems to smuggle something belonging to the metalanguage, viz.,
the proof-theoretical consequence (�), into the object language. That is, Lewis
evidently interprets (what we are accustomed to write as) “p � q” (which
belongs, from our present viewpoint, to the metalanguage) as “p⇒ q” (which
belongs to his object language). He calls it strict implication: It is impossible
that p is true and q false. Writing, as usual, the necessity operator as “�,” the
latter is “�(p→ q),” which we today, conscious of the distinction, accept as
belonging to the (modal) object language. We have just introduced “�,” to be
used in meta-statements such as “�p � �(p→ q),” which Lewis would write
rather as “�p⇒ (p⇒ q).”

Although Lewis’s “Russellian” reading of “p→ q” as “p implies q” is liable
to censure, the criticism that he (and Frege) fallaciously conflates the two
levels of language seems somewhat anachronistic and thus unfair. It may even
be argued that the Frege-Lewis attitude is more natural in that the object
language/metalanguage distinction is artificial from the viewpoint of ordinary
speakers. To separate “Matilda loves me” and “I am beloved,” which are
sentences in the “natural object language,” from the perfectly colloquial “It
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follows from Matilda’s loving me that I am beloved,” which according to the
standard contemporary approach belongs to a higher level of language—or, to
put it frankly, to a different language—is to make a distinction which ordinary
speakers certainly do not make.

Lewis’s treatment, confused or not, opens up the important possibility of
introducing “intra-sentential” modal operators. That is, even if we write “p � q”
as “�(p→ q),” we have only prefix formulas. But once we have the latter at
hand we are naturally led into considering formulas such as “p→ �(p→ q),”
which cannot be extracted directly from presentations of the form “p � q.”

In Lewis (1912, 1918) can be found many ideas that were to be important,
even crucial, in the later development of modal logic, such as the notion of
“possible situation” or “circumstance” (Lewis 1918, 333–336), some rudiments of
the distinction between actualist and possibilist quantifiers, with considerations
on nonexistents (Lewis 1918, 328–331), and some reflections on counterfactual
conditionals (Lewis 1912, 358).

7. Proof-Theoretic Approach to Modal Logic
The early modal logicians got some semantic support from the many-valued
logics that were developed by Jan Łukasiewicz, but mainly their systems were
purely proof-theoretic in character.

The final result of Lewis’s work with strict implication was Lewis and
Langford (1932, especially appendix II), where the famous “Lewis systems”
S1–S5 were axiomatized. It is noteworthy that the Lewisian logics do not use
material implication at all; they are formulated purely intensionally. In these
systems, the rules of inference are substitution of strict equivalents, modus
ponens for strict implication, and adjunction (i.e., A&B may be inferred from
A, B), and the basic axioms are as follows:

p& q ⇒ q & p(B1)
p& q ⇒ p(B2)
p⇒ p& p(B3)
(p& q) & r ⇒ p& (q & r)(B4)
p⇒ ∼(∼p)(B5)
(p⇒ q) & (q ⇒ r) ⇒ (p⇒ r)(B6)
p& (p⇒ q) ⇒ q(B7)

These define S1. Lewis’s own favorite was the comparatively weak system S2,
got from S1 by adding just the axiom

(B8) ♦(p& q) ⇒ ♦p

The first axioms (B1)–(B7) allow infinitely many modalities, that is, non-
equivalent combinations of modal operators. In 1930, Oskar Becker suggested
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reduction rules that would lead to an efficient elimination of such iterations. It
was natural that this idea found much support. Becker considered the reduction
axioms

(C10) �p⇒ ��p

and

(C11) ♦p⇒ �♦p

and Lewis discussed these as characteristic for his systems S4 and S5, respec-
tively. In other words, S4 and S5 are generated by adding (C10) or (C11) to
(B1)–(B7). However, he was not willing to accept them, preferring an unlimited
multitude of modalities. (S4 contains only 12 modalities and S5 four—necessity,
possibility, and their negations.) S5 is simplest, and it has remained by far the
most popular alethic system of modal logic even today.

The presentations of propositional modal logics that are standard today
follow Gödel’s (1933) formulation of S4, which, unlike Lewis’s “systems of
strict implication,” is built as an extension of the nonmodal propositional
logic.25 Such a turn makes the systems much simpler and more transparent.
S5, for example, is defined as the smallest set of modal formulas which

(CC) contains every tautological formula of classical (propositional) logic;

(CMP) is closed under modus ponens: if p and p→ q are in the set, so is q;

(CS) is closed under substitution: if p is in the set, so is p[r/q] (i.e., a
formula resulting from a uniform substitution of a formula r for a
subformula q in p);

(CN) is closed under necessitation: if p is in the set, so is �p;

(AX) contains the following axioms (axiom schemas):

�p& �(p→ q) → �q(K)
�p→ p(T)

♦p→ �♦p(5)

A formula p contained in a logic X is called a theorem of that logic—in
symbols, � p. If in a logic X a formula p can be obtained from a set of formulas
S (i.e., by using formulas in S as further “axioms”), p is said to be derivable
from (or a proof-theoretic consequence of) the set S in X—in symbols, S � p.

Dropping from S5 the axiom (5)—the characteristic axiom of S5—results
in the “minimal” modal logic, usually called the logic T, and by excluding (T)
as well we have the logic K (which is the basis for all so-called normal logics).
Other useful modal systems may be obtained by adding to K (or to T) other
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characteristic axioms, such as

�p→ ��p(4)
�p→ ♦p(D)
p→ �♦p(B)

(♦p& ♦q) → ♦(p& q) ∨ ♦(p& ♦q) ∨ ♦(♦p& q)(H)

Important modal systems include T, S4 (= T + (4)), S5 (= T + (5)), D
(= K + (D)), and S4.3 (= T + (4) + (H)).26

8. Possible Worlds
It seems natural to most of us today to hold that things could be (could have
been, could be in the future) otherwise than they actually are (were, will be).
Even determinists who say that things could not really be otherwise (because
of, say, earlier events and necessitating laws) should understand what is meant
by “things could be otherwise,” at least in the sense of there being a difference
between a contradictory idea (like that of a married bachelor) and an idea
that is as such consistent even if it were never to find an actualization (like,
say, that of a 10-foot-tall bachelor).

The notion of possible worlds, as it is used in the prevailing modal logics,
may be seen as arising from such pretheoretic intuition that things could be
otherwise. It seems equally natural to speculate that there might be things that
are necessary in the sense that they really could not be otherwise—that they
would be as they are no matter how other things were. The last characterization
is of course a pretheoretic counterpart to “holds in every possible world.” It is
often claimed that this depiction of necessity as truth in all possible worlds
is Leibniz’s idea. However, possible worlds are utilized in the explanation
of modalities well before Leibniz, for example, by Duns Scotus and Luis de
Molina. It must be said, however, that Leibniz deserves credit for employing
the notion of alternative possible universes more clearly and systematically
than his predecessors.

It is also customary to credit Rudolf Carnap with the introduction of this
possible worlds account of necessity into modern modal logic (see, e.g., Bull
and Segerberg 1984, 13). However, Lewis seems to have the ingredients of
this possible worlds delineation at hand in the following passage (Lewis 1918,
333–336; writing Lewis’s strict implication still as “⇒”):

Any set of mutually consistent propositions may be said to define a
“possible situation” or “case” or “state of affairs.” And a proposition
may be “true” of more than one such possible “situation”—may
belong to more than one such set. . . . In these terms, we can
translate p⇒ q by “Any situation in which p should be true and q
false is impossible.” . . . It is in the nature of an absurd proposition
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that it is not logically conceivable that it should be true under any
possible circumstances.

However, Lewis does not take systematic advantage of his “situations” or
“circumstances.” Carnap does this (with his “state-descriptions”), and for this
reason the attribution of a pioneering role to Carnap is not seriously misleading
either.

Possible worlds are nowadays most commonly conceived as (conjunctions of)
propositions (or states of affairs, or properties), rather than (sets of) sentences
(as in Carnap). According to Alvin Plantinga (1974, 45), for instance, a state
of affairs w is a possible world if it is maximal or complete in the sense that
for every state of affairs s, whenever w obtains, s either obtains or does not
obtain (but not both).

9. Possible Worlds Semantics
After the achievements in nonmodal model theory, it was natural to ask if
something similar could be done in modal logic as well. As indicated, the model-
theoretic approach to modal logic may be said to begin with Carnap (1942,
1946, 1947). According to Carnap, we may represent (what Leibniz called)
possible worlds by means of sets of atomic sentences, or state-descriptions,
as he calls such sets. Then, a sentence “p” is according Carnap “logically
necessary” just in case it is true in all (relevant) state-descriptions. More
precisely, according to state-description semantics, given a set S of state-
descriptions, the truth of a sentence “p” with respect to a state-description D
(contained in S) is defined as follows:

Atomic “p” is true with respect to D iff “p” is contained in D.

“Not-p” is true with respect to D iff “p” is not true with respect to D.

“If p, then q” is true with respect to D iff “p” is not true with respect to
D or “q” is true with respect to D.

“Necessarily p” is true with respect to D iff for every state-description E
in S, “p” is true with respect to E.

Carnap did not yet have the notion of relations between states of affairs. Prior
was led to this idea in his work on temporal logic (1957). Soon after that,
the full apparatus of present-day possible world semantics in the strict sense
was developed. As the important pioneers of modal model theory, we should
mention Kanger (1957), Hintikka (1957a, 1957b, 1963), and Kripke (1959,
1963a, 1963b). They took the step from the state-description semantics to
explicit possible worlds semantics. In the latter, a model M = 〈W,R, V 〉 is an
ordered triple consisting of a nonempty set W (of possible worlds), a dyadic
relation R (of accessibility, or alternativity, or relative possibility) on W , and
a function V (a valuation or interpretation function), which assigns to each
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propositional letter (i.e., atom) a subset of W . Now, the truth of a formula
p with respect to a possible world w (contained in W ) in a model M , or in
symbols 〈M,w〉 
 p, is defined as follows:

〈M,w〉 
 p iff w belongs to V (p), if p is an atom,

〈M,w〉 
 ∼p iff not 〈M,w〉 
 p,
〈M,w〉 
 p→ q iff 〈M,w〉 
 q or not 〈M,w〉 
 p,
〈M,w〉 
 �p iff for every u in W such that Rwu, 〈M,u〉 
 p.

A formula p is said to be (i) true in a model M , or M -true, if it is true with
respect to every possible world in M ; (ii) valid (in symbols, 
 p), if it is
M -true for every model M ; (iii) a logical (or model-theoretic, or semantical)
consequence of a set of formulas S (in symbols, S 
 p), if for every model M
and world w (in M), if 〈M,w〉 
 q for every formula q in S, then 〈M,w〉 
 p.

By conditioning the accessibility relation R appropriately, various modal
systems can be obtained very conveniently from this “skeleton” (which in
fact is the basic normal logic K in the sense that K consists precisely in
the formulas that are valid according to the definitions above). For example,
because the axiom (T) results from reflexivity (∀xRxx), (5) from Euclidity
(∀xyz(Rxy &Rxz → Ryz)), (4) from transitivity (∀xyz(Rxy &Ryz → Rxz)),
(D) from seriality (∀x∃yRxy), (B) from symmetricity (∀xy(Rxy → Ryx)), and
(H) from connectedness (∀xy(Rxy ∨Ryx)), the system T is obtained from the
skeleton above by requiring reflexivity of R, S5 by requiring reflexivity and
Euclidity, S4 by requiring reflexivity and transitivity, and so on. In fact, S5
can be defined more simply by discarding the accessibility relation altogether
and replacing the last truth clause above with

〈M,w〉 
 �p iff for every u in W , 〈M,u〉 
 p.

Let us say that a formula p is X-valid (
X p), if it is valid for a system X
according to the above definitions. The soundness theorem for a system X says
that every formula contained in the X-logic is X-valid (or, more generally, if
S �X p, then S 
X p), and the completeness theorem, conversely, that every
X-valid formula is contained in the X-logic (or, more generally, if S 
X p,
then S �X p).27 The holding of both of these metatheorems means that the

-relation (model-theoretic logical consequence) coincides perfectly with the
�-relation (proof-theoretic derivability), or that validity is in fact the same as
theoremhood.28

10. Correspondence Theory
Possible worlds semantics grew quickly common in the 1960s. During its early
years, completeness results were proved for numerous familiar systems. Later,
this began to be seen in a mathematically generalized perspective: Those
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modal systems were, in fact, axiomatizations for the theory of certain types
of accessibility relations (see Segerberg 1971). However, in 1974 it was shown
that there exist even incomplete normal modal logics.

The search for semantic characterizations of modal systems in completeness
results generated a whole new branch of modal logic. As van Benthem writes,

it took modal logicians some time to realize that there are also direct
semantic equivalences involved here, having nothing to do with
deduction in modal logics. Indeed the whole present Correspondence
Theory arose out of simple observations such as the following, made
in the early seventies: The T-axiom �p → p is true in a Kripke
frame 〈W,R〉 if and only if R is reflexive. Here, “true in a frame”
means true in all worlds, under all assignments to the proposition
letters. (van Benthem 1984, 168)

As indicated, the modal axiom T, �A → A, is valid in the frame 〈W,R〉
if and only if the nonmodal axiom ∀xRxx concerning the reflexivity of R
is true in W ,29 the axiom (5) holds if the relation is Euclidean, that is,
∀xyz(Rxy &Rxz → Ryz), and so on. Thus there is a correspondence between
the modal and nonmodal axioms.

Correspondence theory was rapidly developed by logicians like Johan van
Benthem and R. I. Goldblatt. It was shown that numerous modal systems,
even very complex ones, can be equivalently defined in a semantical way by
characterizing the accessibility relation R with sentences of first-order predicate
logic. In this way, large sections of modal propositional logic were translated
into the language of nonmodal logic. This achievement is by no means trivial,
since a complete correspondence is not possible: It was shown (a) that for
some modal axioms there is no corresponding condition on R, and (b) that,
conversely, for some quite simple conditions on R there is no modal counterpart.
Profound results could then be achieved concerning what classes of modal
sentences do have nonmodal representations—already Sahlqvist (1975) proved
this for a large class of sentences. Modal logics with first-order equivalents can
then profit from the strong metalogical results of predicate logic.

Let us mention in brief two examples of the subtler methods used in technical
matters, just to illustrate the abstract nature that the notion of a possible world
has obtained. First, van Benthem introduced the concept of “bisimulation”
between (frames and) models. Bisimilar worlds have the same truths, and this
offers a useful test for when a first-order formula has no modal equivalent:
possibly there are bisimilar worlds in two models, one fulfilling the formula,
the other not. Second, proofs often become easier if there are only finitely
many worlds, and in the 1970s it was proved that many modal systems could
be characterized in terms of their soundness and completeness with respect to
certain classes of finite frames. (However, this does not hold universally: The
first example of modal logics requiring infinite frames was given in Makinson
1969.)
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11. Modality and Quantification
Quantified modal logic (QML) began in the forties with the work of Ruth
Barcan (1946) and Carnap (1946, 1947), and with Willard V. Quine’s (1943)
sort of preemptive doubts about the intelligibility of the combination of
modality and quantification. Even though propositional modal logic (PML) is
quite straightforward, systems of QML, indeed, involve disputable philosophical
issues related to notions such as existence.30 The simplest way to devise QML is
just to add (classical) quantifiers directly on top of PML. One system resulting
from this strategy, the simplest quantified modal logic (SQML), is presented in
this section.31 Some philosophical problems inherent in modal logics, and in
QML in particular, are addressed in the next section.

An SQML modelM is an ordered quadruple 〈W,D,R, V 〉, whereW (worlds)
and R (accessibility) are as before, D is a nonempty set (a domain of individ-
uals), and V is a valuation function, which assigns to each individual constant
an individual contained in D and to each pair consisting in a world (in W ) and
an n-adic predicate constant an n-adic relation on D (i.e., a set of n-tuples of
members of D). Calling a function f from variables to the domain D of M an
M -assignment, the relation 〈M,w, f〉 
 p, or “p is true in M with respect to
w (in W ) under an assignment f” is defined as follows:

〈M,w, f〉 
 Pt1 . . . tn iff 〈d(t1), . . . , d(tn)〉 is contained in V (w,P ), where
each tI is a term (i.e., an individual constant or variable), and d(t) is
V (t) if t is a constant, and is f(t) if t is a variable;

〈M,w, f〉 
 t = t′ iff d(t) = d(t′);

〈M,w, f〉 
 ∼p iff not 〈M,w, f〉 
 p;
〈M,w, f〉 
 p→ q iff 〈M,w, f〉 
 q or not 〈M,w, f〉 
 p;
〈M,w, f〉 
 ∀xp iff for every assignment g different from f at most in
that g(x) �= f(x), 〈M,w, g〉 
 p;
〈M,w, f〉 
 �p iff for every world u in W such that Rwu, 〈M,u, f〉 
 p.

A formula p is said to be (i) M -true with respect to a world w, if 〈M,w, f〉 
 p
for all assignments f ; (ii) M -true (simply), if it is M -true with respect to
every world; (iii) valid (
 p), if it is M -true for every model M (i.e., if
〈M,w, f〉 
 p for every M , f and w); and (iv) a logical (model-theoretic,
semantical) consequence of a set of formulas S (S 
 p), if for every model M ,
world w (in M) and assignment f , if 〈M,w, f〉 
 q for every formula q in S,
then 〈M,w, f〉 
 p.

As before, the important S5 system is obtained by dropping the accessibility
relation R altogether and replacing the clause for �p by

〈M,w, f〉 
 �p iff for every world u in W , 〈M,u, f〉 
 p.

A proof-theory for S5 may be given by adding to the propositional S5 logic
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(provided above) the following closure principle CG, quantifier axioms UG and
UI, and identity axioms Id and InI:

(CG) closure under generalization: if p is in the logic, so is ∀xp;
(UG) ∀x(p→ q) → (p→ ∀xq), for any variable x not free in p;

(UI) ∀xp→ p[t/x], for any term t different from a variable that is bound in
p[t/x];

(Id) x = x, for any variable x;

(InI) x = y & p→ p{y/x}, where p{y/x} results from p by substituting y for
some x’s in p so that no such substituted y becomes bound in p{y/x}.

12. Philosophical Issues
Possible worlds semantics involves many controversial matters, most of which
arise in QML. However, some Quinean general objections to modal logic and
some ontological issues related to possible worlds themselves will be considered
first.

The distinction between de dicto and de re readings of modal statements
offers a convenient entry to Quine’s objections to modal logic. Though several
meanings have been attached to these terms, one quite classical and clear-cut
distinction deserving to be called a de dicto/de re distinction may be introduced
by means of definite descriptions in the following way. On Russell’s (1905)
widely accepted “contextual” analysis of definite descriptions, “The number
of planets is greater than seven,” for example, is to be analyzed (roughly) as
“There is a unique number of planets, and this number is greater than seven,”
or, more precisely,

∃x(Nx& ∀y(Ny → y = x) & x > 7),

where “N” represents “(is) a number of planets.” Then, the modal statement
“The number of planets is necessarily greater than seven” has both the de dicto
reading,

(DD) �∃x(Nx& ∀y(Ny → y = x) & x > 7),

which seems false, and the de re reading,

(DR) ∃x(Nx& ∀y(Ny → y = x) & �(x > 7)),

which seems true. Quine’s doubts concern especially de re statements. For
one thing, he holds that de re statements such as DR are “meaningless” since
“9” in “�(9 > 7),” for instance, is not “purely designative”: “the context
‘necessarily. . .’ . . . is similar to the context of single quotes,” such as “ ‘9 > 7’ is
analytic” and “ ‘Cicero’ contains six letters” (Quine 1943, 123–124; see also, e.g.,
Quine 1953a). That is, the problem Quine sees in DR lies in the last conjunct
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which according to him is to be read along the lines “The sentence ‘x > 7’ is
necessarily true.” This indeed does not make much sense. However, though it
might be admitted that it is possible to construe modalities as predicates of
sentences, this is by no means compelled. It seems that the issue comes down
to some “basic intuitions” about how to understand modalities, and, especially,
whether they are entirely of linguistic nature (or based entirely on relations
between sentences), or whether there are necessities and possibilities that are
not so strictly dependent on language.

This brings us to Quine’s second, closely related objection to de re statements
such as “∃x�(x > 7).” This is that (even if they made sense) taking them as
true commits one to “Aristotelian essentialism,” or “the doctrine that some
of the attributes of a thing (quite independently of the language in which
the thing is referred to, if at all) may be essential to the thing, and others
accidental” (Quine 1953a, 175–176). Quine finds this unacceptable on the
basis that “necessity resides in the way in which we say things, and not in the
things we talk about” (Quine 1953a, 176). He seeks to justify this position by
presenting the following dilemma: “For, would 9, that is, the number of planets,
be one of the numbers necessarily greater than 7? But such an affirmation
would be at once true in the form [‘9 is greater than 7’] and false in the
form [‘The number of planets is greater than 7’]” (Quine 1943, 123–124). His
conclusion is that “to be necessarily greater than 7 is not a trait of a number
but depends on the manner of referring to the number” (Quine 1953b, 148).
However, a believer in modal logic may at this point reply (or insist) that the
modalized predicate “being necessarily greater that 7” (“�(x > 7)”) is true
of 9, no matter how this number is referred to. Due to Kripke (1971, 1972,
1980) and others, some forms of essentialism Quine found objectionable are
now widely accepted as being quite innocuous.

Positions taken on the ontological status of possible worlds may be classified
in many ways, one being a sort of imitation of the traditional division to
nominalism, realism, and conceptualism (Haack 1978, 191). According to
such division, possible worlds may be construed either as sets of sentences
(“nominalism”; Carnap 1947; Hintikka 1962, 1969, 1975), or as real mind- and
language-independent entities (“realism”; D. Lewis 1973, 1986), or (roughly) as
ways in which the world could be conceived to be otherwise (“conceptualism”;
Leibniz; Kripke 1971, 1972, 1980; Plantinga 1974; Stalnaker 1976).32

Turning then to issues pertinent to quantified modal logics in particular,
another important ontological question concerns the status of individuals.
According to actualism everything there is is actual (there are no merely
possible things), whereas according to possibilism it may be said, in some
sense or other, that there are also things which are not actual (things that
only might exist). Actualists are partial to possible worlds semantics in which
each world has its own domain (thought of as containing just the existents of
that world), and quantifications are, accordingly, world-relative (so that “∀xp,”
for instance, is true with respect to a world w just in case “p” holds for all
individuals existing in w). In contrast, a possibilist semantics is typically one
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with only a single (fixed) domain (of all “possible individuals”), and with (at
least apparent) quantification over possibilia. So, with its fixed domain SQML
appears as a possibilist system.

The basic problem with the varying domains approach is that because
“∃x(a = x)” is a theorem, so should be, by the necessitation principle CN,
“�∃x(a = x)” as well. This will not do for an actualist. One way to resolve
this difficulty is to drop (or weaken) the CN principle. This move, however, is
implausible since it surely seems that “necessarily p” is a logical truth whenever
“p” is. Another, much more popular way to deal with this problem is to deny
theoremhood of “∃x(a = x),” and thereby adopt free logic, or a logic without
the classical assumption that all individual constants are referring. This can be
accomplished, basically, by introducing the existence predicate “E” (defined by
“Ex↔ ∃y(x = y)” in some free systems, but primitive in others) and adding
an existence proviso to the quantifier axiom UI so that the revised form is
∀xp& Et→ p[t/x].

Objections to possibilist systems have been concentrated on qualms about
the posited existence of individuals that are only possible (for this involves
quantifications over nonexistent or nonactual possibilia, which contravenes
Quine’s widely accepted thesis that quantifiers reflect ontological commitment),
and, relatedly, on some specific formulas that are valid in these systems.
Regarding the latter issue, all of the following are valid in SQML:

∀x�∃y(x = y),(NE)
�∀x�∃y(x = y),(NNE)
∀x�p→ �∀xp,(BF)
�∀xp→ ∀x�p.(CBF)

Actualists regard these as offending because, for them, NE attributes necessary
existence to everything, NNE says, what is even worse, that this is necessary,
the Barcan formula BF, in turn, states, for example, that if it is so much as
possible for something to have the perfections that have been said to belong to
God, then there actually is something that possibly have these perfections, and,
finally, CBF would allow us to derive NE from the unproblematic �∀x∃y(x = y)
(“Necessarily, for every individual there is an individual that is it”). However,
these are just actualist readings of the formulas in question. On possibilist
readings these formulas are, as such, not as objectionable as actualists suggest:
On such a reading NE, for instance, states only the platitude that every
possible individual is necessarily such that there is a possible individual that
is it. It may be said that these disputed formulas mean something different for
actualists and possibilists. Accordingly, actualists should perhaps focus their
criticism directly on the possibilist tendency of positing possibilia.

These pressures have brought many of those who identify themselves as
possibilists quite near to the positions of some of those who see themselves
rather as actualists (and vice versa). On a compromising view there are really
no possibilia, but they are, so to speak, represented in the domain of a world
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by existing objects of appropriate sorts. Thus Plantinga (1974, 1976), who
appears as an actualist, posits abstract individual essences as proxies for
individuals proper, and an individual not existing in a world is accounted for
by its individual essence’s not being actualized or exemplified there (while these
essences themselves exist, as abstract objects, in every world). In a somewhat
analogous manner, Linsky and Zalta (1994), who call themselves possibilists,
postulate existing contingently nonconcrete abstract objects as surrogates for
so-called nonexistents: A concrete object that only might have existed with
respect to the actual world is not a merely possible individual but an existing
contingently nonconcrete one (with respect to the actual world). Making this
parallel between these sorts of actualists and possibilists is not to deny that
there is much disagreement between these camps (which is testified by the fact
that Linsky and Zalta [1994] argue against Plantinga, among others), but at a
general level their basic antidote against both extreme actualism and extreme
possibilism seems pretty much alike.

Due to the work of (Barcan) Marcus (1961) and Kripke (1971, 1972, 1980),
and others, the widely (though not universally) accepted view is that proper
names in natural languages are rigid designators. Rigid designation is often
said to mean “reference to the same individual in every possible world in which
that individual exists” but is perhaps more properly characterized by reference
to an individual independently of possible worlds, as David Kaplan (1989,
493–497) in particular emphasizes. This latter conception is reflected in the
valuations of SQML’s individual constants: They are not functions from worlds
to individuals but provide directly individuals. This means that (interpreted)
individual constants of SQML are referring with respect to all worlds. Hardline
actualists who accept such rigid designation must accordingly accept reference
to nonexistents; “Kofi Annan,” for instance, refers to Kofi Annan even with
respect to “Annanless” worlds (to put the point in terms of an example from
natural discourse). Assuming that rigidity in the sense of nonfunctionality is
accepted, this speaks in favor of fixed domains approach and against modal
model theory with genuinely varying domains.

It is held at some quarters that modal logic is plagued, in addition to all
sorts of difficulties and disagreements already discussed, with the problem of
transworld identity, or that of individuation of individuals through possible
worlds. That is, modal logicians are urged to provide criteria for the sameness
of individuals in different possible worlds. Answers to this challenge have
ranged from denying (numerical) identity of individuals in different worlds
altogether to ascribing to individuals an inexplicable haecceity (“thisness”)
that is said to secure their modal identity. As brought up by Kripke (1980),
it appears that there are two perspectives to the interplay between worlds
and individuals. On one, world-centered picture we first posit possible worlds,
as it were, and then start looking for the “same individuals” in these worlds.
According to the other, individual-centered perspective, in modal reflection we,
having already fixed onto an individual, ask how it would be were some things
different from what they actually are; for instance, if there were no United
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Nations at all, then, obviously, Kofi Annan—that fixed individual—would not
be the Secretary General of the UN either. Arguably, it is the adoption of
the first perspective that generates doubts about transworld identity (and,
subsequently, doubts about rigid designation).

13. Applications
Finally, we can list some applications of modern modal logic to philosophically
interesting subjects. Gödel had hinted at the possibility of understanding the
modal operator as deductive provability, and this thought was rediscovered in
the 1960s when logicians started to examine provability by means of formal
calculi. There has recently been much progress in these untypical logics (see
Boolos 1993).

Another step of generalization was taken by von Wright (1951a), who
suggested that the modality could be seen as a purely formal operator open to
many different interpretations in natural language. One such interpretation is
deontic logic, the most successful philosophical application of modern modal
logic. It was anticipated by Mally in 1926 but, in its present form, it starts
from von Wright (1951b). It discusses the logical features of obligation; the
operator � is written as O, Ought. In semantics, the accessible worlds are
deontic alternatives, those which are in accordance with norms. Most axioms
of alethic modalities do not hold for O; especially T, Op→ p, is not correct,
because all norms are not fulfilled. It has been replaced by D, Op→ ∼O∼p.
On the other hand, the axiom O(Op→ p) has often been defended. Probably
the most discussed issue in deontic logic concerns the apparent paradoxes this
seemingly plausible axiom brings about. Many of them have been solved, but
the so-called conditional obligations seem to require some complication to the
simple possible worlds machinery.

Hintikka’s Knowledge and Belief (1962) was the cornerstone of epistemic
and doxastic logic, with operators Ka = “a knows,” Ba = “a believes.” The
program was later generalized to other propositional attitudes. In semantics,
the epistemic alternatives are all the worlds compatible with a’s knowledge—
those states of affairs that a’s knowledge does not exclude. Modal logic is thus
applicable. Hintikka first thought that propositional epistemic logic was simply
S4 and doxastic logic K4. But this immediately leads to the problem of “logical
omniscience”: The agent must know all the consequences of his knowledge, and
all logical truths. This problem has been hotly debated and various partial
solutions have been proposed, but the situation still remains unclear. The root
of the difficulties lies in the fact that an attitude sentence is not simply a modal
clause but also a factual claim about the person. In any case, epistemic logic
again became very popular because of the interest of computer scientists in the
1980s. A philosophically more interesting development than formal calculi may
be in the speculation concerning objective and subject-bound quantification,
starting from Hintikka (1975).
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Notes
1. From now on, “logic” refers to pure general logic unless otherwise indicated.
2. The word “understanding” has two meanings in the Critique of Pure Reason. On

the one hand Kant defines it very broadly as the “non-sensible faculty of knowledge”
(A67=B92). In this sense, every cognitive faculty, save intuition, belongs to the
understanding. On the other hand, he uses “understanding” also in a more restricted
sense to mean the faculty of grasping nonintuitive representations, that is, concepts.
Kant recognizes the equivocation, since he says that “general logic is constructed
upon a ground plan which exactly coincides with the division of the higher faculties
of knowledge. These are: understanding, judgment, and reason. In accordance with
the Functions and order of these mental powers, which in current speech are com-
prehended under the general title of understanding, logic in its analytic deals with
concepts, judgments, and inferences” (A130–131=B169).

3. Textual evidence does not reveal whether Kant accepted the possibility of all
81 judgment-forms. This might well be doubted, since it is not obvious, for example,
whether hypothetical judgments can be of different Quantity. Some logicians of the
nineteenth century held that every judgment has some moment from every four titles
so that there are, for example, universal as well as particular hypothetical judgments
(see, e.g., Drobisch 1887, §51).

4. Each judgment in the table has the moment of which it is supposed to be
an example. Because every judgment has some moment from every title, the same
judgments could have been used as examples of several moments. “Every A is B,”
for example, is not only a universal judgment but also an affirmative, categorical,
and assertoric one.

5. Hypothetical and disjunctive judgment-forms do not seem to be in accordance
with Kant’s general characterization of the form of judgment as the relation between
the two representations in a judgment, since both hypothetical and disjunctive
judgments assert a relation between judgments or propositions and not between
representations or concepts. From Kant’s point of view, there is no such problem
since according to him judgments are representations; they are representations of
representations (A68–69=B93–94)

6. The last two examples are from Bolzano (1837, §191).
7. Sigwart separates the logical extension of a concept from the empirical extension

of a name. He argues that the concept of man and that of bipedal animal without
feathers are different concepts with different extensions, although as names “man”
and “bipedal animal without feathers” can be used to refer exactly to the same
objects (Sigwart 1873, §42n5).

8. According to Kant, from the standpoint of pure general logic singular judgments
are universal ones and infinite judgments are negative ones. In the Critique Kant
says that he separates them because there is a difference between them from the
standpoint of transcendental logic (A71–73=B96–98). However, both singular and
infinite judgment-forms occur also in Jäsche Logik, although it deals exclusively with
pure general logic.

9. About epistemic and psychological theories of modal notions in the nineteenth
century, see Haaparanta (1988).

10. The view presented in Jäsche Logik is essentially the same: “Judgements are
either problematic or assertoric or apodeictic. The problematic ones are accompanied
with the consciousness of the mere possibility of the judging, the assertoric ones with
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the consciousness of its actuality, the apodeictic ones, finally, with the consciousness
of its necessity” (J, §30).

11. As late as 1884, Wilhem Windelband wrote that “the revolution that nowadays
is happening in logic is nowhere as visible as in the system of judgment-forms.
Although the old scheme, which due to the support it got from Kant’s authority
dominated formal logic a century ago, is still traditionally followed, it is for every
new presentation of the science of logic almost nothing else than an object of critique”
(Windelband 1884, 167).

12. One of the few was Bernard Bolzano. He rejected Kant’s theory of judgment-
forms as early as 1837 (esp. §188–191). He had, however, little or no effect on the
development of logic in the nineteenth century, since he was relatively unknown to
logicians at that time.

13. The connection between universality and necessity is also hinted at by Kant. He
writes in the Critique (B4) that “If . . . a judgment is thought with strict universality,
that is, in such manner that no exception is allowed as possible, it is not derived
from experience, but is valid absolutely a priori.”

14. Sigwart openly acknowledges his debt to Trendelenburg’s Logische Unter-
suchungen (Sigwart 1873, VI).

15. Lambert’s view in Neues Organon is essentially the same (Lambert 1764,
§137).

16. Wolff’s own example is “every triangle has three angles” and “if a space is
delineated with three lines, then it has three angles” (Wolff 1754, 3. cap. §7).

17. Bolzano admitted, however, that in some cases a proposition that seems
categorical, like “a golden mountain is bald,” should be understood as a hypothetical
judgment, “if a mountain were made of gold, it would be bald” (Bolzano 1837, §196).

18. “An accepted conversion seems sometimes to lead to what is false. I have in
mind the conversion per accidens of a universal affirmative proposition in a case
such as ‘Every laugher is a man, therefore some man is a laugher’. For the former is
true even if no man laughs, whereas the latter is not true unless some man actually
laughs; the former speaks of possibles, the latter of actuals. However, a difficulty of
this kind does not occur if you remain within the limits of possibles: e.g. ‘Every man
is an animal, therefore some animal is a man’. It must therefore be said that the
conclusion, ‘Some man is a laugher’, is true in the region of ideas, i.e., if you take
‘laugher’ for some species of possible entity, just as ‘soldier’ is a species of man; or,
just as man is a species of animal, so some man is a laugher; the proposition will be
true, even if no laugher exists” (Leibniz, G VII, 211).

19. The most famous Herbartian logicians were perhaps Moritz Drobisch (1802–
1896), Franz Lott (1807–1874), and Robert Zimmermann (1824–1898).

20. In fact, Sigwart’s view is more complicated than this. According to his
definition, the assertion of truth or falsity is an essential ingredient of any judgment.
Because in a hypothetical judgment neither its antecedent nor its consequent is
asserted, Sigwart cannot hold that hypothetical judgments consist of categorical
judgments (Sigwart 1871, 37). Instead, he says that it consists of two “categorical
predications” (Sigwart 1871, 59–60).

21. In his Logik (1873) Sigwart argues that in this sense of “planet” there were
only six planets in 1781 (§27n6).

22. In the cumbersome notation used in Begriffsschrift, the first axiom is
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a

b

a

In the sequel only canonical notation is used.
23. Two judgments have the same conceptual content (begriffliche Inhalt) just in

case exactly the same conclusions can be derived from them using the same additional
premises (Frege 1879, 3).

24. It is known that Sigwart’s logic was familiar to Frege. In Heinrich Scholtz’s
list of Frege’s literary remains, there is mentioned a 19-page notebook titled “Logik
von Dr. Christoph Sigwart.” Unfortunately, it was lost in World War II (Veraart
1976, 103).

25. The most significant other writings from the 1930s to the 1950s include Parry
(1939), McKinsey (1941), McKinsey and Tarski (1948), and Jónsson and Tarski
(1951). For a more detailed account of this period, see Goldblatt (2003, sec. 3). The
original idea of pure logic of entailment survived in numerous complicated systems
that were later developed especially by A. R. Anderson.

26. For a more comprehensive catalog of modal systems (as well as an account of
their strength with respect to each other), see, for instance, Garson (2003).

27. Of course, these theorems were already taken for granted by calling, for
instance, T-valid formulas the logic T.

28. Sometimes the combination of completeness (as just defined) and soundness
is called completeness.

29. A formula is said to be valid on a frame 〈W,R〉 iff it is true in every model
〈W,R, V 〉.

30. See Garson (1984) for a useful overview of various systems of QML.
31. The primary source of the formulations to be given is Linsky and Zalta (1994).
32. The terminology in this area is not wholly fixed, for the last view is often

called “moderate realism,” in contradistinction to D. Lewis’s “extreme realism.”
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Appendix to Chapter 12

Conditionals and Possible Worlds:
On C. S. Peirce’s Conception
of Conditionals and Modalities
Risto Hilpinen

1.
C. S. Peirce took conditionals or hypothetical propositions (as he usually called
conditionals) to be implicitly modal propositions. For example, in a manuscript
written in 1895 (MS 787) he observes:

(H1) The quantified subject of a hypothetical proposition is a possibility,
or possible case, or possible state of things. (CP 2.347)

Peirce accepted the view that any proposition can be regarded as having
a subject-predicate form, but he interpreted the subject-predicate analysis
in a new way and applied it to complex as well as simple sentences. For
example, according to Peirce, the subject of a quantified sentence consists of
the quantifier (or the quantifiers, in the case of multiply quantified sentences)
(Peirce 1903 [1997], 180–181). In general, the function of the subject or subjects
of a proposition is to indicate its object or objects (what the proposition is
about), and the predicate (when attached to the subjects) states something
about the objects (see CP 2.357–358; Hilpinen 1992, 472–478; 1998, 155–
159). According to the observation just quoted, the objects of a hypothetical

I follow here the usual practice of citing from the Collected Papers of Charles Sanders
Peirce (Peirce 1931–1935, 1958) by volume number and paragraph number, preceded by
CP. The chronological edition of Peirce’s writings, Peirce (1982–2000), will be abbreviated
WCSP, followed by volume number and page numbers. References to the microfilm edition
of Peirce’s manuscripts (Widener Library, Harvard University), cataloged in Robin (1967),
will be indicated by MS, followed by the manuscript number. The page numbers used in
the references to the manuscripts are those used by Peirce (and contained in the microfilm
edition of the manuscripts).
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proposition include possibilities or possible states of things: Hypothetical
propositions are statements about possibilities.

In his paper “On the Algebra of Logic: A Contribution to the Philosophy
of Notation” (1885), Peirce observes:

(H2) A hypothetical proposition, generally, is not confined to stat-
ing what actually happens, but states what is invariably true
throughout a universe of possibility. (CP 3.366)

The peculiarity of the hypothetical proposition is that it goes
beyond the actual state of things and declares what would happen
were things other than they are or may be. (CP 3.374)

Peirce accepted the Aristotelian-scholastic view that modal propositions are
quantified propositions of a special kind. According to this view,

(M1) the necessary (or impossible) proposition is a sort of universal propo-
sition; the possible (or contingent, in the sense of not necessary)
proposition, a sort of particular proposition. (CP 2.382)

At various stages of his philosophical development Peirce presented several
different variants of this conception. One of the earliest formulations can be
found in his 1865 Harvard Lectures “On the Logic of Science”:

(M2) When we say that the straight line is necessarily the shortest
distance between two points we mean that it is so not merely in
this or that state of things but in every state of things. It has
always been so, it is so; it will always be so. (WCSP 1, 200–201)

The second statement in (M2) suggests a temporal or “statistical” conception
of modalities, according to which modality involves quantification over time:
A necessary proposition (or statement) is always true, a possible proposition
holds sometimes, and an impossible one, never. This account of modalities
goes back to Aristotle, and it was accepted by many scholastic philosophers
(Hintikka 1973, 102–103; Knuuttila 1982, 345–346). It is clear that this view can
be applied in a significant way only to temporally indeterminate statements.
The first sentence of (M2) looks more interesting: It expresses the meaning of a
modal proposition (statement) by means of the concept of state of things also
used in (H1) and (H2). In (M2), the expression “state of things” appears to
refer to something which makes a proposition or a statement true or false, or
something relative to which a proposition may be true or false, for example, a
possible (state of the) world. In CP 5.549 Peirce explains the concept of a state
of things as follows: “A state of things is an abstract constituent part of reality,
of such a nature that a proposition is needed to represent it.” In contemporary
philosophy, the expression “state of affairs” is sometimes used in this sense.
States of things or states of affairs are thought to be the objective correlates of
propositions or statements. If states of things are understood in this way, the
first sentence of (M2) is not an acceptable characterization of the concept of
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necessity. On the other hand, (M2) is a plausible characterization of necessity
if the states of things referred to are taken to be complete (or maximal) states,
that is, “hypothetical states of the universe, each absolutely determinate in
every respect” (CP 2.382). Complete states are often called possible worlds. The
expression “universe of possibility” in (H2) should be taken to mean a collection
of complete states or possible worlds. This interpretation of (M2) makes it
equivalent to the possible worlds analysis of modal concepts, according to
which necessity means truth in all possible worlds, and possibility means truth
in some possible world. One of the first proponents of this account of modalities
was John Duns Scotus (see Knuuttila 1982, 353–355), who influenced the basic
tenets of Peirce’s pragmatism, especially his scholastic realism, that is, the
view that there are “real generals” (CP 5.453; see Moore 1964, 401).

2.
In his later writings, Peirce often analyzes modal statements by means of the
concept of state of information, state of knowledge, or state of ignorance. In
“The Essence of Reasoning” (1893, MS 409), Peirce defines the concept of
informational possibility as follows:

By “informationally possible,” I mean possible so far as we, or the
persons considered, know. Then, the informationally possible is that
which in a given [state of] information is not perfectly known not
to be true. The informationally necessary is that which is perfectly
known to be true. The informationally contingent, which in the
given [state of] information remains uncertain, that is, at once
possible and unnecessary.

The information considered may be our actual information. In
that case, we may speak of what is possible, necessary, or contingent,
for the present. Or it may be some hypothetical state of knowledge.
(CP 4.65–66)

By “perfect knowledge,” Peirce means here an opinion that is completely
settled so that further inquiry, no matter how far pushed, would not change it
(CP 4.62).

According to Peirce, different senses of necessity and possibility can be de-
fined by varying the hypothetical state of knowledge on which modal assertions
are based:

Imagining ourselves to be thoroughly acquainted with all the laws of
nature and their consequences, but to be ignorant of all particular
facts, what we should then not know to be true is said to be
physically possible; and the phrase physically necessary has an
analogous meaning. If we imagine ourselves to know what the
resources of men are, but not what their dispositions and desires
are, what we do not know will not be done is said to be practically



554 The Development of Modern Logic

possible, and the phrase practically necessary bears an analogous
signification. (CP, 4.66)

Thus “physical possibility” means compatibility with the laws of nature, and
practical possibility means compatibility with the resources, dispositions, and
desires of people. Logical or essential possibility can be defined in an analogous
way:

That is essentially or logically possible which a person who knows no
facts, though perfectly au fait at reasoning and well-acquainted with
the words involved, is unable to pronounce untrue. The essentially
or logically necessary is that which such a person knows is true. . . .

On the other hand, the substantially possible refers to the infor-
mation of a person who knows everything now existing, whether
particular law or fact, together with all their consequences. . . . In
this sense, everything in the present which is possible is also neces-
sary, and there is no present contingent. But we may suppose there
are “future contingents.” (CP 4.67)

It is clear that Peirce is using the word “know” in an idealized sense of knowabil-
ity (or virtual knowledge), for example, he assumes that the epistemic subject
in question is logically omniscient. He uses the concept of state of information
(or state of ignorance) as convenient theoretical fiction for distinguishing differ-
ent senses of possibility or necessity. The connection between this analysis and
the characterization of modalities in terms of possible worlds is obvious. In his
article “Modality” in J. M. Baldwin’s Dictionary of Philosophy and Psychology
(1901), Peirce observes that the state of ignorance of a subject

will consist in its subject being unable to reject certain hypothetical
states of the universe, each absolutely determinate in every respect,
but all of which are, in fact, false. The aggregate of these unrejected
falsities constitute the “range of possibility,” or better, “of ignorance.”
Where there is no ignorance, this aggregate would be reduced to
zero. (CP 2.382)

These “absolutely determinate” (hypothetical) states of the universe are also
called possible worlds.

Peirce emphasizes that this way of characterizing modalities does not commit
him to any ontological doctrine about the nature of possibility and necessity,
for example, to the view that possibility and necessity are essentially epistemic
concepts:

The conclude from the above definitions that there is nothing
analogous to possibility and necessity in the real world, but that
these modes appertain only to the particular limited information
which we possess, would be even less defensible than to draw
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precisely the opposite conclusion from the same premisses. It is
a style of reasoning most absurd. Unfortunately, it is so common,
that the moment a writer sets down these definitions nine out of
ten critics will set him down as a nominalist. (MS 409; CP 4.68)

By “nominalism” Peirce means here the view that there are no “real possibilities”
(or “real generals”), and that modalities are essentially epistemic concepts.
The doctrine that there are real (unactualized) possibilities was an important
element of Peirce’s mature version of pragmatism (Peirce 1905a, 1905b), which
he called “pragmaticism” to distinguish it from the “nominalistic” views of
William James, F. C. S. Schiller, and others (CP 5.414).

3.
In his paper “Issues of Pragmaticism” (1905b), Peirce makes a distinction
between subjective and objective modality and characterizes the former as
follows:

In the simplest case, the most subjective meaning, if a person does
not know that a proposition is false, he calls it possible. . . . In this
most subjective kind of Modality, that which is known by direct
recollection is in the mode of Actuality, the determinate mode. But
when knowledge is indeterminate among alternatives, either there
is one state of things which alone accords with them all, when this
is the mode of Necessity, or there is more than one state of things
that no knowledge excludes, when each of these is in the mode of
Possibility. (CP 5.454)

Here the expression “state of things” is used in the sense of a state of affairs (an
objective correlate of a proposition), and the “alternatives” that a given state
of things can accord or fail to accord are possible worlds (in this case, doxastic
or epistemic possibilities). Concerning objective modality, Peirce notes:

There are other cases, however, in which, justifiably or not, we
certainly think of Modality as objective. A man says, “I can go to
the seashore if I like.” Here is implied, to be sure, his ignorance of how
he will decide to act. But this is not the point of the assertion. It is
that the complete determination of conduct in the act not yet having
taken place, the further determination of it belongs to the subject
of the action regardless of external circumstances. If he had said, “I
must go where my employers may send me,” it would imply that the
function of such further determination lay elsewhere. (CP 5.455)

According to Peirce, objective modal propositions represent reality as analogous
to the indecision of a person:
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for example, a superstitious cashier, impressed by a bad dream, may
say to himself on a Monday morning, “May be, the bank has been
robbed.” No doubt, he recognizes his total ignorance in the matter.
But besides that, he has in mind the absence of any particular
cause which should protect his bank more than others that are
robbed from time to time. He thinks of the variety in the universe
as vaguely analogous to the indecision of a person, and borrows
from that analogy the garb of his thought. (CP 5.455)

4.
Peirce was one of the principal architects of modern propositional logic and
quantification theory. He and Gottlob Frege were the first philosophers who
construed quantifiers as variable binding operators (Frege 1879; Peirce 1883,
1885). Peirce began to work on the algebra of logic in the 1860s, and his
research in this field culminated in his paper “On the Algebra of Logic: A
Contribution to the Philosophy of Notation” (1885), where he presented a
truth-value analysis of propositional connectives, an axiom system and decision
procedure for propositional logic (called “non-relative logic,” CP 3.365–390),
and a system of first-order quantification theory (“first-intentional logic of
relatives,” CP 3.392–397) and second-order logic (“second-intentional logic
of relatives,” CP 3.398–403). However, he did not regard the new logic as
a universal instrument of reasoning and formalization, and (unlike many
of his followers) he was aware of the limitations of first-order (extensional)
logic. For example, he did not think that the truth-conditions of conditional
propositions can be expressed in extensional first-order logic. As was observed
(see H2), he regarded hypothetical propositions as statements about possi-
bilities: A hypothetical proposition “if P , then Q” states that the “range of
possibility” does not contain a state in which P is true and Q is false. The
range of possibility under consideration “is in one case wider, in another nar-
rower” (CP 3.374). The truth-functional (“Philonian”) conditionals of Peirce’s
nonrelative logic (1885) constitute a special case in which the range of pos-
sibility is limited to “one individual state of things, the Actual” (CP 3.366,
3.375).

In the late 1890s Peirce developed a system of logical diagrams called
“Existential Graphs,” which he regarded as his most significant contribution to
logic (Roberts 1973, 11–12). The system is divided into three parts, Alpha,
Beta, and Gamma. Alpha is a systematization of propositional logic (what
Peirce called “non-relative logic”), and the Beta graphs constitute a complete
system of first-order logic with identity. However, Peirce was dissatisfied with
the Beta graphs because they were restricted to extensional logic and could
not represent reasoning involving modal and hypothetical propositions in a
satisfactory way. One purpose of the Gamma graphs was to represent modal
reasoning, and in his work on Gamma graphs Peirce anticipated some later
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developments in the semantics of modal logic, for example, he observed that
modal graphs do not represent a single universe of “existent individuals,” but
several interconnected universes of discourse (that is, possible worlds) (see
CP 4.512; Zeman 1997, 410–411; for the Gamma graphs, see CP 4.513–529,
4.573–584; Zeman 1964, ch. III; Roberts 1973, 64–71). Peirce’s Gamma system
remained a sketch, but it has recently been used as a basis of interesting
systems and applications of modal logic (van den Berg 1993; Øhrstrøm and
Hasle 1995, 320–343; Øhrstrøm 1996).

One of Peirce’s most interesting arguments for the non–truth-functional and
nonextensional character of conditional propositions can be found in his article
“Prolegomena to an Apology for Pragmaticism” (Peirce 1906; CP 4.530–572),
where he discusses, among other things, the logic of existential graphs, the
truth-conditions of conditionals, and the objectivity and reality of possibilities.
Peirce wants to show that actuality (what exists) does not exhaust reality:

Let us . . . try whether we may not assume that there is but one kind
of subjects which are either existing things or else quite fictitious.
Let it be asserted that there is some married woman who will
commit suicide in case her husband fails in business. Surely this is
a very different proposition from the assertion that some married
woman will commit suicide if all married men fail in business. (CP
4.546)

It is clear that the two propositions are not logically equivalent. The former
proposition entails the latter, but not conversely: A woman who commits
suicide if all married men go bankrupt need not commit suicide if only her
husband goes bankrupt. However, if the truth-conditions of the statements in
question, that is,

(1) Some married woman commits suicide if her husband fails in business.

and

(2) Some married woman commits suicide if all married men fail in business.

are expressed in the language of extensional logic (quantification theory), they
turn out to be logically equivalent. Peirce shows this by pointing out that if
(1) and (2) are understood in this way, they are false under exactly the same
circumstances. According to the extensional reading, (1) can be expressed in
the form

(3) Some married woman commits suicide or her husband does not fail
business,

and (3) is false if and only if (i) there is no married couple, or (ii) no married
woman commits suicide while every husband goes bankrupt. (Every married
woman who commits suicide and every woman whose husband does not fail
in business satisfies the disjunctive predicate in (3).) Such circumstances are
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also the circumstances under which (2) is false. According to Peirce, “the
equivalence of these two propositions is the absurd result of admitting no
reality but existence” (CP 5.546). This absurdity is avoided if (1) and (2)
are regarded as modal conditionals, in other words, as propositions that refer
to unactualized possibilities and not only to the actual course of events (the
actual world). According to Peirce (CP 4.546), (1) should be taken to mean
the same as

(4) There is some one married woman who under all possible conditions
would commit suicide or else her husband would not have failed,

whereas the meaning of (2) can be expressed by

(5) There is some married woman who under all possible conditions would
commit suicide or else not all married businessmen would have failed.

Peirce emphasizes that (1) and (2) must be understood modal propositions
de re; he notes that “there is a great difference” between (4) and the de dicto
proposition

(6) Under all possible circumstances there is some married woman or other
who would commit suicide, or else her husband would not have failed.

It is clear that the de dicto formulation of (1) and (2) would not solve the
problem: If the extensional readings of (1) and (2) are logically equivalent,
their modalized de dicto counterparts are logically equivalent as well. On the
other hand, (4) and (5) are not logically equivalent: The former entails the
latter but not conversely. For example, (5) is true but (4) is false if there
are two married women, Alicia and Delia, and two possible circumstances or
situations, s and u, such that:

(7) In s, Alicia’s husband fails in business, Delia’s husband does not fail in
business, and neither Alicia nor Delia commits suicide,

and

(8) In u, both husbands go bankrupt and Alicia commits suicide, but Delia
does not commit suicide.

According to (7) and (8), there is a married woman who under all possible
conditions would commit suicide or not all married businessmen would have
failed (i.e., if all married businessmen had failed), viz., Alicia, but there is no
married woman who under all possible conditions would commit suicide in case
her husband were to fail. Both Alicia and Delia can (in suitable circumstances)
continue to live despite the husband’s failure. In other words, (5) does not
entail (4).

As Peirce observed, the conditionals in question must be construed as
de re conditionals. The concept of possibility in (4) and (5) need not be
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epistemic possibility: The modal difference between Alicia and Delia can be a
real (psychological) difference between the two women. Thus Peirce’s example
illustrates simultaneously the non–truth-functional character of conditional
propositions and the reality of unactualized possibilities. (For a discussion of
Peirce’s example from the standpoint of his pragmatism, see Wennerberg 1962,
143–144.)

Peirce regards hypothetical propositions as strict rather than material
conditionals. In the example discussed, the conditionals under consideration
are formulated as indicative conditionals. In the recent work on the logic
of conditionals, it has been argued that many conditional propositions (for
example, counterfactual and subjunctive conditionals) are variably strict rather
than strict conditionals (Lewis 1973, 13). This means that the “strictness” of
the conditional depends on its antecedent and the context of evaluation: “If
(it were the case that) P , (it would be the case that) Q” is true in a given
situation or point of evaluation w if and only if Q holds in all selected worlds
where P is true. The selection depends on the point of evaluation; for example,
the selected worlds may be those that resemble w as much as possible (that is,
as much as the truth of the antecedent permits; see Lewis 1973, 8–21), or they
may be worlds where certain boundary conditions or general laws hold. Peirce’s
concept of range of possibility can easily be adjusted to fit the truth-conditions
of variably strict conditionals. As was observed, Peirce suggests that the range
of possibility can vary from case to case, and “is in one case taken wider,
in another narrower.” In the case of extensional (“first-intentional”) logic, it
is limited to the actual state of things (CP 3.375). The relevant range of
possibility may also depend on what is actually taken to be the case, as in the
following example of a counterfactual conditional:

To say that if Napoleon had been in his best trim he would have
won the battle of Waterloo, so far as it means anything, means
that taking all the different possible courses of events that might
reasonably be admitted as such by taking into consideration the
variations of power shown by Napoleon during his life, while external
circumstances remain substantially as they were, every such possible
course of events would either be one in which Napoleon was not
in his best trim or would be one in which he would have won the
battle of Waterloo. (MS 284, 29)

Peirce makes here a distinction between the antecedent of the conditional
and the circumstances which are “external” to it, that is, the circumstances
which are taken to be the same throughout the range of possibility. What is
regarded as “external” depends of course on the antecedent; therefore different
conditionals are evaluated in terms different (sets of) courses of events, that is,
different ranges of possibility. Here Peirce’s semantic analysis comes close to
the view that counterfactual conditionals are variably strict rather than strict
(or necessary) conditionals.
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Logic and Semantics
in the Twentieth Century
Gabriel Sandu and Tuomo Aho

1. Semantics in the Twentieth Century

Semantics is broadly understood as the study of the meanings of the expres-
sions of a given language. It can be approached from a theoretical as well as
an empirical perspective. As a subfield of linguistics, it studies the meaning
relations between different expressions (synonymy, homonymy, etc.), the ar-
gument structure of compound expressions in a given language, in contrast
to syntax. Several examples of such semantic theories will be analyzed in
chapter 16. Here, however, we shall largely be concerned with logical semantics,
that is, the structural meaning of logical expressions like connectives (it is not
the case that, either or, if . . . then), quantifiers (there is, for all, etc.), and
modalities (it is necessary that, it is possible that). The main focus will be on
truth-theoretical semantics for formalized languages, a tradition emerging from
Carnap’s and Tarski’s work in the first half of the last century that specifies the
meaning of these expressions in terms of the truth-conditions of the sentences
in which they occur. For a more detailed sketch of the developments which led
to Carnap’s and Tarski’s theories, the reader is referred to chapter 16. The
focus of the present chapter will be on Tarski-style definitions of the semantics
of a given language in a stronger metalanguage, Tarski’s impossibility results,
and attempts to overcome them in the post-Tarskian tradition.

The birth of the “semantic tradition” was a slow and complicated process. It
arose in the context of the marriage between mathematics and philosophy at the
turn of the century that strove to put the former on secure foundations purified
of Kantian intuitions. Language was experienced to have an objectivity of its
own, every sentence bearing logical relations to other sentences in virtue of the
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meanings of its expressions encoded in its logical form. But not any language
would do, only that which is regimented after a process of logical analysis which
renders it transparent enough to be the medium of the pure laws of rational
discourse. Semantics has its source in this process of logical analysis undertaken
by Frege and Russell and then continued through the work of Wittgenstein by
Carnap and the logical positivists. The start was shaky, clouded by paradoxes
and by what has been called the universalist conception of logic and language
(see the following): the impossibility of adopting a perspective which would
allow one to study systematically the relations between language and reality.
Although many interesting things were said about the meaning of proper
names, concept words, quantifiers, and above all, the truth of statements, the
reflections of Frege, Russell, and Wittgenstein never took the form of a general
and systematic investigation. It is no wonder that in the early beginnings of his
work on truth Tarski could write that mathematicians regard semantic notions
with distrust. Little by little, the results emerging in metamathematics from
Gödel’s, Hilbert’s and the Polish logicians’ work imposed a new conception of
studying formal languages based on compositional methods. The development
of the model-theoretic point of view was for a long time, by the influence of
Tarski and Carnap, restricted to the study of formal languages. Tarski’s student,
Montague, broke with this tradition, establishing English as a formal language,
and around the same time, Davidson transformed Tarski’s truth-definition
into a theory of meaning for natural languages.

It is perhaps useful to offer here, as a digression, some remarks about the
philosophical problems of logical semantics in general. It must be remembered
that there are plenty of philosophically relevant topics even in the technical
results of the semantic theory. For instance, what is the exact philosophical
import of the incompleteness theorems, how strong conclusions can be derived
from the dichotomy of object language and metalanguage, and what can be
learned from the variety in methods of proving central theorems? Nevertheless,
when we shall consider some philosophical issues we are going to restrict
ourselves to a few very general and elementary issues without going to details
at all. (See Haack 1978.) Obviously, one such basic question is about what the
entities are for which semantics is ultimately built.

The linguistic units that logic has been concerned with have, with few
exceptions, been “assertive” or “declarative.” But the entities in this class,
those which logic operates with, have traditionally been explained in several
ways, and twentieth-century logicians have felt the need for clarification of the
different senses. Nowadays it has become standard to speak about statements,
sentences, and propositions. The explication of these concepts is important
because there is disagreement about which of them is the true field of logic.
Can some of them be eliminated or derived from others? In other words, is
there any reason to suppose that the logical relations basically concern one of
these fields?

Sentence is perhaps the most definite of these three. The grammar of a
given language defines, on formal grounds, some expressions as well-formed
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sentences. (Natural languages allow borderline cases, whereas formal languages
are fully definite in this respect.) The particular occurrences of sentences, or
alternatively the contents of such occurrences, are statements. This notion
is tricky because of indexical or deictic elements: Grammatically different
sentence-forms often conduct the same statement if the indexicals are suitably
changed. Thus, sentences differing with respect to “I”, “you”, “this”, “that”,
“here”, and so on can make the same statement, if the speaker, place, and
so on also vary accordingly. In logical theory, Russell already was interested
in indexicals, their systematic study started in the 1950s (Bar-Hillel 1954),
and Montague brought the matter into the scope of formal semantics. An
additional complication comes from the assumption that sentences in different
languages can serve the same statement. (Note, moreover, that the linguistic
acts or “utterances” must not be confounded with their products or sentence-
tokens.)

Propositions are the most difficult of the suggested items; that is, the old
term is used in especially many and philosophically loaded senses. Some authors
have wanted to eliminate propositions from ontology altogether as hopelessly
obscure things. Quine is the most important example here. According to him,
logic can only be concerned with sentences that are fully definable. (See Quine
1960, §40.) Though most others have not been willing to accept his argument,
the notion of proposition has proved to be highly difficult. It has apparently
been interpreted mainly according to three aspects. In one sense, a proposition
can be the meaning of a sentence; second, it is said to be the entity that
basically is true or false, the so-called truth-bearer; third, it can be the content
of a propositional attitude. These three senses seek to explain propositions
either by means of sentences, truth, or communicable attitudes. (Hence they
have an affinity to syntax, semantics, and pragmatics, but the distinctions do
not coincide.)

Let us try to say something about each meaning or aspect of the notion
of a proposition. All the interpretations are classical and involved in the
whole logical tradition. (For a learned historical summary with bibliographical
references see Nuchelmans 1989.) It was customarily taken to be self-evident and
unproblematic that sentences—unless they are “senseless”—have a meaning and
that therefore there is something that is “the meaning” of the sentence. Frege
wanted to give a clear and conscious expression of this idea with his general
theory of Sinne, postulating that sentences have their senses in exactly the
same way as nominal and predicative expressions. The senses of sentences were
abstract and objectively existent entities, nonmental and language-independent
“thoughts,” Gedanke. Obviously this guarantees the existence and identity of
propositions, but also brings well-known difficulties, both ontological and
logical. Frege’s approach was a bold idea that was not at all understood for
a long time. Moore (1899) made an attempt of a somewhat parallel turn to
propositions as definite conceptual meanings of sentences, but for the most
part, early twentieth-century philosophy still used sentence meanings fairly
nonchalantly.
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Among empiricists, a popular assumption was naturally that the meanings
could be understood positivistically, connecting them to patterns of verification,
although this was seldom done in any clear-cut way. The awareness of problems
connected to an accurate formulation of meanings then grew in the 1940s,
provoked among other things by the development of linguistic theory. Russell
(1940) may have been the last ambitious sample of the old positivist conception
of meanings. Carnap (1947) takes the matter much more seriously, wishing
to explicate the notion of meaning in the language L by use of “semantical
rules” of L. Carnap’s theory was intended to utilize Fregean ideas, but to
avoid the strong metaphysical assumptions about abstract and unanalyzable
thought-entities. However, Carnap must then assume as given the absolute
semantical rules that lead to the meaning for each sentence, and it was asked
if any true progress had been achieved.

Carnap proceeded by calling the class of sentences that are equivalent
because of the semantic rules a proposition. This was one formulation of the
thought that a proposition is what synonymous sentences have in common;
the thought is of course old and independent of any mode of presentation.
In other words, the same proposition is expressed in all utterances that are
synonymous or have the same meaning. It could also be said that a proposition
is what remains intact in correct translations. This intuitively persuasive
idea was long accepted—and it dominated the theory of linguists—but it was
seriously questioned when Quine claimed that there is simply nothing constant
in translations. That was a result from his famous thesis of the indeterminacy
of translation (Quine 1960): There is never an objective reason to say that two
sentences are translations of each other, even if they are sentences in the same
language, since there could be many schemes or “manuals” of translation that
are mutually incompatible but still match all physical evidence. The radical
thesis caused a lot of debate that is still going on in considerably sophisticated
forms. However, Quine’s original straightforward thesis appears to have been
pretty convincingly criticized. (See Kirk 1986.)

In one sense, propositions are said to be contents of propositional attitudes
like belief, knowledge, will, among others—the class of these attitudes is
somewhat vague. (It is best in accord with classical tradition to speak of a
content, though in the twentieth century many authors have called it the object
of attitude, thus implicitly requiring that the attitude is a relation between
two things. Such an assumption is not necessary.) Supposing some kind of
intentionality of mental activity, it seems unquestionable that a propositional
component is necessary for characterizing those attitudes. Also, a statement is
a way of informing the audience of one’s attitude. And it has been argued that
the notion of propositional meaning is dependent on the notions of judgment
and understanding, which belong together with propositional attitudes. Such
debates from the time of Frege, Brentano, and Husserl have been revived as
fundamental questions after Grice and Dummett. But this sense leads us deeply
to the philosophy of mind and even to metaphysics. Therefore it is no wonder
that many philosophers have found these notions dubious and, abandoning
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all accounts based on them, have expelled intentions from semantics. Thus,
for instance, Quine implied clearly that the logical incomprehensibility of the
intentionality doctrine is a sufficient reason for rejecting it entirely.

Modern supporters of propositions often want to understand them in a
modest way, without any supposition of a special metaphysical type of objects.
In this spirit it is argued that, proceeding with due care, one can reasonably
speak about the common meaning of several utterances, or the common content
of the beliefs of several people, with rather weak ontological commitments.

In the third sense, propositions are truth-bearers. This thesis obviously
depends on what the truth-bearers are, that is, what entities in the first
place are true or false (or have some other truth value). At least sentences,
propositions, statements, judgments, and beliefs are defended. However, the
debate here appears to be partly inessential. When, say, some theorist asserts
that truth is a property of sentence-tokens and another claims that it is a
property of propositions, they probably disagree mainly about the correct
criteria for regarding one use of the word as more basic than another. (See
Kirkham 1992, ch. 2.) But of course, if propositions are defined as truth-
bearers, this use is seen as fundamental. The most successful formal truth
theory, Tarski’s definition, was written for sentences, but it is questionable if
something can be concluded from this fact—though it is true that an abundant
prehistory of Tarski includes discussion just about truth-bearers (Rojszczak
2005). Anyway, the question about truth-bearers is seen to be strongly bound
to the general issues of truth-theory.

2. Frege and Russell
2.1. Frege: Senses, Concepts, and Extensions

Frege had in the Begriffsschrift (1879) a function-argument distinction: In §9 he
compares “the number 20” with “positive integer” and remarks that the former,
unlike the latter, corresponds to an independent representation. The distinction
was further extended in Die Grundlagen der Arithmetik (1884) (The Founda-
tions of Arithmetic) to one between object, concept, and its extension. The ex-
plicit definition of concepts as functions which map objects into the set of truth
values True and False as well as a rigorous distinction between sense (Sinn)
and reference (Bedeutung) is introduced in his Funktion und Begriff (1891).

The distinction between concepts and the objects which are their extensions
is for Frege a categorial one: The former are (unsaturated) functional entities
while the latter are (saturated) objects. In his review of Husserl’s Philosophie
der Arithmetik (1894), Frege stated unambiguously the necessary and sufficient
criterion for the identity of concepts: the identity of their extensions.

Frege needed the distinction between concepts and their extensions in the
Grundlagen for the definition of “The number that belongs to the concept F”
as the extension of the concept “concept equinumerous to the concept F”,
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where a concept G is called equinumerous to a concept F if the possibility
exists of a one–one correlation. He did not say much about what kinds of
entities extensions are until the first volume of Grundgesetze der Arithmetik
(1893), where he formulates an explicit criterion for their identity, his famous
Axiom V: “Two concepts F and G have the same extension if and only if
whatever falls under the concept F falls under the concept G, and vice versa.”
Frege construed natural numbers as extensions of certain concepts thinking
that in this way he would reduce arithmetic to logic. It turned out, however,
that Frege’s system was contradictory. Russell came to learn indirectly of the
work done by Frege from Peano with whom Frege had been corresponding
from 1894 to 1896. In My Philosophical Development (1959, ch. VII), Russell
remembers how in the spring of 1901 he discovered the paradox which bears his
name, of the class of classes which are not members of themselves. In 1902 at
the time when the second volume of Frege’s Grundgesetze was in press, Russell
communicated it in a letter to Frege. (The correspondence between Frege and
Russell and Russell’s solution to the paradoxes are detailed in chapter 9.)

From the point of view of the present chapter, it is important to notice that
at this stage Frege took sentences (we shall use interchangeably “sentences”
and “propositions”) to be complex names which refer to truth values. He
adopted the principle of compositionality, which states that the semantic value
(reference, extension) of a complex expression is completely determined by
the semantic values of its parts (as given by the syntactic analysis of the
sentence). An immediate consequence of this principle is that substitutivity
of two expressions with the same semantic value must leave the value of a
complex expression unchanged. These two assumptions together led Frege to
conclude that all true sentences refer to the same thing and so do all false ones:

[the reference of a sentence] must remain unchanged when a part of
a sentence is replaced by an expression with the same reference. . .
What feature except the truth value can be found that belongs to . . .
sentences quite generally and remains unchanged by substitutions
of the kind just mentioned?

If now the truth value of a sentence is its reference, then on the
one hand all true sentences have the same reference and so, on the
other hand, do all false sentences. (Frege 1892a, 64–65 in 1980)

The idea that all true sentences refer to one entity is very important in the
history of twentieth century semantics. We return to it after contrasting it
with the idea that each sentence stands for a fact.

2.2. Russell
The logical system developed by Russell in The Principles of Mathematics
(1903) and in the articles preceding “On Denoting” (1905) contains, as witnessed
by Russell in appendix A of his Principles, many of the doctrines set forth by
Frege. For Russell like for Frege, the meaning of a sentence is a proposition,
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a mind-independent entity that has constituents. A Russellian proposition is
a combination of concrete things (Frege’s Gegenstand) and concepts, which
matches closely the grammatical structure of the sentence, and is to be found,
from the vantage point of Frege, at the level of reference. Every word occurring
in a sentence has a meaning that appears as a constituent in the corresponding
proposition (Principles, §51). What this meaning is varies from an expression to
another. For a singular like “Socrates”, it is the thing which bears it; for verbs
and adjectives, it is a concept (ibid., §46, §48). Thus the Russellian (singular)
proposition that is the meaning of the sentence “Socrates is human” contains as
constituents the concrete individual Socrates and the concept of being human,
while its Fregean counterpart includes two abstract entities, the sense of the
singular term “Socrates” and the sense of the concept word “human.” Although
Russell was well aware of Frege’s distinction between sense and reference, he
did not see any compelling reason to adopt it for singular terms. He adopted
it, however, for descriptions, which have both a meaning and a denotation,
a move that allowed him, among other things, to explain the puzzle about
identity (“The Morning Star is the Evening Star”) in the same way as Frege
did. Later on, however, in “On Denoting” (1905), he ended up by rejecting
the two-stage Fregean analysis (see chapter 9) and proposed the well-known
method of contextual elimination of definite descriptions. According to it, the
sentence “The author of Waverley is Scotch” is a conjunction of three sentences:

1. At least one individual has written Waverley;

2. At most one individual has written Waverley; and

3. Anybody who has written Waverley is Scotch.

Thus in none of the sentences (1), (2), and (3) is the expression “the author
of Waverley” present any longer.

To resume, in “On Denoting” Russell indicated how denoting concepts
can be replaced by expressions that do not denote, but in the same time he
had to give up his earlier thesis in The Principles according to which the
grammatical structure of the sentence reflects the structure of the proposition.
Once the grammatical structure of the sentence is no more faithful to the
structure of the proposition, the purpose of the philosophical analysis is to
find the symbolic sentence that adequately represents it. Embracing such a
view made it possible for Russell to go into a direction opposite to Frege to
reach a conception according to which true sentences stand up for facts. In
“The Philosophy of Logical Atomism” (1918) he writes, “the world contains
facts, which are what they are whatever we may choose to think about them,
and . . . there are also beliefs, which have reference to facts, and by reference
to facts are either true or false” (182).

Thus, for Russell, facts, as complexes of particulars and universals, are part
of the real world. They are the sort of things expressed by a whole sentence
and not by a single name. Most important, facts are the kind of entities true
propositions and beliefs correspond to.
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3. Slingshot Arguments
The crucial difference between Frege and Russell is that the former treats defi-
nite descriptions referentially, whereas the latter treats them quantificationally.
The difference turns out to be philosophically very significant, for on Frege’s
account all true sentences correspond to one single entity (the truth value
True) and all false sentences correspond to the truth value False, while on
Russell’s account each true sentence corresponds to a fact. Perhaps nobody
saw more clearly the distinction between the two accounts than Kurt Gödel in
his review of Russell’s work. We quote him at length:

An interesting example of Russell’s analysis of the fundamental
logical concepts is his treatment of the definite article “the”. The
problem is: what do the so-called descriptive phrases . . . denote
or signify [note: I use the term “signify” in the sequel because it
corresponds to the German word “bedeuten” which Frege, who
first treated the question under consideration, first used in this
connection.] and what is the meaning of sentences in which they
occur? The apparently obvious answer that, e.g., “the author of
Waverley” signifies Walter Scott, leads to unexpected difficulties.
For, if we admit the further apparently obvious axiom, that the
significance of a complex expression, containing constituents which
have themselves a signification, depends only on the significance of
these constituents (not on the manner in which this signification is
expressed), then it follows that the sentence “Scott is the author of
Waverley” signifies the same thing as “Scott is Scott”; and this again
leads almost inevitably to the conclusion that all true sentences
have the same signification (as well as all false ones). Frege actually
drew this conclusion; and he meant it in an almost metaphysical
sense. (Gödel 1944, 128–129)

In other words, if one sticks to the principle of compositionality and treats,
in addition, definite descriptions referentially, then, under few obvious assump-
tions, one cannot avoid the conclusion that all true sentences refer to the same
thing. Russell escaped this conclusion by not treating definite descriptions
referentially, but as Gödel pointed out,

As to the question in the logical sense, I cannot help feeling that the
problem raised by Frege’s puzzling conclusion has only been evaded
by Russell’s theory of descriptions and that there is something
behind it which is not yet completely understood. (Gödel 1944,
130)

In a note to the first quotation, Gödel indicates the further assumptions
needed for the proof of the statement that all true sentences refer to the same
fact:
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G1 “ϕ(a)” and the proposition “a is the object which has the property ϕ
and is identical to a” mean (refer to) the same thing.

G2 every proposition speaks about something, that is, it can be brought to
the form “ϕ(a)”.

G3 for any two objects a, b there exists a true proposition of the form “ϕ(a, b)”
as e.g., “a �= b” or “a = a ∧ b = b”. (Gödel 1944, 129)

With these assumptions at hand, it is straightforward to show that all true
sentences refer to one and the same entity (stand for the same fact). Gödel
himself did not explicitly give the proof, but many logicians after him did that.
We follow here the proof given in Neale (1995).

Let us agree to use “ιx(x = a ∧ ϕ(x))” as a symbolization of the definite
description “the object which has the property ϕ and is identical to a.”

We illustrate Gödel’s proof with two true atomic sentences, “Fa” and “Gb.”
We suppose also that “a �= b” is also true (the premiss “a = b” being true leads
to the same conclusion). We show that all these three sentences correspond
(refer to) to the same fact.

1. “Fa” corresponds to f1, Premise.
2. “Gb” corresponds to f2, Premise.
3. “a �= b” corresponds to f3, Premise.
4. “a = ιx(x = a ∧ Fx)” corresponds to f1, (1) and G1.
5. “a = ιx(x = a ∧ x �= b)” corresponds to f3, (3) and G1.
6. “a = ιx(x = a ∧ Fx)” and “a = ιx(x = a ∧ x �= b)” correspond to the

same fact.

(Here we use the assumption that definite descriptions contribute with their
reference, and the principle of compositionality: The former entails that the
two descriptions contribute with the same individual, while the latter ensures
that there are no further ingredients in the corresponding facts than those
contributed by “a”, “=”, and the relevant descriptions.)

7. f1 = f3 (4), (5), (6).
8. “b = ιx(x = b ∧Gx)” corresponds to f2, (2) and G1.
9. “b = ιx(x = b ∧ x �= a)” corresponds to f3, (3) and G1.

10. “b = ιx(x = b ∧ Gx)” and “b = ιx(x = b ∧ x �= a)” correspond to the
same fact (analogous to (6)).

11. f2 = f3 (8), (9), (10).
12. f1 = f2 = f3. (7), (11).

Arguments of this kind, called slingshots, have been used over and over again
in twentieth-century semantics. The most notorious ones are due to Church
(1943, 1956), Quine (1953, 1960) and Davidson (1967, 1990).
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Church (1943) used a slingshot argument in his review of Carnap’s book
Introduction to Semantics (1942). In the book, Carnap departs from his teacher
Frege by taking sentences to designate propositions or states of affairs that
are complex entities and not Fregean truth values. In his review, Church
uses a Gödelian argument to show that in Carnap’s system all true sentences
designate the same proposition. (In response to this argument, Carnap [1947]
takes the references of sentences to be truth values.)

Church’s slingshot argument departs in two significant ways from Gödel’s.
First, he replaces G1 by the stronger principle:

SLE Logically equivalent sentences designate the same proposition (state of
affairs).

In addition, instead of using Gödel’s definite description operator “ιxϕ”,
Church used “λxϕ” with the meaning “the class of all x such that ϕ.” Here we
shall use the set theoretical notation {x : ϕ(x) } as a term that denotes the
class of entities which have the property ϕ, and describe a slingshot argument
that is common to both Church and Davidson.

Davidson uses the slingshot against the correspondence theory of truth to
show that any two sentences correspond to the same fact. Once again, the
underlying assumptions are the principle of compositionality (PC), (SLE), and
the principle that the contribution of a definite description to a fact is the
individual that satisfies it (hence two coreferential definite descriptions are
interchangeable; we denote this principle by SCT).

Two observations are essential in the proof:

O3 “ϕ” and “{x : x = x ∧ ϕ } = {x : x = x }” are logically equivalent.

(Indeed, observe that when ϕ is true, then the term “{x : x = x∧ϕ }” denotes
the class of individuals x such that x is identical to itself, and ϕ. Because ϕ is
true, this class is the universal one, that is, the denotation of “{x : x = x }”.
Thus “{x : x = x ∧ ϕ } = {x : x = x }” is true. For the converse, assume that
“{x : x = x ∧ ϕ } = {x : x = x }” is true. Whence the true terms must denote
the same entity and that is possible only if ϕ is true.)

O4 Whenever ϕ and ψ are true, the descriptions “{x : x = x ∧ ϕ }” and
“{x : x = x ∧ ψ }” designate the same class.

The starting assumption is that ϕ and ψ are true.

13. “ϕ” corresponds to f1, Premise.

14. “{x : x = x ∧ ϕ } = {x : x = x }” corresponds to f1, (13), and (SLE).

15. “{x : x = x ∧ ψ } = {x : x = x }” corresponds to f1, (14), (PC), and
(SCT).

16. “ψ” corresponds to f1, (15), and (SLE).
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The philosophical signification of the slingshot is undeniable. It shows that
nonextensional operators or connectives like “corresponds to the fact that”,
“signifies the proposition that”, “it is necessary that” collapse to extensional,
truth-functional operators whenever we assume the principles mentioned above
(relativized to the right context). To illustrate, we reproduce a slingshot
argument due to Quine which shows that if we substitute salva veritate
logically equivalent sentences inside a modal operator, and we do the same
thing for coreferential definite descriptions, then the operator collapses to
an extensional, truth-functional one (an extensional operator is one that
allows for substitutivity of materially equivalent sentences salva veritate).
We use Quine’s notation “δp” as an abbreviation for the definite description
“ιx[(x = 1 ∧ p) ∨ (x = 0 ∧ ¬p)].”

As in the Church-Davidson slingshot, two observations are essential in the
proof:

O5 “ϕ” and “δϕ = 1” are logically equivalent.

O6 Whenever “ϕ” and “ψ” are true, “δϕ” and “δψ” designate the same
individual.

Here is the argument (Quine 1960):

17. “ϕ” and “ψ” are true, Premise.

18. �ϕ, Premise.

19. �(δϕ = 1), (18), (SLE).

20. δϕ = δψ, (17), O6.

21. �(δψ = 1), (19), (20).

22. �ψ, (21), (SLE).

The reader may consult Burge (1986), Olson (1987), Neale (1995), and Stainton
(forthcoming) for further discussions of slingshot arguments.

4. From the Universality of Logic
to the Model-Theoretical View

Frege speaks of his symbolic system in the introduction of the Begriffsschrift
(1879) as a language. It is a universal language intended to make transparent
the laws of rational discourse. Frege, like Wittgenstein later on, is held to
be a representative of what has been called the universalist conception of
logic and language: In his conceptual language, quantifiers range over all
possible objects from the absolute universe of discourse. The universe cannot
be independently varied nor can the language and its relation to the universe
be the subject of systematic explanations made in another (meta)language,
because otherwise it would not be universal. For this reason, Frege’s categorial
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distinction between concepts and objects and his remarks about the predicative
character of the former are not to be taken as a full-fledged semantic theory,
that is, as a systematic description of the semantic interpretations of the
expressions of one’s language, but rather as elucidations; the same remarks
apply to Wittgenstein’s Tractatus. This comes out quite clearly several times in
Frege’s work. To take a paradigmatic example, Frege remarks in “The Thought”
that the property of a sentence being true cannot be defined because it is
presupposed in one way or another by any attempts to define it. For suppose,
he writes, that we could devise such a reductive definition

(∗) P is true =df X,

where truth does not occur in X. Then, to be able to say whether P is true
or not, we must be able to evaluate whether X. If we are entitled to assert
X, then we can claim that P is true. But if we are entitled to assert X, Frege
goes on, then we are entitled to assert that X is true, and we end up in relying
on what we wanted to define in the first place. These considerations show how
overwhelming the universalist conception of language was: Frege would not
think, like Tarski later on, that a distinction between object language and
metalanguage would avoid the circularity of the truth-definition by taking “X
is true” to be an assertion in the metalanguage.

Wittgenstein reaches a similar conclusion. The truth of a proposition cannot
be defined because when one tries to define it, one always ends up by repeating
the proposition itself. “For what does it mean to say that a proposition is true?
‘p’ is true = p. This is the answer” (Wittgenstein 1978, appendix I, sec. 5). In
a similar spirit, he writes: “The limit of language is shown by the impossibility
of describing the fact that corresponds to an assertion without repeating the
assertion itself” (Wittgenstein 1980, 10). The clue to all this lies, according to
Wittgenstein, in the impossibility to go over the limits of language itself: “The
impossibility to express in language the conditions of correspondence between
a meaningful proposition, a thought and reality, this is the solution of the
puzzle” (Wittgenstein 1978, 265).

In his introduction to the Tractatus Russell takes seriously Wittgenstein’s
claims to the effect that it is impossible to describe the syntactic and semantic
properties of our language in that language itself. Russell agrees that each
language has a structure that cannot be described in that language itself, but
he suggests that there may be another language in which the structure of the
first language can be described and yet another one in which the structure
of the second language may be described and so ad infinitum. A systematic
development of these ideas still needs to await some years.

Frege’s and Wittgenstein’s universalist conception of logic and language were
shared largely by early Carnap and the members of the Vienna Circle, among
whom there was a general agreement that metadiscourse about a particular
object language must be excluded. These views began to be shaken little by
little by Gödel and by Hilbert’s results on independence, consistency, and
completeness, for they showed that systematic investigations on the syntax
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and the semantics of a language could be obtained, contrary to what the
universalists had previously asserted (see chapter 9).

Carnap’s early work may be seen as an attempt to reconcile the one-
world and one-language view of the universalists with the metalinguistic
views of Hilbert’s school. Carnap’s way to reconcile them was to show that
metalinguistic results could be formulated within the object language itself.
The first such systematic attempts are contained in his lectures Metalogik
(1931) where he constructed a very simple language, a precursor of Language
I of the Logical Syntax to demonstrate his philosophical point. (These are
contained in the section 18 of the Logical Syntax). Carnap thought that both
approaches were wrong and proposed to show that one language was sufficient.
He did not repudiate metalinguistic methods, but showed instead how the
metalanguage could be formulated within the object-language (Carnap 1937,
53). Although the metalanguage of Carnap’s lectures can be expressed in
it, this metalanguage lacks the resources to prove important metatheoretical
results like consistency or completeness, which can be proved only in a stricter
metalanguage (in which one can carry transfinite induction), a fact Carnap
became aware of later on (Carnap 1937, 38). So Carnap’s project was doomed
to fail.

Under Tarski’s influence, the universal language of Metalogik started to
lose its central role. From 1932 on, Carnap started gradually to desert the
logicist ideal of universal language and began to think that the choice of
a language is conventional. As a consequence, he gave up Frege’s idea that
truth is undefinable and primitive. The meaning of sentences is now explained
in terms of the semantic meanings of its parts, which are specified in the
metalanguage, following Tarski’s method. The details of this development are
described in Oberdan (1990, 1992).

5. Frank Ramsey
Perhaps the most ambitious endeavor to break up with the earlier tradition is
that of Ramsey. His article “Facts and Propositions” (1927) made him one of
the first proponents of the redundancy theory of truth, expressed in

The belief that p is true if and only if p.

However, in the manuscript On Truth, which has been published posthumously,
Ramsey visibly tries to convert his conception into a precise definition in a
way that clearly shows the ingredients of an inductive truth-definition. That
is, he thought such an inductive definition should run through the complexity
of p, but, interesting enough, he did not see any hope of limiting the form of p
to something manageable in natural languages. He noticed that

A man may be believing that all A are not B, that if A are B,
either all C are D or some E are F , or something more complicated.
(Ramsey 1991, 9)
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Ramsey’s reflections remind one of Tarski’s remarks on natural languages
(see following). Tarski gave up the attempt to define truth for “colloquial
languages” on account of these languages being too vague and irregular to
allow for an inductive definition. Instead he focused on formalized languages.
There was, however, another development that prompted Tarski to look away
from natural languages into the direction of formal languages: The universality
of the former render them liable to the Liar paradox. Tarski’s solution to this
paradox was the distinction between object language and metalanguage. Since
such a distinction does not seem to make sense for natural languages, formal
languages offered him a fruitful instrument to work with.

6. Tarski’s Truth-Definition
6.1. The Tradition of Correspondence

The most popular classical theory of truth has always been the correspon-
dence theory. We can count the “semantic theory” formulated by Tarski as
a subspecies of correspondence theories if we make a division between two
types: Some forms of correspondence theory do require a metaphysically real
or factual correspondence between linguistic entities and nonlinguistic world,
other versions do not take a stand on such issues. In that weaker case the
main challenge to the array of correspondence theories comes from various
deflationary conceptions.

The theories of “weak correspondence” are metaphysically neutral. Their
pursuit is to express the simple logical insight of Aristotle: “To say of what is
that it is not, or of what is not that it is, is false, while to say of what is that it is,
or of what is not that it is not, is true” (Metaphysics 1011b26–27). In his great
treatise, Tarski especially stated his aim to formulate this principle completely,
and as we shall see, this is what he achieved excellently. On the other hand,
he said that he did not want to defend anything like a correspondence theory.
But then he apparently was thinking of correspondence theory in the other
sense, as “strong correspondence.” The Tarskian semantic theory can probably
be regarded as a purified correspondence theory. But perhaps this is not
the case with Tarski’s own first version of it, where he wanted to avoid all
semantic concepts like “mean” and “express” and to provide all expressions
only with extensions. (Compare Haack 1978, 112–114, and Kirkham 1992,
167–173.) The Tarskian correspondence has its well-known virtues but also
the much debated formal restrictions, in the first place those resulting from
the distinction between object-language and metalanguage.

It is interesting that some readers took the new semantic or “minimal”
correspondence as a highly informative and even inspiring insight, whereas
others thought that it was a desperate admission of failure. In spite of its
careful formulation, and in spite of the fact that Tarski himself started its
explanation in more philosophical terms in Tarski (1944), the definition has
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often been misunderstood. Thus nonprofessional public, more often than not,
confuses the definition with the T-condition of material truth. In fact the
crucial point in the definition procedure is the satisfaction relation, together
with the recursive apparatus. Definitely the semantic or Tarskian theory is not
“vacuous” or “trivial.” (Concerning various objections to Tarski’s theory see,
e.g., Kirkham 1992, ch. 6.)

The semantic theory was not the only “weak” correspondence theory of
the twentieth century. Thus J. L. Austin, who was reluctant to all formalized
semantics, sketched his own version which emphasized the conventional nature
of the correspondence. He argued that numerous linguistic conventions of
meaning correlate expressions with appropriate situations which can make
them true (Austin 1950). On the other hand, “strong” correspondence theories
assume that truth depends on some actual relations of congruence, adequacy,
or something like that—in fact adaequatio was the most traditional term,
while “correspondence” is new, perhaps introduced by Russell. Twentieth-
century discussion about strong correspondence begins with Russell’s logical
atomism. Russell (1912, ch. 12) already explains that a’s belief that P (b, . . . , n)
is a relation B(a, P, b, . . . , n), and that it is true if the relation P (b, . . . , n)
actually obtains. He so wants to reduce truth to a correspondence between
metaphysically interpreted relations, and this idea is developed in the writings
of his logical atomist phase.

A more advanced stage of a similar idea was in the picture theory of Wittgen-
stein’s Tractatus (1922). According to it, a proposition, as a constellation of
its elements, is structurally isomorphic with a state of affairs; it shows a state
of affairs and claims that this state of affairs obtains. (See Tractatus 4.022
and 4.024.) Obviously this has immediate philosophical implications for the
theory of truth, since a true sentence and a fact will stand in a strong pictorial
correspondence, an isomorphism. But the picture theory is very enigmatic
and not primarily logical, so we will not discuss it here, but only refer to the
abundant literature on Tractatus. In fact the picture theory itself had rather
little influence in logic, though it is by no means absurd or outdated. One
drawback in all pictorial or isomorphist theories, however, lies in the difficulties
with the metaphysics of facts.

It is clear that the so-called classical alternatives to the correspondence
theory of truth were motivated mostly by philosophical considerations. Their
real logical and semantic content has often been vague and hard to estimate.
So we shall not try to say anything informative about them here, though they
have had influential supporters during the twentieth century. The pragmatic
theory has its defenders who build on the remarks of the founding fathers
Peirce, James, and Dewey. In fact, these three seem to have had quite different
ideas about truth, and expressing them clearly has turned out a difficult
task. A common central feature in them, however, is the close conceptual
connection between truth and acceptable beliefs. Truth has also been a central
subject in the new versions of pragmatism. (Concerning Rorty and other recent
developments, see Habermas 1996.) Coherence theory, which replaces semantic
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truth with some variant of syntactic coherence, was popular among idealists
and has occasionally been advocated later; so Neurath (1933), and the recent
“internal realism” sometimes comes close to the same position. (The fullest
logical text is Rescher 1973.)

6.2. The Absolute Conception of Truth
Tarski presented his Polish version of The Concept of Truth in Formalized
Languages in front of the Warsaw Philosophical Society in March 1931. It was
published in Polish in 1933, translated in German in 1935, and then in English
in 1956. His goal was the foundation of scientific semantics, where one does
not mention any kind of abstract entities besides those mentioned by physics,
mathematics, and logic. In this Tarski was on the same side as the logical
positivists with whom he shared the common ideal of the unity of science.

Tarski opens his famous article by telling us that it is devoted to the
definition of truth. This is not entirely correct, because in the end Tarski does
not define truth but truth-in-L, that is, truth relative to a given language. In
other words, truth is a linguistic predicate, which applies to sentences of a
given language, for example, “Snow is white” is true-in-English.

Tarski required any definition of truth-in-L to be materially adequate and
formally correct. (The reader is referred to chapter 9 for an explanation of
these two notions as well as a detailed exposition of the background which
led to Tarski’s theory.) Here it is sufficient to recall that a formally correct
definition of Tr is materially adequate if it obeys Convention T , that is, it has
the following two consequences:

• All sentences which are obtained from the scheme

Tr(x) if and only if p

by substituting for the symbol x the name (structural description) of any
sentence of the language L and for the symbol p the expression which
forms the translation of this sentence into the metalanguage;

• The sentence “for any x: if Tr(x) then S(x)” where “S(x)” stands for “x
is a sentence of L.” In other words, it is required that the predicate Tr
applies only to sentences. (Tarski 1956, 188)

Tarski believed that a truth-definition that satisfies the requirement of
material adequacy captures the correspondence theory of truth encoded in
the Aristotelian doctrine: “To say of what is that it is not, or of what is not
that it is, is false, while to say of what is that it is, or of what is not that it is
not, is true.” He was, however, fully aware that the correspondence theory of
truth and the philosophical discussions around it are too vague to serve as a
foundation for a semantic definition of truth. Instead he devoted his efforts
to showing that for a great deal of languages (formalized languages of the
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deductive sciences), it is possible to construct in the metalanguage a definition
of truth which is both formally correct and materially adequate.

At the beginning of his treatise, Tarski deals with the problem of truth in
natural (“colloquial”) languages and shows that, on pain of inconsistency, they
cannot have a truth-predicate which is materially adequate. (See following
discussion.) In addition to inconsistencies arising from the paradoxes, Tarski
mentions another reason which renders him skeptical about the possibility of
developing a systematic theory of truth for natural languages: the impossibility
of applying an inductive (compositional) method that first defines truth for
atomic sentences and then reduces somehow the truth of complex sentences
to that of atomic ones. This impossibility is connected to the fact that our
colloquial language is not something finished, closed, or bounded by clear limits,
and thereby one cannot specify structurally the expressions which constitute
its sentences.

6.3. Tarski’s Truth-Definition for Formalized Languages
In contrast to natural languages, formalized languages have certain features
which render a definition of truth-sentence possible, namely:

1. All the signs from which the expressions of the language are formed may
be given in a structural way.

2. The class of sentences of the languages may be specified by means of
purely structural properties.

3. Each formalized language has grown together with a formal theory which
is given by: (i) a finite list of axioms; (ii) a finite list of rules of inference;
and (iii) on the basis of (i) and (ii) a characterization of the notion of a
provable or asserted sentence. (ibid., 166)

Tarski points out that formalized languages do not have the universality of
the natural languages, and for this reason, the description of their syntax (i.e.,
(1), (2), and (3)) must be undertaken in another language, the metalanguage,
which must contain three kinds of expressions:

i. Expressions of a general logical kind;

ii. Expressions having the same meaning as all the constants of the object
language;

iii. Expressions of a structural descriptive kind (terms) which denote the
signs and the expressions of the object language. (ibid., 210–211)

The need of the expressions in group (i) is obvious. The expressions in
group (ii) ensure that every meaningful expression of the object language
has a translation in the metalanguage; and the terms belonging to group (iii)
ensure that every meaningful expression in the object language has a name
(structural description) in the metalanguage. The metatheory will have axioms
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which will ensure that all these requirements are met, that is, axioms which
ensure that expressions of the general logical kind behave in the standard way;
axioms which have the same meanings as the axioms of the science under
investigation (or are logically stronger than them); and axioms which fix the
properties of the structural descriptive names. As a result, one would have in
the metatheory definitions of the syntax of the object language (definitions of
the notions of term, formula, sentence) as well as a definition of the notion of
being a theorem of the theory of the object language. All these details together
with the definition of the notion of satisfaction of a formula by a sequence of
objects have been described in chapter 9 (section 8.7) for the case in which
the object language is that of the calculus of classes.

We recall one particular application of that framework. The structural
descriptive name for the object language sentence “Πx′Σx′′Ix′x′′” is ∩1 ∪2 ι1,2.
The following T -biconditional is a consequence of the definition of satisfaction
for the language of the calculus of classes (and the definition of Tr as satisfaction
by every sequence): ∩1 ∪2 ι1,2 is true if and only if for all classes a there is a
class b such that a ⊆ b.

The sentence “for all classes a there is a class b such that a ⊆ b” is the
translation in the metalanguage of the sentence “Πx′Σx′′Ix′x′′.”

The T -biconditional does not yet give us the truth value of the sentence
“Πx′Σx′′Ix′x′′.” To determine that, we have to know additional facts about
the calculus of classes, namely, that the sentence on the right side is one of
its theorems. This is indeed so, and we can conclude that ∩1 ∪2 ι1,2 is a true
sentence (Tarski 1956, 196).

Let us, following Tarski, mention some of the remarkable properties his
truth-definition has. The following are theorems of the metatheory (that is,
their proofs are based on the general laws of logic, the special axioms of the
metatheory, and the definitions of the concepts occurring in the theorems):

The principle of noncontradiction (consistency). For every sentence x of the
calculus of classes, it is not the case that both x and its negation are true:

∀x(Sen(x) → ¬(Tr(x) ∧ Tr(Neg(x)))).

The principle of excluded middle. Every sentence of the calculus of classes is
either true or its negation is true:

∀x(Sen(x) → Tr(x) ∨ Tr(Neg(x))).

Tarski explicitly points out that the notion of formal proof as it emerges
from Hilbert’s and Gödel’s works obeys only the principle of consistency but
not the principle of excluded middle: Gödel has shown there are sentences of
arithmetic which are undecidable (ibid., 199).

One of the most interesting properties of Tarski’s notion of truth is the
possibility it opens for proving a principle of soundness. When the calculus of
classes is formalized, that is, when certain sentences are selected as axioms,
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rules of inference are fixed, and the notion of theoremhood (Pr(x): x is a
theorem of the formalized theory) is defined in the standard way, then all
theorems are true (Tarski’s Theorem 5):

The principle of soundness: ∀x(PrCL(x) → Tr(x)).

7. Rudolf Carnap
7.1. Carnap’s Semantical Frameworks
Tarski’s insight according to which the formal method of syntax must be
supplemented by a rigorous analysis of semantical concepts, exercised a deep
influence on Carnap, who in a couple of books, Introduction to Semantics
(1942) and Meaning and Necessity (1947) extended Tarski’s methods. As
Carnap notices in his preface to the Introduction, he demarcates himself from
Tarski by laying a greater emphasis on the distinction between interpreted
language systems and uninterpreted calculi (recall that for Tarski all formalized
languages are interpreted), and more dramatically by stressing “the distinction
between factual truth, dependent upon the contingency of facts, and logical
truth, independent of facts and dependent merely on meaning as determined
by semantical rules” (Carnap 1942, xi).

Carnap’s semantical systems S consist of a set of rules that give the truth-
conditions of the sentences of an object language in a metalanguage (usually
English) and thereby determine the meaning of these sentences. The rules are
of three kinds:

• Formation rules, which define the sentences of S.

• Designation rules, which determine, for some of the expressions of S,
their designata.

• Rules of truth, which specify for each sentence of S the set of necessary
and sufficient conditions for its truth.

Here is a simple semantical system restricted to the quantifier-free part of
predicate logic:

1. Classification of signs:

Individual constants, in: “a” and “b”.
Predicates, Pr : “P” and “Q”.
Other signs: “¬”, “∨”.

2. Rules of formation: An expression is a sentence if it has one of the
following forms: Pr(in), ¬A, B ∨ C.

3. Rules of designation:

i. “a” designates Chicago.
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ii. “b” designates New York.
iii. “P” designates the property of being large.
iv. “Q” designates the property of having a harbor.

4. Rules of truth: The sentence A is true in S, if
a. A has the form Pr(in) and the object designated by in has the

property designated by Pr .
b. A has the form ¬B, and B is not true.
c. A has the form B ∨ C, and at least B is true or C is true.

(Carnap 1942, 32)

As we see, Carnap assigns a designation to both individual constants
(Tarski’s formalized languages do not contain individual constants) and predi-
cate symbols (to be compared with Tarski’s nominalism!) Carnap’s rules of
truth match closely Tarski’s recursive truth-definition. In addition, he formu-
lates a condition of adequacy that is literally Tarski’s condition of material
adequacy (Convention T ). Thus Carnap’s semantical rules are designed in such
a way as to yield adequate truth-conditions for the sentences of the system,
for example,

“Q(a)” is true if and only if Chicago has a harbor.

As in the case of Tarski, these rules do not yet suffice to determine the truth
value of the relevant sentences: “in order to find this we must know certain
facts in addition to the rules. This would lead us outside of semantics into
empirical science, in this case into geography” (Carnap 1942, 33). But Carnap
emphasizes that his rules of truth yield the meaning of each sentence to which
they apply.

7.2. Truth and L-Truth: The Analytic-Synthetic Distinction
Perhaps Carnap’s most considerable departure from Tarski is his distinction
between factual and logical truth (L-true). Logic, being concerned with the
latter, which is a special kind of truth, becomes a special part of semantics.

The separation between the two notions is based on the distinction between
logical and descriptive expressions. The latter are usually names and predicates,
while the former are the sentential connectives, the standard quantifiers, the
element-class relation “ε,” the necessity operator and all the expressions
definable from these ones. As we saw in the presentation of a semantical
system, it is only the descriptive expressions that receive a designatum while
each logical expression prompts a rule of truth.

Once a semantical system S is fixed, the sentences which are L-true in it
get fixed, too: They are the sentences which are true in S solely in virtue
of the semantical rules without any appeal to facts. Thus, to take one of
Carnap’s examples, “P (a)∨¬P (a)” is L-true. More exactly, in the propositional
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system we have described, a sentence is L-true if its truth table shows T for
each distribution of truth values for its components (Carnap 1942, 81). This
definition works, however, only for the particular semantic system sketched
above. Carnap is aware that a more general definition which would work for
arbitrary semantical systems is much harder to attain. In a note (p. 85) he
sketches how this notion could be made more precise using logical necessity, but
a systematic development of this idea is undertaken only later on in Meaning
and Necessity.

Disregarding many of the details, one can extract two important elements
which remain constant throughout Carnap’s logical writings (The Logical
Syntax of Language, Introduction to Semantics, Formalization of Logic, Meaning
and Necessity):

i. The separation of sentences that are true or false in virtue of the meaning
of their terms only, and not on the basis of extralinguistic facts. These
sentences that he calls L-determinate (either L-true or L-false) came to be
known as analytic sentences, in contradistinction to synthetic sentences
whose truth is based on extralinguistic facts.

ii. The relativity of the distinction to the semantical framework.

Carnap’s famous slogan expressed in The Logical Syntax of Language, “In logic,
there are no morals. Everyone is at liberty to build up his own logic, that is,
his own form of logic, as he wishes,” has been taken to express his semantic
conventionalism which leaves room for the pragmatic choice of linguistic
frameworks, on condition that the rules of the framework are clearly stated.

Carnap’s distinction came later under Quine’s attack. Perhaps Quine’s most
forceful criticism is that all the statements in science are revisable in the light
of new empirical data, including the laws of logic (Quine 1953, 43). This shows
Quine to have taken Carnap’s L-truth to be somehow unrevisable, a view that
perhaps neglects (ii) above and the possibility it opens that one can always
countenance a new semantical framework. Section 13.3 takes up some of these
questions.

8. Truth and Proof
8.1. Consistency Proofs
In the postscript to the English translation of his seminal article (Tarski
1956), Tarski adds some interesting parallels between his results and those
of Gödel. He notices an interesting corollary of one of his earlier theorems,
∀x(PrCL(x) → Tr(x)), when applied to the language of arithmetic and the
theory associated with it, Peano arithmetic (PA). He points out that theorems
of this kind allow one to prove the consistency of the deductive science (i.e.,
PA), while, on the other side, Gödel has shown that the consistency of PA
cannot be proved solely by PA.
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Let us look more closely at this result by first introducing some technical
notation. The language of arithmetic LPA consists of the logical symbols “¬”,
“∨”, “∃”, and “=”, and of the special symbols “0”, “+”, “·”, “S”. Each natural
number n has a name n in the object language, that is “S(S(. . . S

n times
(0) . . . )”. One

of the virtues of PA is to represent the syntax of LPA in the object language,
thanks to a technique due to Gödel. Gödel’s arithmetization method consists
in associating with each expression α of LPA a natural number �α� (the gödel
number of α). The gödel numbering is done in such a way that two different
expressions are assigned two distinct gödel numbers, and there is an effective
procedure which, given a natural number, calculates which expression (if any)
it is the gödel number of. Furthermore, the gödel number �α� is represented in
the object language by the numeral �α�. Also, the notion of being a theorem
of PA (the analog of the provability predicate for the calculus of classes) may
be represented in PA itself, as Gödel has shown: LPA contains a nontrivial
expression (provability predicate) PrPA(x) such that

If PA � ϕ then PA � PrPA(�ϕ�)

for every LPA-formula ϕ. Thus the analog of principle of soundness for PA can
now be stated as

(S) ∀x(PrPA(x) → Tr(x)),

where “Tr” is the Tarskian truth-definition for LPA stated in the metalanguage.
(S) is provable from the axioms of PA (the truth-predicate is allowed to occur
in the induction axiom), the axioms of the truth-theory and general principles
of logic (just as the soundness principle for the theory of classes was). Let
us denote the theory consisting of all these axioms and logical principles by
PA(Tr). Recall the statement ¬PrPA(�¬0 = 0�), which is taken to assert the
consistency of PA (that we abbreviate by Con). Now we have:

PA(Tr) proves the consistency of PA:

PA(Tr) � ¬PrPA(�¬0 = 0�).

The proof is straightforward. PA(Tr) � PrPA(�¬0 = 0�) → Tr(�¬0 = 0�)
follows from (S). On the other side, PA(Tr) � Tr(�¬0 = 0�) ↔ ¬0 = 0 is one of
the T -biconditionals. But PA(Tr) � 0 = 0, whence PA(Tr) � ¬Tr(�¬0 = 0�),
which together with (S) entails PA(Tr) � ¬PrPA(�¬0 = 0�), that is, PA(Tr) �
Con(PA).

This result shows one major difference between Gödel’s notion of formal
proof and Tarski’s notion of truth. Gödel’s second incompleteness theorem
shows that PA � Con(PA) and PA � ¬Con(PA), whereas Tarski’s theory of
truth proves Con(PA):

Moreover Gödel has given a method for constructing sentences
which—assuming the theory concerned to be consistent—cannot be
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decided in any direction in this theory. All sentences constructed
according to Gödel’s method possess the property that it can
be established whether they are true or false on the basis of the
metatheory of higher order having a correct definition of truth.
(Tarski 1956, 274)

This property of Tarski’s theory of truth marks a clear advantage over its
predecessors that can be spelled out using the technical notion of conservativity.
Let T be a theory (set of sentences) formulated in the language L and T ′ be
another theory formulated in the language L′ such that T ⊆ T ′ and L ⊆ L′.
We say that T ′ is a conservative extension of T , if for every sentence ϕ of L:

T ′ � ϕ =⇒ T � ϕ.
In other words, if T ′ is conservative over T , then T ′ does not prove any sentence
in the language of T that T itself does not prove. The fact that PA(Tr) proves
the consistency of PA shows its nonconservativity over PA. This feature
of Tarski’s theory of truth is not shared by so-called disquotationalist or
deflationist truth theories. The latter are usually formed by adding to the base
theory (PA) all the T -biconditionals. If the base theory is PA, let us denote by
PA(DT ) the theory obtained from adding to PA all T -biconditionals. Unlike
PA(Tr), PA(DT ) is conservative over PA (even in case we allow the induction
scheme to contain the truth-predicate).

8.2. Tarski’s Impossibility Result
Let us conclude the presentation of Tarski’s contribution to semantics by
resuming his legacy in the form of two main results that he himself mentions
as the achievements of his work.

A positive result: For every formalized language a formally correct and
materially adequate definition of true sentence can be constructed in a richer
metalanguage (i.e., metalanguage of higher order).

A negative (impossibility) result: If the order of the metalanguage is at most
equal to that of the language itself, such a definition cannot be constructed.

To be fully aware of what the impossibility result amounts to, let us see
how it applies to the language of arithmetic LPA. The syntax of this language,
that is, such notions as being a term, a formula, a sentence of LPA are defined
in a metalanguage, but then, due to the Gödelian technique mentioned earlier,
these definitions can be actually represented in LPA itself. (This is another
way of saying that LPA defines its own syntax.)

In the next stage, one formulates the truth-definition in the metalanguage,
which, as Tarski points out in his conclusions, must be of higher order than the
object language. In the present case, the metalanguage will be a second-order
language.

The truth-definition will first take the form of a set of axioms that show
how the satisfaction of a complex LPA-formula depends on the satisfaction of
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its simpler parts. Given that every natural number has a name in LPA, we
can dispense with the notion of satisfaction here. Let X be a second-order
variable. Consider the following axioms, where we may think of X(x) as “x
has the property X”:

1. If X(x), then x is a sentence (of LPA);

2. If x is an atomic sentence of the form t1 = t2, then X(x) iff the value of
t1 is identical to the value of t2;

3. If y is a sentence and x is a negated sentence of the form ¬y, then X(x)
iff not X(y);

4. If y is a sentence and z is a sentence and x is the disjunction of y and z,
then X(x) iff X(y) or X(z);

5. If i is a number, y is a formula and x is formed from y by existentially
quantifying over xi, then X(x) iff there is a closed term t such that
X(y/t) ((y/t) is the result of the substitution of t for xi in y).

Let Φ(X) denote the conjunction of these axioms. The explicit truth-
definition is the second-order formula

∀X(Φ(X) → X(x)),
or rather

Tr(x) ↔ ∀X(Φ(X) → X(x)),

which says that x is true if it has the property X for every X which satisfies
the axioms (1)–(5)). Equivalently,

Tr(x) ↔ ∃X(Φ(X) ∧X(x)).

Tarski’s impossibility result tells us that it is impossible to replace “∀X(Φ(X)
→ X(x))” (or “∃X(Φ(X)∧X(x)),” for that matter) with a first-order formula
in the language of arithmetics.

8.3. Truth in a Model
The notion of truth in a model is usually traced back to a remark Tarski makes
on page 199 of his famous paper where he mentions the idea of defining truth
in a special domain which is a subset of the universal domain. (See chapter 9.)
It emerged gradually from Tarski’s and Carnap’s work, and is now a standard
notion in logical textbooks. It takes the form of a model M = (D, I) for a
given object language, that is, a domain of discourse (universe) D which is a
set, and an interpretation function I which fixes the reference and denotations
in the universe of M of the constant, predicate, and function symbols of the
object language. One can recognize here some of the ingredients of Carnap’s
semantical systems: The interpretation function I assignes a “designatum”
for each “descriptive” expression of the object language. For simplicity, we
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consider only the case in which each individual a of the domain D has a
name a in the object language. Each closed term t in the language has a
semantic value tM which is an element of D. Thus for each constant symbol c,
cM = I(c), and if the values of the closed terms t1, . . . , tn are tM1 , . . . , and
tMn , respectively, then the value of the closed term ft1, . . . , tn is the value of
the function which is the interpretation of f applied to the arguments tM1 , . . . ,
tMn , that is, I(f)(tM1 , . . . , tMn ).

The notion to be defined (in the metalanguage) is not any longer truth-in-L
but truth-in-M (M 
 ϕ). The definition is given by induction on the complexity
of the sentence ϕ:

1. M 
 R(t1, . . . , tn) ⇔ (tM1 , . . . , tMn ) ∈ I(R),

2. M 
 t1 = t2 ⇔ tM1 = tM2 ,

3. M 
 ¬ϕ ⇔M � ϕ,

4. M 
 ϕ ∨ ψ ⇔M 
 ϕ or M 
 ψ,

5. M 
 ∃xnϕ⇔ there is a ∈ D such that M 
 ϕ(a).

Notice that the symbols M , D, I, and ∈ belong to the metalanguage, and
(1)–(5) are statements in the metalanguage. Let M be a model for a language
L and Th a set of sentences (i.e., a theory) of L. We say that M is a model
of Th if every sentence of Th is true-in-M . A first-order order theory may
have more than one model. This is the case with PA. It has a standard model
N = (N, I) whose universe N is the set of natural numbers, and in addition
I(0) = 0, I(S) is the ordinary successor function on N, and I(+) and I(×)
are the usual operations of addition and multiplication, respectively. Every
individual n in the universe has a name in LPA, the numeral n. It is well
known that PA has also nonstandard models, that is, models whose universe
contains individuals distinct from every natural number.

Tarski’s technique of defining truth in the metalanguage also applies to the
notion of truth in a model. Recall the second-order formula ∀X(Φ(X) → X(x))
which is the explicit truth-definition for LPA. Let us denote it by Δ(x). It is
routine to check that Δ(x) defines truth-in-N for the language LPA, that is,
the condition of material adequacy is fulfilled:

N 
 Δ(�ϕ�) ↔ ϕ

for each first-order LPA-sentence ϕ. Actually it may be shown that the formula
∀X(Φ(X) → X(x)) defines truth-in-M for every model M of PA.

Tarski’s impossibility result applies to the present case, too: Δ(x) cannot
be replaced by a first-order formula in the language of LPA.

The reader is referred to Philippe de Rouilhan and Serge Bozon (2006) for
an elaboration of the distinction between truth-in-a model versus truth in all
models in Tarski’s work.



Logic and Semantics in the Twentieth Century 587

9. Partial Interpretations
Tarski’s proposal can be viewed as a hierarchical account of truth for formal
languages. According to it, one does not have truth simpliciter but truth
indexed with a language L0. In the general case, one starts with a truth-free
base language L0. The truth-predicate Tr0 for L0 is given in the metalanguage
L1 which contains names for the sentences of L0 in the way indicated (except
that the language of arithmetics contains names for its expressions in the
object languages itself). Thus if ϕ1 and ϕ2 are sentences of L0, and �ϕ1� and
�ϕ2� are their standard names in the language L1, “Tr0(�ϕ1�)∧¬Tr0(�ϕ2�)”
is an assertion in L1 saying that ϕ1 is true (in L0) and ϕ2 is false (in L0).
But now if one wants to speak about the truth and falsity of the sentences
of L1, we have to go to the metalanguage L2 of L1 and introduce a truth-
predicate Tr1 for L1. If �Tr0(�ϕ1�) ∧ ¬Tr0(�ϕ2�)� is the standard name of
“Tr0(�ϕ1�)∧¬Tr0(�ϕ2�)” in L2, then Tr1(�Tr0(�ϕ1�)∧¬Tr0(�ϕ2�)�) asserts
in L2 that “Tr0(�ϕ1�) ∧ ¬Tr0(�ϕ2�)” is true (in L1).

There are various difficulties associated with this proposal, of which probably
the most famous is due to Kripke (1975). According to Kripke, it is perfectly
meaningful of, say, Nixon to say that

Everything that Dean says is false

and of Dean to say

Everything Nixon says is true.

In this example, it seems that Nixon’s assertion occurs in the metalanguage
of Dean’s discourse, and Dean’s assertion in the metalanguage of Nixon’s
discourse, a situation that cannot be consistently modeled in Tarski’s hierarchy
of levels.

There have been various attempts to overcome the limitations of Tarski’s
account by defining the truth-predicate in the object languages themselves.
We shall sketch two of them, each allowing for truth value gaps: Kripke’s fixed
point construction and IF -languages (Hintikka and Sandu 1989).

9.1. Partial Interpretations: Kripke
Kripke (1975) shows that there are languages which define their own truth-
predicate (in a sense to be defined) in certain models. He shows that there
is a model M of a language L that defines its own syntax and contains a
truth-predicate Tr(x) whose extension coincides with the class of sentences of
L true in M and whose counterextension coincides with the class of sentences
false inM . The result in the next section shows that there are languages which
define truth in all models (abstract concept of truth). Let us say right away
that none of these results contradicts Tarski’s impossibility result: In both
cases, the law of excluded middle fails.
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We shall present Kripke’s theory for the first-order language LPA of arith-
metic. We add to it a truth-predicate Tr and form the extended language
L+

PA = LPA ∪{Tr}. On the interpretational level, recall the standard structure
(N, I) for LPA. We add to it two new elements I+, I− and form the structure
M = (N, I, I+, I−) for the language L+

PA. I+, I− are functions which interpret
the truth-predicate in a partial way: I+(Tr) is a set of natural numbers, the
extension of Tr ; I−(Tr) is a set of natural numbers, the counterextension of
Tr , disjoint from I+(Tr). If we now recall that sentences ϕ of L+ are associ-
ated with natural numbers �ϕ�, then the universe N may be seen as divided
into (a) sentences that belong to the extension I+(Tr) of the truth-predicate;
(b) sentences that belong to its counterextension I−(Tr); and (c) nonsentences.

Truth and falsity of sentences of L+ in the partial model M = (N, I, I+, I−)
are determined by the Strong Kleene valuation scheme: We define simulta-
neously two semantic values, truth-in-M , M 
+ ϕ, and false-in-M , M 
− ϕ.
Here is the definition:

1. M 
+ R(t1, . . . , tn) ⇔ (tM1 , . . . , tMn ) ∈ I(R),

2. M 
− R(t1, . . . , tn) ⇔ (tM1 , . . . , tMn ) /∈ I(R),

3. M 
+ Tr(t) ⇔ tM ∈ I+(Tr),

4. M 
− Tr(t) ⇔ tM ∈ I−(Tr),

5. M 
+ t1 = t2 ⇔ tM1 = tM2 ,

6. M 
− t1 = t2 ⇔ tM1 �= tM2 ,

7. M 
+ ¬ϕ ⇔M 
− ϕ,

8. M 
− ¬ϕ ⇔M 
+ ϕ,

9. M 
+ ϕ ∨ ψ ⇔M 
+ ϕ or M 
+ ψ,

10. M 
− ϕ ∨ ψ ⇔M 
− ϕ and M 
− ψ,

11. M 
+ ∃xnϕ⇔ there is n ∈ N such that M 
+ ϕ(n),

12. M 
− ∃xnϕ⇔ for every n ∈ N :M 
− ϕ(n).

Kripke motivates his construction in terms of a learning process which takes
place in stages. The initial stage 0 is illustrated by a model M = (N, I, I+, I−)
in which both the extension and the anti-extension of the truth-predicate are
empty (i.e., I+(Tr) = I−(Tr) = ∅), and thus in conformity with the Strong
Kleene schema, there is no sentence of the form Tr(�ϕ�), which is true, and
no sentence of the form ¬Tr(�ϕ�), which is false at this stage. At stage 1, the
extension of the truth-predicate contains all sentences that are true at stage 0,
and I−(Tr) all the sentences that are false at that stage. As the extension of
the truth-predicate is empty at stage 0, the sentences true there do not contain
the truth-predicate but are all the semantic-free sentences true in the ground
model. Thus, at stage 1, I+(Tr) contains sentences like �0 = 0�, �2 + 1 = 3�,
�∃xx+ 0 = 1�, and so on, and I−(Tr) sentences like �0 = 1�, and so on. But



Logic and Semantics in the Twentieth Century 589

as I+(Tr) contains �0 = 0� at stage 1, the Strong Kleene scheme tells us that
Tr(�0 = 0�) holds at that stage, which means that �Tr(�0 = 0�)� will enter
into the extension of the truth-predicate at stage 2. By a repeated process, we
learn at every stage that more and more sentences are true, and the same goes
for the false ones.

The transition from one stage to another is formally captured by Kripke’s
jump operator ρ whose arguments and values are pairs 〈E+, E−〉 where E+

and E− are the extension I+(Tr) and respectively the anti-extension I−(Tr)
of the truth-predicate. Intuitively ρ(〈E+, E−〉) = 〈P+, P−〉 means that the
“learning process” has moved from the stage (N, I, I+, I−) where I+(Tr) =
E+ and I−(Tr) = E−, to the stage (N, I, I+1 , I

−
1 ) where I+1 (Tr) = P+ and

I−1 (Tr) = P−. The construction guarantees that ρ is monotonic, that is, if
E+ ⊆ P+ and E− ⊆ P−, then ρ(〈E+, E−〉) ⊆ ρ(〈P+, P−〉), where the latter
is just a notational device to say that the left member of ρ(〈E+, E−〉) is
included in the left member of ρ(〈P+, P−〉) and the same holds for the right
members. The monotonicity of ρ ensures that when moving from one stage to
another more sentences are put into either the extension or counterextension
of Tr (or both). Thus,

〈∅,∅〉 ⊆ ρ(〈∅,∅〉) ⊆ ρ(ρ(〈∅,∅〉)) ⊆ · · ·
At some point, the construction stops as there are no sentences to be put there
any longer. In technical terms, we say that ρ has a fixed point, that is, there
is a pair 〈E+, E−〉 such that ρ(〈E+, E−〉) = 〈E+, E−〉. The existence of the
fixed point has important consequences, as we have for every sentence ϕ

(N, I, E+, E−) 
+ Tr(�ϕ�) ⇐⇒ (N, I, E+, E−) 
+ ϕ

(N, I, E+, E−) 
− Tr(�ϕ�) ⇐⇒ (N, I, E+, E−) 
− ϕ.

For a monotonic ρ, Kripke’s construction does not yield only one fixed
point, but many. We do not have the space here for detailing the philosophical
literature which defends the least fixed point as being the most adequate for
representing truth. The reader is referred to Haack (1978) and Kirkham (1992)
for two representative samples of such a view.

9.2. Partial Interpretations: IF-Languages
An attempt to overcome Tarski’s second impossibility result (i.e., languages
defining truth in all models) is given within the so-called IF -languages in-
troduced in Hintikka and Sandu (1989) (see Hintikka 1996; Hodges 1997).
These languages express more quantifier dependences and independences than
ordinary first-order languages whose extensions they are. More exactly, the
object language contains, in addition to first-order formulas, formulas of the
form

(1) ∀x0∃x1∀x2(∃x3/{x0, x1})ϕ(x0, x1, x2, x3),
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where ϕ is a first-order formula. The slash is an outscoping device intended
to express the fact that an existentially quantified variable is functionally
dependent on all the variables that precede it, except the ones that are slashed.
Thus x1 is functionally dependent on {x0} and x3 is functionally dependent
on {x0, x1, x2} − {x0, x1} = {x2}. The truth of (1) is given by asserting that
there are certain (Skolem) functions that express the dependences between
existential and universal quantifiers and which satisfy the formula ϕ. In the
present example, this means there are two functions, the first one having x0,
and the second one having x2 as an argument, such that ϕ(x0, f(x0), x2, g(x2))
holds:

∀x0∃x1∀x2(∃x3/{x0, x1})ϕ(x0, x1, x2, x3)
⇐⇒ ∃f∃g∀x0∀x2ϕ(x0, f(x0), x2, g(x2)).

The motivation for this translation goes back to a game-theoretical interpreta-
tion due to Henkin (1961): There are two teams of players, the universal team
consisting of two players, ∀0 and ∀2, and the existential team, consisting of two
players, ∃1, ∃3, choosing elements from the universe of the model in which the
nonlogical expressions of ϕ are interpreted. Thus ∀0 chooses a, ∀2 chooses b, ∃1
chooses c, and ∃3 chooses d. The slash indicates the fact that when choosing d,
∃3 ignores the choice of a and that of c, knowing thus only the earlier choice
of b. The two functions represent the strategies of the existential players: The
sentence ∀x0∃x1∀x2(∃x3/{x0, x1})ϕ(x0, x1, x2, x3) is true (in a model) if each
one of the existential players has a strategy so that together they constitute a
win (i.e., make ϕ true) against any choices of the universal players.

We shall abbreviate the prefix ∀x0∃x1∀x2(∃x3/{x0, x1}) by Hx0x1x2x3.
Recall the first-order language of arithmetics, LPA. We enrich it with formulas
of the form Hx0x1x2x3ϕ, where ϕ is a first-order formula of LPA. A Tarski-
style truth-definition can now be given for the new language, using our earlier
truth-definition ∃X(Φ(X) ∧X(x)) for LPA that we shall abbreviate by Φ(x).
The truth-definition has two clauses:

a. If x is a first-order sentence of LPA, then Φ(x).
b. If y is an LPA−formula and x is an IF sentence of the form Hx0x1x2x3y,

then there are functions f and g such that for all closed terms t1 and t2:
Φ(y(t1, f(t1), t2, g(t2))).

(Here y(t1, f(t1), t2, g(t2)) is the result of the substitution of t1, f(t1), t2
and g(t2) for x0, x1, x2, and x3, respectively.) It can be shown that for every
model M of PA we have

M 
 Φ(�ϕ�) ⇐⇒M 
 ϕ,

for every IF sentence ϕ.
There are several steps that show the formula Φ(x) to be equivalent (in

every model of PA) to an IF formula Θ(x). The reader is referred to Sandu
(1996, 1998) and Hyttinen and Sandu (2000) for some of the missing details.
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A couple of things need to be said in this connection.
Kripke (1975) shows that a certain first-order language L defining its

elementary syntax contains a truth-predicate Tr for itself. The result presented
in this section shows the same thing for IF -languages. There is, however, a
major difference between the two results that can be spelled out by way of a
distinction introduced in de Rouilhan and Bozon (2006) between a definition
being e-adequate (yielding the right extension of the truth-predicate in the
model under consideration) and a definition being i-adequate (fixing the correct
extension of the truth-predicate in every model that satisfies the principles
of elementary syntax of L). The property of i-adequacy guarantees that the
definition fixes the intension of the predicate to be defined (modulo the
principles of elementary syntax). We recall in this context Carnap’s semantical
systems and his emphasis on his rules of truth fixing the meaning of the
sentences to which the truth-predicate applies.

We are now in a position to see that Tarski’s truth-definitions for formalized
languages are i-adequate (and of course e-adequate), whereas Kripke’s con-
struction is only e-adequate. The truth-definition for the IF -languages, being
a Tarski-style truth-definition, is also i-adequate.

Finally, let us emphasize that results similar in spirit to the one presented in
this section have been given before. Myhill (1950) and Smorynski (1977) proved
the existence of nonclassical languages containing an adequate truth-predicate
for themselves. Like IF -languages and Kripke’s languages, none of them are
closed under both universal quantification and classical negation.

9.3. Some Problems with the Three-Values Approach
Several problems have been pointed out in connection with the three-values
approach. Perhaps the most debated one is that these languages are not
able to express certain notions used in the metalanguage, like the notion of
complementary negation and the classical notion of implication. ϕ→ ϕ is not
valid in Kripke’s system or in IF -logic given the fact that ψ → θ is defined as
¬ψ ∨ θ and ¬ is not contradictory negation. Thus, in Kripke’s system ϕ→ ϕ
does not hold for sentences that are neither true nor false (like the Liar) and in
IF -logic ϕ→ ϕ fails even for very simple sentences like ∀x0(∃x1/{x0})x0 = x1.
For this reason not all instances of the T -biconditionals Tr(�ϕ�) ↔ ϕ hold.
The reader is referred to Beall (2005) for a discussion of the problems related
to these issues in Kripke’s system; to Feferman, de Rouilhan, and Bozon for a
criticism of IF -logic along the same lines; and to Hintikka’s replies to these
criticisms, all contained in Hintikka’s Schilpp volume (Auxier and Hahn 2006).
We shall come back to some of these issues when discussing the paradoxes. For
the moment let us mention one more question in connection with Kripke’s fixed
point construction. It has been pointed out that, being a partial interpretation,
this construction does not lend itself to natural axiomatizations which would
somehow have to be not classical but partial. Kripke himself was aware of
this problem and suggested in his (1975) paper a method of dealing with
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it. There he played with the “closing off” fixed points construction. To go
back to his fixed point model, one closes it off by putting all the sentences
which are semantically undecided in that model into the anti-extension of the
truth-predicate. The resulting model is a classical one in which the previously
undecided sentences, including the Liar, are false. Following up this idea,
Feferman (1991) devised an elegant construction that axiomatizes Kripke’s
fixed point models in classical logic. The resulting axiom system, called the
Kripke–Feferman (KF) system has as its natural interpretations the closing
off models suggested by Kripke.

10. Revision Theory of Truth: Herzberger and Gupta
This is a theory developed in the eighties by Herzberger and independently
by Gupta. Unlike Kripke’s theory and IF -logic, both approaches preserve
classical logic. Here we shall focus on the variant due to Gupta and Belnap
(1993), reviewed in Beall (2005). The spirit of the whole enterprise should be
obvious from the title. In Kripke’s case one starts with an empty extension
and counterextension for the truth-predicate, and then one learns gradually
that more and more sentences are true and false, until a saturation point is
fixed. In the present case, one starts with an extension of the truth-predicate
based on an initial guess, reaching the right extension after a gradual process
of revisions.

Consider a model M with universe {a, b, c, d} and the following information
on the extensions of the predicates F and H:

i. a, b ∈ FM ,
ii. c, d /∈ FM ,
iii. a, c ∈ HM ,
iv. b, d /∈ HM .

In addition, we are given the following condition on the extensions of F, H,
and G:

Gx↔ (Fx ∧Hx) ∨ (Fx ∧ ¬Hx ∧Gx) ∨ (¬Fx ∧Hx ∧ ¬Gx).
If the initial guess is that GM is ∅, then we have the following calculations.
Since a ∈ FM and a ∈ HM then the first disjunct is true, whence a ∈ GM.

Given that c /∈ FM and c ∈ HM and the initial guess, then the third disjunct
is true, whence c ∈ GM. A quick inspection shows that b falsifies all the three
disjuncts, whence b /∈ GM. And the same holds of d. The initial guess has
been revised to a, c ∈ GM and b, d /∈ GM. But now the process can go on and
eventually lead to another revision.

The revision process should be now clear.

At stage S0 one starts with an initial guess h0 of the extension of G, and
revises it to Gh0 ;
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At stage S1 one’s guess is Gh0 and the revised extension is Gh1 .
...

At stage Sn+1 one’s guess is Ghn and the revised extension is Ghn+1 , and
so on.

There are different starting points. For instance, with an universe like
{a, b, c, d} there may be 16 initial guesses. And thus there may be 16 different
sequences (which eventually can go on into the transfinite).

We call a sentence ϕ stable relative to a sequence s if there is a stage in s
after which the truth value of ϕ remains constant.

We say that the sentence ϕ exhibits convergence if ϕ is stable relative to
all sequences s with the same truth value.

The following pattern emerges in the present example.

1. Object a. If the initial guess is that a ∈ GM , then a ∈ Ghn for all n. If
the initial guess is that a /∈ GM , then a ∈ Ghn for all n > 0. Thus it can
be checked that the following sequence obtains:

〈S0,∅〉, 〈S1, {a, c}〉, 〈S2, {a}〉, 〈S3, {a, c}〉, 〈S4, {a}〉, . . .
So we may expect the sentence Ga to exhibit convergence, given that it
is stable relative to two sequences.

2. Object b. If the initial guess is that b ∈ GM , then b ∈ Ghn for all n. If the
initial guess is that b /∈ GM , then b /∈ Ghn for all n. Thus Gb is stable in
both cases, but it fails to be convergent.

3. Object c. There is no stability with respect to Gc, and hence no conver-
gence.

4. Object d. Identical to case a, except that Gd converges on falsity.

We reach the “categorical” judgments that a is G and that d is not G. On
the other side, there are no categorical judgments to be made of b or c.

In the case of truth, Tarski biconditionals should be understood as having
a hypothetical character providing a method for obtaining better and better
approximations of the extension of the truth-predicate. Thus the role played in
our earlier example by the circular definition of Gx is now played by Tarski’s
biconditionals. Given that some sentences may contain occurrences of Tr ,
it is clear that these biconditionals may be regarded as circular definitions.
Starting with an arbitrary extension of the truth-predicate, the revision process
results in a series of models M∗, M∗∗, M∗∗∗, . . . that are constructed using
the biconditionals by evaluating sentences in the previous member of the series.
Each member in the series will be an improvement over its predecessor. In
the end, a categorical judgment will be eventually reached. Some sentences
will converge, others will stabilize but not converge, and still others will fail
to stabilize. In general, the Liar sentence will turn out to be unstable. The
reader is referred to Chapuis and Gupta (2000) for a collection of articles that
deal with paradoxes in the context of the revision theory of truth.
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11. Davidson: Tarski’s Theory of Truth
as a Theory of Meaning

Donald Davidson developed his views in a series of papers, which include Truth
and Meaning (1967), Semantics for Natural Languages (1970), In Defence of
Convention T (1973) all included in Inquiries into Truth and Interpretation
(1984). The result is a theory of interpretation, which, one could say, is
a combination of Tarski’s theory of truth with Quine’s views on radical
translation: Tarski’s object language becomes the language to be interpreted,
the metalanguage becomes the language of the interpreter, and the process of
interpretation itself becomes an empirical process subject to Quine’s constraints
on radical translation.

The starting point of Davidson’s reflexions is the simple fact that we are
able to interpret other people’s linguistic utterances:

Kurt utters the words “Es regnet” and under the right conditions
we know that he has said that it is raining. Having identified his
utterance as intentional and linguistic, we are able to go on to
interpret his words: we can say what his words, on that occasion,
meant. (Davidson 1984, 125)

Hence he finds it natural to ask: What do we know that enables us to interpret
the words of others? The answer is: a theory of meaning which is the same thing
as a theory of interpretation. Davidson sets to himself the task to formulate
such a theory but before doing that, he displays three requirements any such
theory should meet:

1. It should explain how the interpreter, which has finite knowledge, is able
to interpret a potentially infinite number of sentences.

2. It should be informative: It cannot, for instance, be just a function which
maps spoken utterances into understood utterances.

3. It should be empirically testable.

An adequate theory of meaning should entail for every sentence s of the
language under investigation the sentence

s means that p,

where “p” is to be replaced with a sentence in the language of the interpreter.
The role of “p” is to give the “meaning” of the sentence s. The crucial question
is, of course, what to put in the place of “p.”

As in the case of the truth-predicate, one can think of “means that p” as
denoting a predicate or a property, X, which applies to sentences. Thus on
Davidson’s view, we should have in the place of “p” a sentence that gives the
necessary and sufficient conditions for the sentence s to have the property X.
This step is described by Davidson in the following passage:
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As a final bold step, let us try treating the position occupied
by “p” extensionally: to implement this, sweep away the obscure
“means that,” provide the sentence that replaces “p” with a proper
sentential connective, and supply the description that replaces “s”
with its own predicate. The plausible result is (T ) s is T if and only
if p. (Davidson 1984, 23)

In other words, after explaining the scheme and replacing intensional by
extensional idiom, we end up with

(M) s has the property X (s is X) if and only if p.

But now we realize that the property X is coextensional with truth in
Tarski’s sense:

s is true if and only if s is X.

This can be seen in the following way: Suppose that s is true (in Tarski’s
sense). By Convention T we know that

s is true if and only if p.

Whence p. But then from scheme (M) we get:

s is X.

The argument in the other direction is established in a similar way. On
the basis of the argument, Davidson reaches the conclusion that the theory of
interpretation we are looking for is already on the market: It is Tarski’s theory
of truth, provided it undergoes several modifications.

• Tarski’s definition of truth is not regarded as a definition any longer but
as a theory. In other words, the definition of truth/satisfaction is replaced
by a finite number of axioms, one for each predicate of the language. Its
theorems are the T -sentences. We actually adopted this format when
presenting Tarski’s theory.

• Davidson is well aware that in his definition of truth/satisfaction Tarski
presupposes the notion of meaning (translation). But the latter is precisely
the concept that Davidson wants to clarify. For this reason, truth and
not meaning is taken as a primitive notion (see our remarks on Frege
earlier). Tarski’s theory is thus turned upside down:

An acceptable theory of truth must entail, for every sentence s of
the object language, a sentence of the form: s is true if and only if
p, where “p” is replaced by any sentence that is true if and only if
s is. Given this formulation, the theory is tested by evidence that
T -sentences are simply true; we have given up the idea that we
must also tell whether what replaces “p” translates s. (Davidson
1984, 134)
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• Unlike Tarski, Davidson wants his theory of meaning to apply to natural
languages. He disagrees with Tarski that natural languages are too
unregimented to be amenable to formal treatment. Davidson is ready
to accept into the object language all kinds of expressions that Tarski
had previously banned, such as proper names, demonstratives, indexicals,
and so on. These are context-dependent expressions known to introduce
complications into the T -schema. For this reason, Davidson takes the
truth-predicate to apply, not to sentences, but to utterances restricted
to a given speaker and moment of time:

the sentence s as uttered by x at moment t is true if and only if p,

of which a typical instance would be:

“Socrates is flying” is true at time t
if and only if Socrates flies at time t.

The architecture of Davidson’s theory should be clear by now. What the
interpreter knows when he is able to interpret a language (foreign or his own)
is a Tarski-type theory of truth. The theory is empirically adequate when its
empirical consequences, the T -sentences, pass the empirical tests. (Notice that
the truth-predicate is now primitively understood.) If that is the case, then the
interpreter knows for each sentence, its truth-conditions, and knowing those
amounts to knowing the meaning of the sentence (Davidson 1984, 24).

Davidson’s idea was that if a basically Tarskian truth-definition were car-
ried out through all natural language and extensional truth-conditions were
given for all sentences, that would even constitute or produce a theory of
meaning. As we saw, here he appealed to strict logical arguments, which have
caused considerable debate. But the greatest discussion about his program
has been among nonlogical philosophers, because the Davidsonian interpre-
tation of meaning would have far-reaching applications in many philosophical
questions, and the feasibility of its assumptions became the subject for wide
debate.

Davidson was not the only author in the 1960s and 1970s who sought to press
more content out of the formal definition of correspondence. In his influential
writings, Popper assumed that the semantic truth theory had already almost
achieved a full grasp of factual correspondence. (See, e.g., Popper 1972, ch. 9.)
On the contrary, Hartry Field argued that the Tarskian definition is a good
start, but it should be supplemented with a theory of reference. According
to Field, Tarski succeeded in reducing all truth to satisfaction for atomic
sentences but at that stage his definition becomes noninformative or trivial.
Therefore his truth theory does not have explanatory force; Field really thinks
of explanation in the sense of natural sciences. What is needed is a theory of
reference that would develop the semantic theory to a strong correspondence
theory. (See Field 1972.)
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12. Paradoxes
In his book The Foundations of Mathematics (1925) Ramsey introduced a
distinction between semantic and set-theoretic paradoxes. Examples of the
former include the Liar paradox, which will be discussed next, but also other
paradoxes which involve the notions of meaning, definition, and so on. Here
are a few of them:

• Grelling’s paradox. Let us call an adjective heterological if it does not
correctly apply to itself, and autological if it does. Thus smart is hetero-
logical while English is autological. It is natural to ask: Is heterological
itself heterological? If the answer is yes, then it does not apply to itself;
but then it is not heterological. Is it autological? If the answer is yes,
then it applies to itself and thereby it is heterological.

• Berry’s paradox. With each number we associate an expression. Consider
the least number not specifiable in fewer than 20 syllables. But we just
specified it in 19 syllables: “the least number not specifiable in fewer
than 20 syllables.”

• Richard’s paradox. We associate with each decimal its definition with
a finite number of words, if possible. Let the class of such decimals be
E. Let us well-order E. Now we define a number N to be such that if
the nth figure in the nth decimal in E is m, then the nth figure in N is
m+ 1, or 0 if m = 9. Then N is different from every member of E, and
yet has been defined in a finite number of words.

The set-theoretical paradoxes involve set-theoretical notions such as set,
ordinal number, membership, and so on.

• Russell’s paradox. Let’s group sets into those that are members of them-
selves and those that are not. Consider the set of sets that are not
members of themselves. It is easy to see that it is a member of itself if
and only if it is not.

• Burali-Forti’s paradox. Take the series of all ordinal numbers. This series
itself has an ordinal number O. The series of ordinal numbers up to and
including any particular ordinal number exceeds that ordinal by one; thus,
the series of ordinals up to and including O has the ordinal number O+1.

The reader is referred to Haack (1978) for an extensive discussion of the
paradoxes. In this section we focus on the Liar paradox, and analyze some of
the solutions given to it, with an eye on the theories of truth we have discussed
so far.

12.1. Tarski’s Solution
In the first section of his famous article, Tarski showed how the requirement
of material adequacy for a theory of truth formulated as the derivability of all
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the relevant instances of his T -scheme leads to inconsistency in combination
with self-referential sentences like the Liar.

Let us stipulate that c denotes the sentence:

c is false.

The relevant T -biconditional now yields

“c is false” is true if and only if c is false,

which together with the previous stipulation c = “c is false” entails

c is true if and only if c is false.

Combined with the principle of bivalence, the last statement leads to a
contradiction,

c is true and c is false.

The general mechanism involved should be clear. On one side, the language
contains expressions α (“c” in our example) which denote the sentence ¬Tr(α).
In addition, the language has standard names a (“c is false” in our example).
The relevant instance of Tarski’s T -schema is

Tr(a) ↔ ¬Tr(α),

which together with a = α and the principle of bivalence, implies a contradic-
tion.

Tarski’s solution to the paradoxes is to ban them altogether from the
language: In his hierarchy of levels described earlier, the Liar-like sentences
never arise. This solution has been found unsatisfactory for several reasons
mentioned before. (See Soames 1999, especially chaps. 3 and 4 for a discussion
of the problems.) In the sequel we shall discuss two other types of solutions to
the Liar-type sentences: truth value gaps and contextualist approaches.

12.2. Truth Value Gaps
One of the the first serious attempts to break with the Tarskian approach was
that of Kripke (1975) and Martin and Woodruff (1975). Recall Kripke’s fixed
point construction described earlier and consider the Liar sentence L, which
says of itself that it is false (i.e., it is equivalent to ¬Tr(�L�)). For it to find
its place into the fixed point 〈E+, E−〉, it must appear in the extension or
anti-extension of the truth-predicate at some of the stages Si. It is obvious that
L cannot appear at stage 0 since nothing does. But L cannot appear at stage 1
either, for if it appeared in the extension of the truth-predicate at that stage,
¬Tr(�L�) had to appear there, too, and that is possible only if ¬Tr(�L�) was
true at stage 0. But we already pointed out that there is no sentence of the
form ¬Tr(�L�) which is true at stage 0. By the same reasoning, it follows
that L cannot appear in the antiextension of the truth-predicate at stage 1.
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Similar arguments show that L cannot appear at any stage. Thus L is neither
true nor false.

The problem with this solution is well known. If “L” is neither true nor
false, then it is not true. But we cannot express this fact consistently in the
object language. For suppose that “L” is not true. But then “Tr(�L�),” which
asserts that “L” is true, is false. Hence “¬Tr(�L�)” is true. But “¬Tr(�L�)”
is the Liar, whence “L” is true. Thus from the premise that “L” is not true we
ended up with the conclusion that “L” is true. Thus Kripke’s Strong Kleene
proposal according to which the Liar is neither truth nor false is inadequate,
for it does not allow one to state this fact in one’s own object language.

Another problem with the truth value gaps approach has been discussed
in connection with partial interpretations: Given the definition of ϕ→ ϕ by
¬ϕ∨ϕ, not all the implications ϕ→ ϕ are valid in the Strong Kleene semantics,
and thereby not all T -biconditionals are valid either. The fact that ¬ϕ ∨ ϕ
does not hold may not be philosophically so damaging, but the nonvalidity
of ϕ→ ϕ is disturbing. We know there is no easy way to fix this problem by
introducing the “right” kind of conditional. (See Beall 2005, section 4.1.3.)

In a recent series of papers, Field attempts to build up a language that
has a notion of implication that renders all T-conditionals valid, and also
allows one to assert consistently that the Liars and their negations are not
true. This last claim has to be qualified, however, in the sense that the Liars
and their negations turn out not to be true in a stronger sense of truth
distinct from Tarski’s material truth. (See, e.g., Field 2003, and Beall 2005,
section 4.2.) Attempts to block inconsistencies arising from the presence of
the Liar sentences in the language by introducing a stronger notion of truth
(definite truth) than Tarski’s truth are also typical for the supervaluationist
approach. McGee (1991) shows how Tarski’s piece of reasoning leading to
inconsistency (see above) cannot be carried out with his notion of definite
truth.

12.3. Contextualist Solutions
We have selected two proposals, one originating with Parsons and developed by
Burge and Glanzberg; the other, due to Barwise and Etchemendy is developed
within the framework of Situation Semantics.

12.3.1. Quantifier Shift

One way to get around the problem discussed in connection with truth value
gaps has been suggested by Charles Parsons (1983) and Tyler Burge (1979).
Their idea is that the truth-predicate as it appears in the Liar applies to
different entities from the truth-predicate which is used to classify the Liar
sentences (i.e., to say of the Liar that is not true). There is one essential
modification though with respect to Tarski’s theory: It is propositions and not
sentences which are the truth-bearers. Consider now the reformulation of the
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Liar sentence in terms of propositions

(c) c expresses a false proposition.

To allow for the possibility of a sentence not expressing a proposition at all,
Parsons replaces Tarski’s T -schema by the weaker:

(1) ∀x(if x is a proposition and “p” expresses x,
then x is true if and only if p).

Together with the assumption that propositions are bivalent, (1) entails

(2) ∀x(if x is a proposition and “p” expresses x,
then x is false if and only if ¬p).

Applied to the two Liar sentences, (1) and (2) lead to the conclusion that they
do not express a proposition at all. Here is the argument.

Suppose x is a proposition and c expresses x. Then by (1) we get

(3) x is true if and only if c expresses a false proposition.

Suppose x is not true. By existential generalization, we infer

(4) ∃x(x is a proposition ∧ ¬(x is true) ∧ c expresses x),

that is, c expresses a false proposition. But now, from (3) we get that x is true.
Thus starting from an arbitrary proposition x that c expresses, we landed in
the conclusion that x is true.

(5) ∀x((x is a proposition ∧ c expresses x) → x is true).

(5) is equivalent with

(6) ¬∃x(x is a proposition ∧ ¬(x is true) ∧ c expresses x).

But then there is no proposition that c expresses, for if c expressed one, say y,
then by (5) y would have to be a true proposition, and that together with (3)
implies that c expresses a false proposition. But this is in contradiction with (6).
A similar argument shows that the strengthened Liar (d is the sentence: d does
not express a proposition) does not express a proposition either. Parsons avoids
the contradiction by his shifting quantifier domain assumption. According to
it, both (4) (c expresses a false proposition) and (6) (c does not express any
proposition) are true, but the quantifiers range over different domains. The
former is larger than the latter.

The quantifier-shift proposal has been found attractive for at least two
reasons. As made clear in the recent development of the theory due to Glanzberg
(2004), the shifting-domain account amounts to a contextual expansion of
the background domain of truth-conditions, which gets bigger and bigger, an
assumption that is common practice in linguistic theory.
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The second advantage is the possibility it opens up for narrowing down the
gap between set-theoretic and semantic paradoxes introduced by Ramsey. Here
is Parsons’s argument. Given a predicate “Fx,” the fact that a is its extension
is expressed by the condition

(7) ∀x(x ∈ a↔ Fx).

By analogy with (1) we have

(8) ∀y(y is the extension of “Fx” → ∀x(x ∈ y ↔ Fx)).

If we now take “Fx” to be “x /∈ x,” we obtain

(9) ¬∃y∀x(x ∈ y ↔ x /∈ x).

But (8) and (9) entail

(10) ¬∃y(y is the extension of “x /∈ x”).

Parsons adopts here the same solution he proposed for the Liar, that is, he
takes the two quantifiers in (8) and (10) to have different domain of discourse.
(Parsons 1983, 231–232.)

For another “indexical” solution, the reader is referred to Keith Simmons
(1987), who argues that the idea of treating “true” as an indexical term was
anticipated by some mediaeval authors.

12.3.2. Situation Semantics

Situation semantics (SS) was originally conceived as an alternative to tra-
ditional truth-conditional semantics which emerged from Frege’s work and
found its technical expression in the works of Tarski and Davidson and the
possible worlds semantics of Hintikka and Kripke. It has its starting point in
Barwise’s and Perry’s work on perception reports. For a developed version,
see Barwise and Perry (1983).

The proponents of SS set themselves the task to bring ontology back into
semantics. Its basic elements are (a) situations and (b) the relation theory of
meaning.

Situations are, roughly speaking, parcels of reality consisting of individuals
who have various properties and stand in relations to each other at spatiotem-
poral locations. If one abstracts from the spatiotemporal location and considers
only the individuals together with their properties and the relations holding
between them, then one gets a situation-type. When a location is added to
that, one obtains a situation.

The situation-type is technically represented by a partial function from n-
ary relations and n individuals to the truth values 0 and 1. To take a standard
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example in the SS literature, the situation-type of Molly barking and Jackie
not barking is identified with the partial function s,

s(barks,Molly) = 1
s(barks, Jackie) = 0,

that is sometimes represented in a more perspicuous notation by

In s: 〈〈barks,Molly; 1〉〉
〈〈barks, Jackie; 0〉〉.

As pointed out earlier, situations (or courses of events) are obtained by
adding the appropriate locations to situation-types and are technically identi-
fied with partial functions from locations to situation-types. In the technical
format used above, the situation e that has Molly barking at location l and
Jackie not barking at location l′ is represented by

In e: at l: 〈〈barks,Molly; 1〉〉
at l′: 〈〈barks, Jackie; 0〉〉.

The relational theory of meaning construes the linguistic meaning of a
sentence as a relation holding between two types of situations, utterances, and
the situations they describe, that is, the contents of the utterances. Thus when
the sentence

I am sitting

is uttered by A, it describes the situation that A is sitting, and when uttered
by B it describes the situation that B is sitting. The situation described is
typically identified with the descriptive content of the utterance.

The development of situation semantics in the eighties led to a broader notion
of propositional content or Austinian proposition (Barwise and Etchemendy
1987). At the early eighties, the meaning of a sentence was a relation between
circumstances (discourse situations, utterances) and (described) contents. But
little by little, the circumstances of the utterance, that is, the discourse
situation, become part of the broader notion of propositional content. The
standard example from Barwise and Etchemendy (1987, 121–122) is a poker
game in which Holmes utters, “Claire has the ace of hearts.” Traditionally the
circumstances s of the the utterance (the utterer’s spatiotemporal position)
are distinguished from the descriptive content of the utterance, that is, the
state of affairs of Claire having the ace of hearts, represented by

〈〈has; Claire, the ace of hearts, 1〉〉.
With the development of Austinian propositions, s itself become part of the
larger notion of content represented by

s 
 〈〈has; Claire, the ace of hearts, 1〉〉,
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which includes s as a constituent. The emergence of Austinian propositions
allowed Barwise and Etchemendy to model the attitude reports arising from
Quine’s and Kripke’s puzzles and to deal with strengthened Liar paradoxes
like

(1) is not true.(1)
(1) is not true.(2)

The following reasoning takes place: (1) is true if and only if (1) is not true.
Given the law of excluded middle (1) is not true, which is what (2) says, hence
(2) is true.

In the new setting, the Austinian proposition corresponding to (1) is

(+) s 
 〈〈true; (1), 0〉〉,
where s is the focus situation that includes the conditions of utterance of
(1). For reasons that we cannot detail here, (+) is false because there are no
situations of the appropriate type to classify s. But the Austinian proposition
corresponding to (2) is

(∗) s′ 
 〈〈s 
 〈〈true; (1), 0〉〉〉〉,
where s′ is a new situation that expands s and contains the fact of the falsity
of (+). Because of this, (∗) is true. The similarity with the previous approach
is obvious. We achieve consistency by switching to a different situation.

13. Philosophical Readings of Semantic Theory
13.1. Against Correspondence
The view about truth that has recently caused perhaps most debate among
formal philosophers of language is deflationary. Frege already suggested that
no property of truth can be found (Frege 1918). For him, truth is not definable
at all. As a conscious theory, deflationary truth-definition begins from Frank
Ramsey, according to whom the predicate of truth is “redundant”: “it is
true that p” means the same as p. “True” and “false” “are phrases which we
sometimes use for emphasis or for stylistic reasons, or to indicate the position
occupied by the statement in our argument” (Ramsey 1927, 38). In this way,
the truth-predicate and the distinction between language and metalanguage
would be eliminated and also the notion of correspondence becomes obviously
superfluous. Hence this approach is fascinatingly simple. However, it is not
in any way obviously right, and there are numerous problems arising because
the truth-predicate is used in many other contexts that do not allow such an
elementary elimination—the most famous is “everything he said is true,” and
also generalizations like “Consequences of true sentences are true” ought to be
explained.
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Deflationary views were occasionally defended even before their explicit
logical formulation. For example, Strawson argued at one stage that it is an
error to see truth as a predicate, since calling a proposition true is just a
signal of approval. Newer deflationism has a different policy: It admits that
truth-sentences do make an assertion, but claims that this assertion is not
really about truth (since there is no such property). Genuine discussion of
these questions started in the 1970s, and the first painstaking proposal may
have been by Williams in 1976. Essentially, he elaborated Ramsey’s position to
save the basic redundancy thesis (Williams 1976). Nowadays the deflationary
strategy has divided to several branches which use different more or less radical
methods of explaining problematic cases. Formulated in most cautious way,
it leads to “minimalist” theories that do not want to eliminate the truth-
predicate altogether but insist that an adequate analysis of truth is found in
the necessary equivalence in all instances of “the proposition that p is true iff
q.” (Such a theory needs a different condition for each p and must hence be
infinitely long; see Horwich 1990.)

A very different and philosophically interesting vision of semantics was
developed by Michael Dummett in numerous works from 1959 on. Inspired
both by later Wittgenstein and by intuitionism, he suggested that the meaning
of a sentence or a proposition is to be seen, not in its truth conditions, but
in conditions of justification. This led to lively discussion that is complicated
among other things by the fact that the debated thesis has stronger and weaker
forms. (See the succession of papers in Dummett 1978.) Dummett’s thesis
would mean that, when we speak about meaning in semantics, truth ought to
be either analyzed or replaced with proof (in a mathematical sense or in a broad
natural sense). The position is often called semantic antirealism. According to
Dummett, knowledge of truth conditions has no real content besides knowledge
of justification conditions. And some sentences are fundamentally undecidable.
Therefore he also wants to give up the logical principle of bivalence. (See
Wright 1987, ch. 10.) It is noteworthy that the antirealist view in philosophical
semantics has great relevance to directly logical questions. Among other things,
it advises us to understand logical results from a proof-theoretic perspective
and to turn to use some grade of intuitionist systems. On the other hand, Dum-
mett has debated with some logicians who have defended even more militant
constructivism. (See, e.g., Sundholm 1994 and Dummett’s answer; Sundholm
supported the intuitionist proof-theory like that introduced by Martin-Löf.)

13.2. Possible Worlds
The relations of logic and ontology are highlighted in the theory of possible
worlds. It has obviously a connection, first of all, to modalities and modal
logic for which it was developed. However, the mere use of possible worlds
apparatus—say, valuating sentences in a frame 〈W,R〉—does not yet carry
any ontological weight. But if the members or indices in W are interpreted
as possible worlds, then the full ontological problem will arise. Indeed, this
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seems to be inevitable if the formalism is wanted to be of some help in
understanding modal discourse, in other words, if it is wanted to say something
of what modalities and modal features are, and not only something about the
interrelations of modal sentences. Moreover, the simple modal contexts are not
the only field of application of possible worlds. Thus, they are often used to
provide semantics for intensional entities, like propositions or concepts, or to
model relations, like conditionals, between intensional entities.

It is obvious that the ontology of worlds touches the philosophy of logic.
Thus, the old questions about, for example, the metaphysics of propositions
reappear in a new format. In fact, many authors have wanted simply to identify
propositions with classes of possible worlds even if this differs from the old
senses of proposition. (This, however, leads to the classical difficulties about
intensionally equivalent propositions: They would immediately get equated,
though they differ in respect to propositional attitudes.) It would be essential
to have a clear idea of what the worlds are. Unfortunately, the ontology of
possible worlds is in a chaotic state because all inquiries use different ways of
exposition. It is not easy even to find a decent classification of the alternatives.

Because of its extremeness, the clearest theory may be the ultra-realism
developed by David Lewis, most fully in Lewis (1986). According to Lewis,
worlds are real individuals, and possibility sentences ought to be understood
as genuine existential statements quantifying over individuals. (Worlds are
maximal spatiotemporally connected individuals, and each possible world is
one of these existents.) Propositions are subsets of the set of worlds, properties
are subsets of the set of individuals. That one world is actual has no logical
importance; it is expressed simply by labeling one world with a special index.
Thus Lewis thinks he can build full semantics by means of extreme realism,
set-theory, and mereology.

Most philosophers have not accepted the Lewisian theory. The most widely
supported theories have been “actualist”—actualist in the sense that possibili-
ties are understood from the standpoint of what is actual. The task then is
to explain clearly what the ontological status and constitution of the possible
worlds is and what it means that something is true at a world. There has been
great variety in the answers. According to one popular idea, advocated by Alvin
Plantinga, the worlds are to been seen as maximal consistent states of affairs.
A basically similar point of view is probably supported by those who think
that we can quantify over “ways things could be.” Certain philosophers assume
that possible worlds are abstract entities, comparable to mathematical ones,
while some say that they are conceptual constructions regarding actual things
(Kripke). The “linguistic” interpretation, in its turn, would aim at reducing the
possible worlds to basically logicolinguistic entities, to descriptions satisfying
structural conditions (Hintikka). All the solutions are still very much in need
of clarification, and the confused state is a hindrance to the philosophy of logic,
especially modal logic. (See Forbes 1985; Divers 2002; Melia 2003.)

An extra problem arises because of the possible identity of individuals in
different worlds. That is a crucial question for all modal logic with quantification
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de re, but opinions about its ontological basis still conflict. And how do
individual names find their referents in different worlds? Lewis (like Leibniz)
thought that one and the same individual could not exist in two worlds; the
other worlds can have only “counterparts” of the individual. Most others
think (like Scotus and Ockham thought, and as was common in the fourteenth
century) that the same individual may exist in many worlds, but then it is
urgent to have some idea of when the individual is the same. For example,
how different may it be in other worlds? For some (Kripke), this just is
a given fact demanding no explanation; for some, it is explained by the
individual essence (haecceitas) that belongs indistinguishably to the individual
and remains the same in various worlds. Essentialism is a feasible and classical
position but nowadays not popular. Thus some authors have argued that no
further definition of transworld identity is needed, whereas others say that the
identification happens by means of basically nonlogical criteria of (sufficient)
similarity in empirical features.

13.3. Analyticity
The ontology of worlds and propositions can easily lead us to what was
presumably the most famous issue in the philosophy of logic during the
century, that is, the controversy about analyticity and necessary truth. The
concept of analyticity was important for the Vienna Circle because one of
its main theses was that all propositions that can be known a priori are
analytic. In these debates the concept was seen to be unclear, and attempts of
explanation followed. One classical idea for that purpose was, and still is, to say
that analytic truths are true “in virtue of meanings.” Carnap (1947) tried to
formalize this by replacing analyticity with L-truth. The L-true sentences hold
in any state-description and are thus true because of the semantic rules of the
language, as was remarked in section 7.2. But the doctrine of unique semantic
rules was dubious. Moreover, the “paradox of analysis” was disturbing: How
can analytic truths ever be nontrivial?

This was the background for Quine’s attack, which made analyticity a
subject of urgent debate. In the chapter about modal logic it was already noted
how his criticism had far-reaching impact. His general pursuit was to get rid of
all intensional entities and phrases in favor of a naturalist vocabulary; sets were
the only nonphysical type of things he had to admit. The rejection of modal and
attitudinal theories is hence a natural consequence. But his approach has even
more profound implications in semantics. They got their classical expression
in “Two Dogmas of Empiricism” (Quine 1951) and were later developed and
somewhat modified in numerous works by Quine and his followers.

The criticism concerns the whole traditional division of truths into two
strictly distinct classes. Philosophers used to think that some truths are
analytic and some synthetic, some truths are necessary and some contingent.
It had, of course, been an old subject of dispute how the divisions ought to
be precisely delineated and if they coincided or not. But Quine argued that
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there simply is no such a dichotomy. According to him, the supposed status of
analyticity would have to be explained by semantic rules, which are explained
by synonymy, which in its turn is explained by the analyticity of substitutions.
So, analyticity remains unexplained. The so-called analytic truths are nothing
but unusually well-grounded truths. Later, Quine told that the dichotomy
of analytic and synthetic ought to replaced by a scale: Some sentences are
more deeply embedded in “the web of our beliefs” than others, but they all
belong to a whole which could be amended at any point. According to this
“confirmation holism,” amendment of analytic or even logical truths would be
expensive but possible in principle. (Quine, however, was long unwilling to
allow any changes in the ordinary logic.)

Taken literally, the argument would be extremely important for logic: No
truths would then be privileged logical truths, differing from others, and no
inferences would be special logical inferences. Quine’s criticism, however, has
not been universally accepted. Already in the 1950s it was pointed out that
our ordinary way of thinking is far from Quine (see Grice and Strawson 1956).
Moreover, it is by no means clear that the circularity that the “Two Dogmas”
discloses is in any way vicious. After the Chomskyan linguistics was created,
it also became clearer what could be meant by linguistic rules and necessities.
Even if it is admitted that it is often not clear which inferential connections
contribute to meanings it does not follow that there is no difference between
those that do and those that do not. The concepts “analytic” and “logical”
are nowadays rather freely used again, though with greater care than before,
but the battle is not over and it has become obvious that the whole idea of
conceptual relations is in need of fundamental inquiry. (See, e.g., Peacocke
1992; Jackson 1998.)

13.4. Names and Presuppositions
The remarks so far have all been about complete sentences or propositions.
Their components have received much less attention in philosophical semantics.
One problem, however, has been widely debated, that of the references of
individual names and name-like expressions. Frege and Russell found these
references by replacing the names with suitable descriptive phrases which were
sufficient for identifying the thing. Russell made this thought famous with
his “On Denoting.” (In fact it is questionable if they ever really thought that
names were synonymous with the descriptions, though Russell sometimes hints
at that.) Such a procedure was long taken for granted.

A new turn took place when Kripke argued that names must not be
understood descriptively. Instead, they are demonstrative, given in the first
place ostensively by some kind of baptizing that fixes the name on an object,
and then transmitted to other users of language (Kripke 1972). They have no
meaning: They only designate. It also follows that a name is a rigid designator
which designates the same object in all possible worlds. This opinion, often
called the “new theory of reference,” very soon became dominant. However,
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the original arguments to support it turned out to be inconclusive. It is not
clear that all names are rigid, and neither is it clear that this would imply a
theory of purely causally delivered reference. The alternative descriptive view
has not in any way been refuted if it is interpreted cleverly enough.

It is not possible here to dwell on any issues of modern linguistic semantics
though some of them have great philosophical relevance. For example, the
logical analysis of presupposition and implicature has given rise to plenty of
literature. In fact, the whole linguistic inquiry of implicature started from
H. P. Grice’s philosophical papers. Implicature, perhaps, is a matter of pure
pragmatics, but presupposition does concern genuine logical semantics: What
other sentences must be true so that a certain statement can have a truth value
at all? This question appeared in connection to Russell’s definite descriptions,
when Strawson argued that the use of an individual term does not assert the
existence of the individual but presupposes it. Hence, Russell’s favorite “The
King of France is bald,” would not be false, as the theory of definite descriptions
declares, but neither true nor false. This is by no means the only case of
presupposition: Many temporal expressions, factive verbs, counterfactuals,
and so on, show the same feature. Linguists have studied these phenomena
intensely since the 1970s. Logicians would be needed especially in telling how
the presuppositions of simple sentences are connected to the presuppositions
of complex sentences (see, e.g., van der Sandt 1988). However, precisely this
seems to be an extremely obscure issue.

To sum up, one gets the general impression that in the first half of the
twentieth century only few specialists were active with the philosophical
implications of logical semantics. After “analytic philosophy” strengthened
its position, and after the new basic results of logic became better known,
semantics grew into an established philosophical discipline. Quine’s provoking
work must have been highly important here. A classical source of this stage is
the influential treatise by Pap (1958). Next, the conception of semantics became
wider, and the word was often used almost as a synonym for philosophical
studies of language; according to one slogan, semantics was the meeting place
of philosophy, psychology, and linguistics. (See the widely read anthology
Steinberg and Jakobovits 1971.) From the 1980s on, the philosophical fashion
has again changed, and even philosophical discussion about semantic theory
has become more technical.
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The Philosophy of Alternative Logics
Andrew Aberdein and Stephen Read

1. What Are Alternative Logics?
Several logicians have in the last fifty years been trying to find
some simpler and better mode of ascertaining when arguments are
good, but they have not yet agreed upon the subject. Until they do
agree upon something better, we shall do well to learn the old rules,
which are certainly both ingenious and useful. (Jevons 1876, 56f.)

So wrote Stanley Jevons shortly before Gottlob Frege’s Begriffsschrift laid
the foundations for an agreement among the majority of logicians that was
to last well into the twentieth century. The focus of this agreement is the
truth-functional propositional calculus, sometimes augmented by first-order
quantifiers. This has become known as classical logic, or K.1 Although K
began as a purely mathematical formalism, it rapidly came to be applied to the
assessment of natural argumentation, eventually achieving a near hegemony
in this role. There have always been dissidents to disturb this appearance of
unanimity, but in recent decades they have become especially conspicuous.
Jevons’s appraisal of the state of traditional logic a century and a quarter ago
might as readily be applied to classical logic today.

Once the employment of an amended logic has been recognized as a le-
gitimate response to a philosophical or scientific problem, two strategies are
available. The choice is whether to introduce novel material specific to the
problem while leaving the existing logical system intact, that is, to produce a
conservative extension; or to amend what is already there, that is, to under-
take a revision. The two strategies are essentially distinct; our concern in this
chapter is with the latter.

613
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1.1. What Is a Logical Theory?

Before we can explain how logics change we must clarify what we mean
by “a logic.” Most logics can be presented in many different ways: natural
deduction presentations, sequent calculi, various axiom systems, and so forth.
We may distinguish three basic types of presentation: logistic systems, which
codify logical truths; consequence systems, which codify valid arguments;
and deductive systems, which codify proofs (Corcoran 1969, 154ff.).2 Our
concern is with substantive divergence among logical systems intended for
the formalization of rational argumentation. Although logistic systems may
be adequate for some purposes, such as codifying the truths of arithmetic,
they are too coarse-grained to capture all the differences with which we are
concerned.3 Conversely, deductive systems offer too fine-grained a classification:
Differences that occur only at this level are outside the scope of our inquiry.
Therefore our attention may be safely restricted to consequence systems.

However, the comparison of formal presentations of consequence systems is
not enough to explain how such systems of logic develop. We must go beyond
this, to provide a characterization of how they are deployed. The motivations
for logical endeavor are many and various, but one difference among them is
especially important here. On the one hand, research in logic can be pursued to
improve understanding of reasoning in natural language (or some technical or
scientific enrichment thereof): natural argumentation. On the other hand, logic
can be a purely formal enterprise, manipulating symbols in accordance with
explicit rules. We might characterize this as a distinction between “rough” and
“smooth” logic (Goldstein 1992, 96).4 We can readily identify clear examples
of each: Purely formal results and applications to mathematics or computer
science are obviously smooth; work on inductive logic or practical reason
obviously rough. However, there is a continuum of work between these two
extremes: Most interesting logical research has both smooth and rough aspects.
When applied to whole systems of logic, the distinction should pick out those
systems that could be advocated as improving our understanding of natural
argumentation. It is K’s claim to be successful as a rough logic that is disputed
by reformers; its success as a smooth logic is not in doubt, but then neither
is that of many systems which could never be mistaken for rough logics.5
No system of logic is maximally rough—the fit with natural argumentation
can, indeed should, never be perfect—and it is an open question whether
improvement on K is achievable.

We shall define a “logical theory” as the context in which a system of
rough logic is deployed. Logical theories model the arguments of natural
argumentation so as to explicate their rationality, in the same way that
theories of natural science model phenomena in the natural world. Of course,
to model the world a scientific theory needs not only a formal system but also
a schema for identifying the features of this system with features of the world.
Inevitably such translation schemata simplify and distort the world, hence
some defense must be available to justify the special importance of the features



The Philosophy of Alternative Logics 615

focused on. Similarly, logical theories must also offer a schema for parsing the
sentences of natural argumentation into propositions of the logical system.
Moreover, the distortions of this parsing theory will require some theoretical
defense, which the logical theory must also provide.

Thus a logical theory must contain more than just the underlying formal
system. Michael Resnik (1996, 491; 1985, 225) characterizes a logical theory as
“a quadruple consisting of a formal system, a semantics for it, the attendant
metatheory, and a translation method for formalizing informal arguments.”
Logical theories can diverge by the revision of any of these four components.
Changes to the first two elements are the principal subject matter of this
chapter. Developments in the metatheory of a logical system are tangential to
our concerns: Although congenial metatheoretic features, such as interpolation
or the subformula property, have been proposed as reasons for preferring
one system over another, such preference is generally too fine-grained to
be considered here. For example, metatheoretic concerns may motivate the
choice of one system of relevance logic over another, but not the choice of
relevance over classical logic. Choices of the latter kind typically turn on the
effectiveness with which competing logical theories meet a common purpose:
representing natural argumentation. (We shall see in section 2.1.3 that this sort
of comparison has been attempted where the purposes of the systems under
comparison are incompatible.) The fourth component, the parsing theory,
provides this representation.

That two logical theories may diverge by the revision of the parsing theory
raises a number of special problems. The parsing theory plays a similar role in
logic to that of observation theory in empirical science, and it inherits some
of the same difficulties. For a scientific theory to offer an explanation of an
observed phenomenon, the observation must be rendered in terms of the theory.
This process is accomplished by the observation theory. It can profoundly
affect the explanations or predictions offered by the scientific theory as a
whole, and is itself conditioned by that theory.6 For example, two biologists
observing the same slide, but in the grip of diverging observation theories,
may focus their attention on very different features, and thereby record very
different observations. Even if their theories were otherwise in agreement, this
difference of observation would lead them to differ sharply in their assessment
of the slide. Thus two ostensibly similar theories may differ in their predictions
solely on the basis of a difference at the observation level. Conversely, two
fundamentally different scientific theories may coincide in predictions if their
observation theories are constructed so that the differences are canceled out.

This confusion of scientific theory and observation theory may make the
rational reconstruction of such theories more fugitive, but it raises few concep-
tual difficulties. For logical theories the situation is more confused. Whereas
scientific observation theories are typically uncontroversial by comparison with
the associated scientific theories, parsing theories have been understood as
susceptible to more robust criticism. Hence advocacy of revision of the parsing
theory over revision of the rest of the theory appears more methodologically
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respectable than in the scientific case. Why should this impression obtain?
Formal systems of logic have historically been understood as much more norma-
tive than scientific theories. Thus, whereas an elegant and enduring scientific
theory that required an elaborate and poorly motivated observation theory
to cope with recalcitrant observations would be seen as standing in need of
reform, the complicated parsing theory necessary to prop up some theoretically
attractive logical system would be more readily tolerated. Reinforcing this
point is a tacit presumption that logic is irrevisable. Once it has been accepted
that logical systems can be revised, there is much less call for elaborate parsing
theories.

However, this does not answer the fear that, because the parsing theory
is unconstrained by the logical theory, it may always be stretched to accom-
modate the shortcomings of the formal system. In scientific development, it
is an important methodological goal that observation theories should be as
“transparent” as possible and that any substantive content within them should
ultimately be incorporated into the theory proper. In logic the notion of a
“transparent” parsing theory raises special difficulties, which might threaten
this goal. One scientific observation theory is more transparent than another
if less processing of the raw data is required. In logic the raw data are the ut-
terances that make up natural language argumentation. Hence for any specific
logical theory the most apparently transparent parsing theory is that which
maximizes the preservation of the surface form of such utterances. But there
is more to argumentation than surface form. However transparent the parsing
theory, there must be some scope for latitude in the parsing of an utterance,
because natural language, even in technical contexts, is inexact, elliptical,
allusive, and also more expressive than any formal system. Moreover, the
parsing theory is responsible not only for associating formal propositions with
informal inferences; it must also assemble them into patterns of argument.7

The key question is how constrained a latitude should be afforded to
the parsing theory. We have already seen that excessive latitude can license
the retention of ad hoc logical theories. But the opposite pole, a perfectly
transparent parsing theory capable of precisely capturing what is meant by any
locution, must be an unattainable ideal. In particular, it would be unacceptable
to Quineans, in so far as it depends on determinacy of translation, underpinned
by realism about meanings (Resnik 1985, 229n5). The Quinean response is
to understand formalization in terms of a cooperative feedback procedure,
whereby prospective parsings are offered to the informal arguer for his approval.
Eventually agreement will be achieved, or, if the arguer is sufficiently eccentric
in what he is prepared to accept as representing his words, he will simply forfeit
his inclusion in the discourse. Alternatively, we might observe that however
sophisticated a logical system may be, it is inevitably, indeed deliberately,
far less expressive than any natural language. Hence the parsing process is
necessarily procrustean, and the scope for the divergence of translation that
motivates Quine’s indeterminacy thesis is limited. Moderate transparency of
translation appears reasonable, at least as a regulative ideal.
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A broader characterization of the content of a logical theory is offered by
Paul Thagard. What he calls an “inferential system” is defined as “a matrix of
four elements: normative principles, descriptions of inferential practice, infer-
ential goals, background psychological and philosophical theories” (Thagard
1982, 37). The first two of these elements are present in Resnik’s analysis: The
syntax, semantics, and metatheory of a logical theory constitute its norma-
tive principles, and the parsing theory is a means by which descriptions of
inferential practice may be given in terms of those principles. The second two
elements introduce grounds for divergence between logics which we have not
yet addressed. The inferential goals prescribe what the inferential practice is
intended to achieve and what the valid inferences are expected to preserve. The
preservation of truth and avoidance of falsehood are the most familiar exam-
ples and common to most deductive logics. Some systems qualify these goals
further: for example, by requiring constraints of relevance on the preservation
of truth, as many of its protagonists describe it—though problematically so
(see Read 2003). Other systems differ more substantially: Paraconsistent logic
is concerned to avoid triviality rather than falsehood; intuitionistic logic is
motivated by the preservation of warrant, rather than truth simpliciter (to
characterize the distinction from the classicist’s point of view); for inductive
logics the preservation of truth is no longer the highest goal.8 Resnik (1985,
235) finds Thagard’s concern that logic should aim at “furthering human
inferential goals” unduly psychologistic. Although Thagard’s conception of
logic is psychologistic, and his presentation of this material may betray as
much, an understanding of the goals which a logical program is intended to
pursue is crucial to the assessment of the status of such a program. Resnik
is right to observe that the historical motivation for logical development has
been theoretical not practical, but disagreement about how theoretical goals
should be pursued is the key to some disputes between protagonists of different
formal systems.

Thagard’s second novelty is his contention that logical theories are con-
strained by psychological and philosophical theories. In respect of philosophical
theories this seems uncontroversial: For example, Michael Dummett’s advocacy
of intuitionistic logic is grounded in his adoption of an antirealist theory of
meaning (see 2.1.1). As we have already observed, Thagard also wishes to
defend psychologism about logic. Specifically he sees human cognitive limita-
tions as imposing constraints on logic. If, as he suggests, logics should contain
no principles that humans are cognitively incapable of satisfying, then their
development must be informed by psychological theories of human cognitive
capability. Such psychologism has been widely criticized; four brief points will
suffice here. If the purpose of logic were purely the description of inferential
practice, it would be under the same constraints as that practice. But logic
works by modeling intuitions whose normativity transcends actual practice.
Second, the principles that result never impose obligations to perform humanly
impossible tasks, despite Thagard’s concern; rather, they are hypothetical
imperatives, concerning what should be done to ensure the validity of infer-
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ences, should these inferences be carried out (see Resnik 1985, 236.) Third,
we would then need to build in finitistic constraints on length of wff, length
of proof, size of countermodel, and so on. Finally, and decisively, Thagard’s
psychologism is itself a background philosophical theory, hence this whole issue
can be subsumed under the requirement that philosophical theories are relevant
to the assessment of logical theories. In general, because our concern is with
the methodology of logical development, rather than its ontology, we should
aim for as much neutrality as possible with respect to competing accounts of
the nature of logic, such as Thagard’s psychologism. However, where justified,
such accounts can be included among the background theories.

To take stock, a logical theory is the means by which a formal system
may be promoted. It comprises the system itself, appropriate semantics and
metatheory, a parsing theory, and an inferential goal. Taken together, we may
call these components the “foreground” of the theory, since we would expect
the logical theory also to contain background theories providing philosophical
motivation.

1.2. Revolutions in Logic
In distinguishing between revisionary and nonrevisionary changes to logic, our
underlying concern is an instance of a much more general problem. We are
attempting to articulate a difference between talking about old things in a
new way and talking about new things (whether in an old or a new way).
That is to say, between advancing a new theory which is intended to cover
the same ground as its predecessor, and seeking to analyze a new item, either
by adaptation of the existing theory or by the introduction of a replacement
theory. The first move is necessarily revisionary, the second is not. Before
proceeding further it would be useful to have a clearer account of this difference
between revisionary and nonrevisionary theory change.

Attempts at such an account have been made in some of the literature dis-
cussing the nature of scientific “revolutions.” The earliest accounts of revolutions
in science presumed that such change always marked a radical discontinuity, in
which key concepts of the old theory were abandoned. Subsequent commenta-
tors (for instance, Crowe 1967, 123f.; Gillies 1992, 5) have argued that although
revolutions of this character do occur, there can also be revolutionary change
in which all the concepts are retained, albeit with a transformed character.
This distinction is a familiar one in political history, where the revolutionary
metaphor originates. We may distinguish between the Russian Revolution
of 1917, in which the whole constitution was abandoned and replaced by
something radically different, with different constituent parts, and the Glo-
rious Revolution of 1688 in Britain, in which all the principal constitutional
constituents, the Crown, Parliament, and so forth, were retained, although
their character and relative significance changed dramatically.

Hence we may distinguish four relevant situations. A glorious revolution
occurs when the key components of a theory are preserved, despite changes in



The Philosophy of Alternative Logics 619

their character and relative significance. (We will refer to such preservation,
constitutive of a glorious revolution, as glory.) An inglorious revolution occurs
when some key component(s) are lost, and perhaps other novel material is
introduced by way of replacement.9 A paraglorious revolution occurs when
all the key components are preserved, as in a glorious revolution, but new
key components are also added. The recent addition of a parliament to the
constitution of Scotland is a political example of a paraglorious revolution.
Finally, a theory is in stasis (a null revolution, as it were) when none of
its key components change at all. Static theories may nonetheless undergo
quite substantial change, notably in conservative expansion by new nonkey
components. Hence stasis has something of the character of Kuhn’s “normal
science,” and by distinguishing it from revolutionary change we might be
thought to be reopening the dispute over the distinction between normal
and revolutionary science.10 However, there is little more than rhetorical
weight in our use of the term “revolution” to describe these conceptual shifts,
and we assume with the later Kuhn that their structure is similar at the
microscopic and macroscopic levels (Kuhn 1977, 462). Provided that changes
of radically different scales are not directly compared, the classification should
be independent of this debate.

However, the classification of revolutions raises several further issues. First,
we have not yet made clear how “key” and “preserved” are to be under-
stood. Theories in empirical science are open to markedly divergent rational
reconstructions, thereby generating controversy as to which components are
genuinely “key.” In logic this sort of dispute is much narrower and more readily
resolved. Although there are many different systems of presentation for logic,
there is comparatively little disagreement about which concepts these systems
should respect. For present purposes, the key components of a logical system
are its logical constants and its consequence relation. However, the definition
of “preservation” is still troublesome. Various different accounts have been
proposed for the empirical sciences (e.g., Fine 1967). The want of a suitable
account for logical concepts lies behind the recurring debates over whether a
new logic is “still” logic, to which we shall return in section 2.

Second, we should note that glory need not be transitive: A sequence
of glorious revolutions may amount to an inglorious revolution. This could
happen if the relative significance of the key components changes sufficiently
for some components to cease to be key, or if preservation is itself nontransitive.
However, this is less likely in the logical than the empirical case, since the
range of possible key components is more narrowly constrained. Of course,
inglorious revolutions can cancel each other out, so that characterization is
straightforwardly nontransitive.11

Third, how is this classification related to the distinction between replace-
ment of a theory by a successor and replacement by a competitor? There is a
conceptual difference between this distinction and our classification of revolu-
tions, since it is historical rather than methodological in character. Moreover,
the difference between successors and competitors is imprecise; indeed, if the



620 The Development of Modern Logic

terms are understood with sufficient latitude, any successor may be seen as a
competitor, since its advocacy is in competition to die-hard defense of the old
theory, and vice versa, since a successful competitor succeeds the old theory.12

However, it has been claimed that we can identify glorious and paraglorious
revolutions with successors and inglorious revolutions with competitors (Crowe
1992, 310).13

Fourth, we need to know how this classification of revolutions is related
to the contrast between conservative and nonconservative revision of the
formal system. The adoption of a logic that is a conservative expansion of
the antecedent system (an extended logic) can only represent a revolution
if the new material is of key significance. Hence, if the new constants of an
extended logic formalize hitherto extralogical (and thereby nonkey) material,
its adoption will be nonrevolutionary; but if they formalize material hitherto
formalized by the existing constants, the new system will be paragloriously
revolutionary. Note that the question of what a constant formalizes, and thereby
the precise delimitation of paraglorious from static extensions is settled by
the parsing theory, not by the formal system alone. For example, the modal
system S4 would be expected to be a static extension of K and the relevance
system R¬ a paraglorious extension of K, because the new vocabulary of S4
usually formalizes the hitherto ignored issue of modality, whereas the new
intensional constants of R¬ usually formalize much material hitherto addressed
by the existing constants.14 Yet sufficiently nonstandard parsing theories could
overturn these preconceptions.

The consequence relation is always at least apparently preserved because
all logical systems have a conception of consequence. Yet the characterization
of consequence could undergo inglorious revolution. It might seem that in
contrast to the constants, any change of consequence relation must be glorious,
since the new relation will still be a consequence relation. However, that is
to forget how weak a descriptor “consequence relation” is; what makes a
relation a consequence relation is just its function within a logic. Hence it
works like “head of state” rather than “king” or “president”; we would not
call the replacement of a monarchy with a republic glorious just because both
systems included a head of state.

Most commentators have argued that inglorious revolutions are impossible
in mathematics.15 Because logic and mathematics are prima facie similar
endeavors there would appear to be a tension here, but it can be resolved.
The ground for denying that inglorious revolutions occur in mathematics is
that the discipline is cumulative in a way that empirical science is not: Both
disciplines discard old material, but mathematicians never really throw it away.
Quaternions or conic sections may be of no greater interest to the modern
mathematician than phlogiston or caloric are to the modern physicist, but
their legitimacy is not disputed. However, the mistake here is to focus on
the whole discipline: Within the context of individual research programs all
of this material has been just as decisively rejected. With rough logic this
is much clearer: Our concern is with a specific range of research programs
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concerned with the formalization of natural argumentation, which are situated
within a vast hinterland of smooth logic results.16 Much of the material in the
hinterland has been discarded from such programs as insufficiently rough; it
still has a place as smooth logic, but has lost its prime application. In this
fashion inglorious revolutions are possible within a cumulative discipline.17

Finally, there are epistemological difficulties in establishing the character of
a revolution, since the preservation of terminology is, in itself, clearly neither
necessary nor sufficient for the preservation of the underlying concepts: All
may not be as it seems (see Gray 1992, 227). Hence there are 16, rather than
4, possible situations:

S G P I
S SS GS PS IS
G SG GG PG IG
P SP GP PP IP
I SI GI PI II

(In this table S, G, P, and I refer to the original four situations; the horizontal
axis indicates reality and the vertical axis appearance. Hence the ordered pairs
are really as indicated by the first letter, but appear to be as indicated by the
second. Reality and appearance coincide on the diagonal, hence these situations
are how the original four situations were initially understood.) Much of the
problem here is that where there is genuine confusion or disagreement about
the status of a revolution, we tend to use the same term before and after the
revolution, either to describe something that endures through the revolution,
or to (mis)describe two distinct but similar things. Hence the dispute becomes
one of how (and whether) the meaning of that term has changed.

1.3. A Methodology of Logical Research Programs
With a characterization of the content of logical theories in place, we now
turn to their dynamics, which we will approach by an appeal to the parallel
treatment of theory change in the philosophy of science. Imre Lakatos’s “On
the Methodology of Scientific Research Programmes,” or msrp, is an attractive
candidate for the treatment of theory change in logic because much of it is
particularly applicable to formal contexts. Lakatos inherited from Popper an
account of objectivity in terms of the process of discovery, rather than the
objects discovered; something of considerable utility in the formal (and social)
sciences, in which the former is much more readily accessible than the latter.18

Instead of taking individual theories in isolation, msrp appraises series of
theories, distinguishing between progressive and degenerating series. A series
of theories, or research program, is said to be theoretically progressive if each
theory has greater empirical content than its predecessor—that is, if it makes
novel predictions (Lakatos 1970, 33). It is said to be empirically progressive if
some of the excess content is corroborated—if some of the predictions come
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true (ibid., 34). Research programs are progressive if both theoretically and
empirically progressive, and degenerating otherwise (ibid.).

What is the logical analog of “corroborated excess empirical content,” the
hallmark of a progressive shift of theory within a research program? The force of
“empirical” here is to exclude both nonfalsifiable, “metaphysical” propositions
and paraphrases, and strict corollaries of existing content, focusing instead
on the production of new facts (ibid., 35). In his application of msrp to
mathematics, Hallett here employs a remark of Hilbert’s, that “the final test
of every new mathematical theory is its success in answering pre-existent
questions that the theory was not designed to answer,” to make non–ad hoc
problem solving the hallmark of progress (Hallett 1979, 6; Hilbert 1926, 200).
If anything, it is easier to describe a logical analog for empirical content than
a mathematical one, since, unlike mathematics, (rough) logic always has an
application. Hence the empirical content of a logical theory is its formalization
of inference patterns in natural argumentation (where the intuitive validity
of these is sufficiently well entrenched to resist being overturned in favor of
a simpler calculus). When a new theory offers a plausible formalization of
patterns of inference hitherto ignored, or judged ill-formed, or unconvincingly
paraphrased, it exhibits excess empirical content.

A research program endures through the sequence of theories of which it is
composed as a continuous programmatic component. This consists of two sets
of methodological rules: the negative heuristic, which counsels against certain
lines of inquiry, and the positive heuristic, which advocates others (Lakatos
1970, 48 ff.). The chief task of the negative heuristic is to defend the hard core
of the program, that is, those propositions fundamental to its character (ibid.,
48). The hard core contains the key features of a theory which must be retained
in any revision if the successor theory is to belong to the same program. Hence
a revolutionary change of theory will be glorious iff the hard core is unchanged,
paraglorious iff the hard core is monotonically (and conservatively) increased,
and inglorious iff the hard core is contracted or revised. The negative heuristic
protects the hard core by ensuring that inferences from contrary evidence are
directed not at the hard core but at a protective belt of auxiliary hypotheses:
initial conditions, observational assumptions, and the like (ibid.). The research
program is deemed successful if these moves can be achieved progressively;
unsuccessful if they involve degeneration. This assessment of success works to
rationalize the conventionalist strategy of preserving some propositions from
criticism. We are justified in doing so if the program thereby exhibits progress,
but if we can only do so at the expense of degeneration we may be obliged to
revise or abandon our hard core.

The other characteristic feature of a research program is its positive heuris-
tic. This consists in aspirational metaphysical generalizations which inform
amendments to the negotiable elements of the program, that is, the protective
belt (ibid., 51). A research program without a positive heuristic would warrant
the methodological anarchy recommended by the later Feyerabend (1975).19

This “anything goes” strategy would ensure that, at least conceptually, no
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stone went unturned, but for practical ends we might hope for a means to
target our resources more effectively. One particular strength of the positive
heuristic is that it permits practitioners to postpone consideration of apparent
refutations of a progressive program. Providing that progress is being made,
the positive heuristic will make a more pressing call on researchers’ time than
any anomalies. Thus anomalies only command attention when the program
is in infancy or degeneration. A good illustration of this is provided by the
considerable success of the classical logic research program in the first half of
the twentieth century, which was not significantly impeded by known anoma-
lies such as the paradoxes of self-reference and of material implication (Priest
1989a, 134f.).

An issue that is especially pertinent to the rational reconstruction of the
development of logic is what one might call the nesting of one research program
within another. For logic not only develops within its own research programs, it
is also assumed in the development of many other programs in other disciplines.
We require a more detailed account of scientific development, distinguishing
between the different scopes, or depths of focus, that a research program may
have.20 A research group working on the synthesis of alkaloid compounds may
take a prevailing theory of organic chemistry for granted, thereby including it
in the hard core of their program: They would not be interested in methods
that presume a general revision of organic chemistry. However, they would
also subscribe—albeit more loosely—to some general research program of the
whole discipline of organic chemistry. If there are theoretical organic chemists
within that program who entertain the prospect of more wholesale revision,
the hard core of the program will be much smaller.

Two features of this picture are immediately striking. First, the hard core of
the general program will be a proper subset of the hard core of the specialized
program. Second, different attitudes may be taken toward the content of a
program’s hard core. On the official attitude it contains only material of which
the program’s adherents are completely certain. This should tend to limit the
size of the hard core and permit wide-ranging speculation as to the direction
of future research. For practical purposes, so that a program may be kept
within manageable bounds, it is convenient to augment the hard core of a
research program by additional, conventional assumptions. This strategy is
permissible within the more specialized programs of subdisciplines and specific
projects, but methodologically vicious if adopted with respect to the discipline
as a whole, since it would rule out potentially progressive revision. Within
specialized programs individual researchers may harmlessly differ over which
aspects of the hard core are conventional.

We may conceive of a whole array of depths of research program partially
ordered by set-theoretic inclusion on the contents of their hard cores.21 The
theoretical end points of this array would be an empty hard core and a complete
hard core. The latter would represent an irrevisable finished science. As an
official view, this would have attained a state presumably unattainable by mere
mortals;22 as a conventional view, it would represent the cessation of scientific
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curiosity. On a realist account of science this end point (as an official view) must
be unique. A research program with an empty hard core would represent the
conceptual starting point for science suggested by Cartesian skepticism. More
practical research programs are situated between these extremes. Programmes
with very small hard cores containing only the most general principles would
resemble Foucauldian epistemes (Foucault 1966, xxii, discussed in Gutting
1989, 140ff.). As he suggests, such programs would have a very wide disciplinary
range, and would permit extensive revision within the more specific programs
developed under their aegis. The content of the hard core of an episteme would
be contained within the hard core of all contemporaneous research programs,
making it hard to characterize and especially hard to revise. Close to the
other extreme are research programs concerned with fine-tuning a theory or
developing a specific application. Here most of the content of the theory would
be contained in the hard core, although much of this would be assumed by
convention.

The array imposes a partial ordering, rather than a total ordering, on
research programs, thereby accommodating incompatible programs at the
same stage of development. For any given program in the array we can identify
a cone of programs with hard cores that properly include the hard core
of the initial program. Where the initial program has the right degree of
generality, we shall call this cone a research tradition.23 We may now further
refine the account of revolutions: Glorious revolutions conserve both program
and tradition; paraglorious revolutions initiate successive programs within
a tradition; and inglorious revolutions either initiate a competing program
within the same tradition if the hard core of the initial program is conserved,
or initiate a competing tradition otherwise.

The overall development of logic is too broad to be assimilated into a
single coherent tradition. For example, any starting point from which we
could develop both Brouwerian intuitionism, in which certain principles of
mathematical intuition are conceptually prior to logic, and classical logicism,
in which classical logic is conceptually prior to all of mathematics, would have
a hard core little larger than that of the prevailing episteme. Although it is
important to acknowledge the assumptions that the two programs share, there
is insufficient community of content for the cone of programs containing them
both to be a research tradition.

Within a given logical research tradition we shall be concerned with research
programs at several different depths, which may be outlined as follows. First,
there is the initial program, which characterizes the whole tradition, since its
hard core is contained within that of all programs within the tradition. We
would expect the hard core of this program to contain an incomplete articula-
tion of each of the four components of a logical theory. Thus it would contain:

1. some components of the formal system: certain very general details of
the composition of logical systems, “basic principles of reason,” if there
are assumed to be any, and perhaps ultimate analyses of the constants;
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2. some constraints on the methodology of the parsing theory, such as
a characterization of transparency, although the natural place for the
theory proper will always be the protective belt;

3. a reasonably precise, but refinable, inferential goal; and
4. some general background theories: very general methodological principles

and deep-seated philosophical theses.

At this stage, the content of the protective belt may still be fairly confused.
If the program is progressive, successive revisions will yield a more completely
articulated logical theory. Much of this theory may then be placed in the hard
core by convention, to facilitate fine-tuning the theory. When this has been
attained, the whole logical theory will have earned at least a conventional
place within the hard core of successor programs applying the logic to more
specific disciplines. Where a system can be characterized as an extension of
a more primitive system, this development will be more piecemeal. Hence,
within the classical research program, the propositional and first-order systems
are regarded as having attained an optimal fit with natural argumentation,
and are placed in the hard core while work continues on issues that are still
contentious, such as higher order quantifiers or modal extensions.

We can now diagnose the thesis that logic is irrevisable as a confusion
between research programs of different depths within the same tradition. From
the perspective of a more developed program, a specific system may be taken
as irrevisable, but that program exists within a tradition in which logic may
be revised, hence it will always be conceptually possible to revise the system
by adopting an ingloriously revolutionary program within the tradition. We
can now see that the research programs of a logical conservative and a logical
reformer differ not so much in the content of their logical theories as in the
partition of this content into hard core and protective belt. The conservative
insists on placing the whole formal system within the hard core, and redirecting
any apparently conflicting evidence at aspects of the parsing and background
theories within the protective belt. As a conventional expedient this could
be advantageous, but the conservative regards this as an official view. Thus
the supposed irrevisability of logic is relativized to the research program of
the logical conservative. Within that program, logic is immune to revision,
but the program is not unique, and not guaranteed to succeed. In this sense,
both Kant and Frege were justified in regarding logic as nonrevisable, despite
having different logics.24

An example of the competition between reformers and conservatives can be
found in the variety of responses to the problem of the unwelcome existential
commitments of nondenoting singular terms. Russell’s (1905) “misleading
form” strategy and Smiley’s (1960, 125ff.) advocacy of a nonbivalent logic
are the respective products of logically conservative and reforming research
programs. The “misleading form” strategy will be a progressive use of the
negative heuristic in the conservative program, but a potentially degenerating
use of the negative heuristic in the reform program. Conversely, a move from
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classical to nonbivalent logic would be outlawed by the negative heuristic of the
conservative program, but advocated by that of some reform programs. Since
both programs are progressing, we are not yet motivated to abandon either.

The move to an extended logic need not induce a change of research program:
Since extended logics do not conflict with the rules of the logic from which they
are derived, the syntactic component of the hard core of the research program
of that logic may be preserved. Hence, an extension may be an admissible
change of theory within a research program. Of course, this is not to say that
such a move will always be welcome: The positive heuristic may point elsewhere
or the extension may lead to a conflict with hard-core aspects of other areas,
such as proof theory or semantics, or inferential goals or background theories.
An example of the latter sort of objection is Quine’s (1953) opposition to
quantified modal logic, which is an extension of propositional modal logic, a
system he accepts.25 Quine’s complaint is that if modality is understood de
dicto, then extension by quantifiers is not conservative of the semantics; we
could resolve this by a de re understanding of modality, but that would conflict
with Quine’s preferred background theory.

If the hard cores of logical research programs contained all the rules of infer-
ence of their formal systems, the adoption of a nonconservatively revisionary
system would always require a change of program. However, at the stage of
a research tradition at which logical reform is entertained, we have argued
that the hard core should contain only a partial characterization of the system.
Hence nonconservative revisions do not always initiate a new program.

An important requirement for this model of scientific change is an account
of when research programs and traditions should be abandoned. In essence,
the story is the same as that for change of theory within a research program: a
program should only be replaced by a rival with greater heuristic or explanatory
power, that is, if the rival can explain everything that the original program
does, as well as some novelties. However, novelties may be obvious as such only
in retrospect, particularly when they turn on the reinterpretation of elements
of the original program or tradition. Moreover, a later theory within a defeated
program or tradition may be able to make a comeback; only if no such reply
is forthcoming should a program or tradition be abandoned. An eventually
superior rival may be slow to draw level with and overtake a well-established
program or tradition. The positive heuristic of a program need not have been
exhausted for the program to be superseded by a more successful rival, although
the explanatory potential of a moribund theory should not be overlooked. In
practice, this is unlikely to be a problem as the development of a progressive
program or tradition is likely to hasten the degeneration of its rivals, since
its novel facts will represent anomalies for the rivals. Furthermore, it can be
productive to work simultaneously on rival programs within a tradition, or
even on rival traditions (Lakatos 1971, 112n3).

This account of theory change is slow, but sure. As in historical science,
there are no decisive “crucial experiments,” no “instant rationality,” but
the methodology does provide for the progressive sidelining and eventual
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elimination of unproductive research programs and traditions (Lakatos 1970,
86f.). Indeed it is crucial that this should happen, lest we fall into a skeptical
relativism. Thus we are now in a position to answer a concern raised by a
conventionalist account: In logic a research program or tradition may be able
to defend itself against refutation indefinitely by repeated employment of a
strong negative heuristic. However good its negative heuristic, a program or
tradition cannot survive indefinitely in the face of a more explanatory rival.
Yet where the negative heuristic is especially strong, as in logic, the transition
may be very slow. This tardiness motivates a methodological commitment
to scientific pluralism; science cannot advance without competition between
programs. It is particularly important that no theory is permitted to achieve
a position of hegemony that permits it to dispatch potential rivals before
they have developed sufficiently to pose a threat. Some commentators, for
example, Priest (1989a, 138ff.), have been keen to diagnose this condition in
contemporary classical logic.

1.4. Classical Recapture
The recapture relationship is an important element to any understanding of
the connection between different systems of logic.26 Loosely speaking, one
system of logic recaptures another if it is possible to specify a subsystem of
the former system which exhibits the same patterns of inference as the latter
system.27 In particular if a relationship of this kind can be shown to exist
between a nonclassical logic and K, the nonclassical system is said to exhibit
classical recapture. This has been invoked by several proponents of nonclassical
logics to argue that their system retains K as a limit case, and is therefore a
methodologically progressive successor to K. In this section we advance and
defend a new and more precise account of recapture and the character of its
reception by the proponents of the recapturing system. We then indicate some
of the applications of classical recapture that this account makes possible.

Our account of recapture builds on an account of the equivalence of conse-
quence systems developed in Aberdein (2000). When L1 and L2 are equivalent,
we write L1 ∼= L2. The account of equivalence utilized a schematized rep-
resentation of such systems, Li, as couples, 〈Wi, Vi〉, where Wi is the class
of well-formed formulae of the language underpinning logic Li and Vi is the
class of valid inferences of Li (a subclass of the class of sequents28 defined on
Wi). Equivalence consists in a one-to-one correspondence between equivalence
classes of the wffs of the systems that preserves the partitions of the classes of
inferences into valid and invalid subclasses.

Definition 1 L1 is a proper reduct of L2 iff L1 and L2 are inequivalent, W1
is defined on a proper subset of the class of constants of L2 and V1 contains
precisely those elements of V2 which contain only elements of W1.

Hence, reduction is the inverse of conservative extension. Formally, we may
say L1 extends L2 iff L1 and L2 are inequivalent and L1 is equivalent to a
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logic that has a proper reduct that is equivalent to L2. However, reducts are
not the only sort of contractions that may be defined on formal systems; the
definition may be generalized as follows.

Definition 2 L1 is a proper subsystem of L2 iff L1 and L2 are inequivalent,
W1 is a proper subset of W2 and V1 contains precisely those elements of V2
which contain only elements of W1.

The metaphors of strength, size, and inclusion which so often illustrate the
mereology of logical systems suffer from an ambiguity: There is a tension
between a deductive characterization, a measure of how much may be deduced
from how little, and an expressive characterization, a measure of the subtlety
of the distinctions that can be preserved.29 An increase in one may represent a
decrease in the other. Hence, “subsystem of L” has often been used to designate
a system axiomatized by a subset of the axioms of L, or with a deducibility
relation which is a subrelation of that of L. The definition of subsystem adopted
above reverses this usage, making explicit the generalization of the definition
of reduct, but rendering these latter “subsystems” supersystems, the inverse
of subsystems. In short, reducts are exclusively generated by reducing the set
of constants on which the class of wffs is based, but subsystems may also be
generated by reducing the class of wffs in some other way. For example, K
is a subsystem of intuitionistic logic, J. Only some of the formulae of J are
decidable: those for which the law of the excluded middle (lem) is valid (and
double-negation elimination [dne] is admissible). Restricting J to precisely
these formulae, as could be achieved in the appropriate presentations by adding
lem to the axioms of J, or dne to the definition of its deducibility relation,
produces a subsystem, K. But this subsystem has either an extra axiom or an
extra rule of inference.

This apparatus provides the means for a formal account of recapture.

Definition 3 L1 recaptures L2 iff there is a proper subsystem of L1, L∗1, which
is defined in terms of a constraint on W1 finitely expressible in L1, and which
is equivalent to L2. If L2 is K, then L1 is a classical recapture logic.

That is to say, if one system recaptures another, we may express within it some
finite constraint by which a subsystem equivalent to the recaptured system
may be generated. For example, we can see that J is a classical recapture
logic, with the constraint of decidability. The relevance system R has also
been claimed to recapture K, with the constraints of negation consistency
and primality (see Mortensen 1983). Quantum logic also recaptures K, with
the constraint of compatibility. Indeed, many nonclassical logics are classical
recapture logics: exactly which will turn on which constraints are deemed
expressible. It has even been suggested that the recapture of K is a necessary
criterion of logicality, in which case all logics would be classical recapture
logics.30

Different nonclassical logicians have different attitudes to classical recapture.
Some attempt to reject it outright or deny its significance, others embrace it,
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Radical left “My system does not recapture L.”
Center left “My system does recapture L, but this is merely a

technical curiosity.”
Center right “My system recaptures L, which shows that L is

retained as a limit case.”
Reactionary right “My system recaptures L—and extends it, too.”

Figure 14.1

while others see recapture results as motivating the reduction of the recapturing
system to a conservative extension. Thus, before recapture can contribute to
the understanding of how logical systems change, we must distinguish among
the variety of responses that advocates of a system may make to the prospect of
recapturing a prior system (typically K). We order these responses by analogy
with a spectrum of political attitudes: radical left, center left, center right,
and reactionary right. This is a formal not a sociological analogy: We do not
intend to imply that views on logic may be correlated to political allegiance
(pace some sociologists of scientific knowledge). The spectrum of attitudes to
the recapture of the prior system L may be summarized in fig. 14.1.

The most extreme attitude is the radical left: formal repudiation of recapture
status. Individuals of this tendency deny that their system recaptures the
prior system, claiming that no suitable recapture constraint is expressible
in the new system. If classical recapture were a criterion of logicality, then
a radical-left response could only be embraced by quitting the discipline
of logic. Yet such a criterion must be open to doubt, since some familiar
programs include proponents from the radical left. For example, Nuel Belnap
and Michael Dunn’s argument that relevance logic does not recapture K places
their relevantist in this camp (Anderson, Belnap, and Dunn 1992, §80.4.5,
505).31 The subordination of logic to mathematics by some intuitionists may
also be understood as preventing classical recapture.

The less radical center left acknowledge the formal satisfaction of recapture,
but deny its significance. Proponents of this stance argue that the formal equiv-
alence between a subsystem of their system and another system is irrelevant,
since the other system cannot be understood as formalizing anything intelligible
in terms of their theory. Hence some advocates of J regard the double-negation
translation of K into their system as no more than a curiosity, since they reject
the cogency of classical concepts.32 Whereas the radical left presume a logical
incompatibility between the recapture result and indispensable formal compo-
nents of the research program, the center left claim an heuristic incompatibility
with indispensable nonformal components of the research program. To defend
a position on the center left, one must demonstrate that conceding more than
a technical significance to recapture will induce an intolerable tension between
successful problem solving within the program and the retention of its key
nonformal components, such as the central aspects of its parsing theory. Thus,
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although a recapture constraint can be articulated, it does not correspond to
any plausible feature of natural argumentation.

On the center right, recapture is embraced as evidence of the status of
the new system as a methodologically progressive successor. The meaning
invariance of all key terms is welcomed in this context, and recapture is
understood as establishing the old system as a limit case of its successor. The
center right hold with Einstein that “there could be no fairer destiny for any
. . . theory than that it should point the way to a more comprehensive theory
in which it lives on, as a limiting case” (1916, 77). By contrast, left-wing
recapture involves a far more comprehensive rejection of the old system, by
which its intelligibility is denied, and it is ultimately to be dismissed as an
incoherent wrong turning. This is much more plausible behavior in a competitor
than a successor theory, and suggests left-wing recapture as a criterion for
this tricky distinction. This is corroborated by the enthusiasm shown for
classical recapture among systems typically promoted as succeeding K, and the
opposition shown by its self-proclaimed competitors. Most nonclassical logics
have been defended as successors to K by at least some of their advocates.
For example, Hilary Putnam’s quondam advocacy of quantum logic was
of this character, as is Graham Priest’s support for paraconsistent logic:
Both logicians find classical recapture significant and take care to establish
it for their systems (Putnam 1969, 184; Priest 1987, 146ff.). Conversely, the
most credible left-wing stance is from proponents of J, and this system has
the greatest claim to be a true competitor to K, rather than a would-be
successor.

Least radical of all are the reactionary right, who argue that the subsystem
of the new system equivalent to the old system is actually a proper reduct
of the new system, that is, that the new system should be understood as
extending the old system. Hence the status quo is maintained: The old system
is still generally sound, but can be extended to cover special cases. In this case
there is no rivalry between the systems (see Haack 1974, 2), because there
is no disagreement within the common ground they share. Many ostensibly
nonclassical programs have at some stage been promoted as conservative
extensions of K: for example, Maria Luisa Dalla Chiara’s (1986, 447) modal
quantum logic Bo or Robert Meyer’s (1986) classical relevance system R¬.
Modal logic may be understood as having successfully completed a move from
the center right to the reactionary right: Although it is now understood as
extending K, its early protagonists conceived it as a prospective successor
system.33

Note that if L1 extends L2, then L1 recaptures L2 and in fact this is the
only way in which L1 can recapture L2, if L1 extends L2. For, if L1 is an
extension of L2 then L2 ∼= L3, where L3 is a proper reduct of L1. But because
L1 recaptures L2, L2 ∼= L∗1, where L∗1 is a subsystem of L1. So by transitivity
of equivalence, since L∗1 ∼= L2 ∼= L3, L∗1 ∼= L3: The subsystem by which
L1 recaptures L2 is equivalent to a proper reduct of L1. For example, the
subsystem of S4� equivalent to K, which establishes that S4� is a classical
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recapture logic is itself equivalent to the proper reduct of S4� defined over that
system’s nonmodal constants. Thus, if the reactionary stance is technically
feasible, it is the only plausible response to recapture. This represents a dualism
with the radical stance, which is also mandated by properties of the chosen
formal system.

Different logical research programs encompass different “political” com-
plexions: Some are clearly associated with one stance, whether for technical or
historical reasons, in others there is dispute as to which approach is appropriate.
Two further points may serve to reinforce the political analogy: Programs
appear to drift to the right as they grow older, and there is a strong community
of interest between the two ends of the spectrum. The reactionary agrees with
the left-wingers that the constants of the new system have different meanings
from those of the old. The difference is that the left wing think that the new
meanings must replace the old, whereas reactionaries believe that they can be
assimilated into an augmented system through employment alongside the old
meanings. The greater the difference between the new and the old constants,
the more difficult it is to maintain a centrist position.

The full range of options may be seen more clearly as a flow chart, shown
in fig. 14.2. This chart has been devised to display the consequences of a
change of theory in which a specific formal system (L2) replaces another (L1).
However, it should be stressed that in the practical development of logical
research programs, a dialectic exists between the choice of formal system and
the attitude taken to the recapture of the prior system. Hence, providing that
enough of the formal system remains within the revisable part of a logical
research program, there are always two alternatives: Embrace the consequences
of the formal system, or change the system to resist them.
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With this picture in place, we can begin to outline some of the uses to
which it may be put. In the first place, we now have the resources to draw
some fundamental distinctions between different sorts of theory change. An
important feature of the flow chart is that its first three questions can be
answered purely by comparison of the formal systems L1 and L2, but the
fourth question—“Can L1 be given a meaningful interpretation in the theory
of L2?”—requires an appeal to the theories by which the systems are advanced,
and perhaps the research program behind that. Hence, while certain outcomes
are necessitated by formal features, other outcomes are underdetermined by
such data alone. Solely on formal data we can observe that rivalry must occur
unless one system conservatively extends the other, and that competition must
occur unless one system recaptures the other. However, broader consideration
is required if more than these weak sufficiency conditions for the rival/non-
rival and competitor/successor distinctions are sought. Indeed, logical theories
can be rivals even when the embedded systems are related by conservative
extension, or even equivalence: For example, R¬ conservatively extends K,
but its promotion would presume a radically nonclassical parsing theory, and
many systems of logic have more than one alternative semantics, promoted by
rival theories.34 Yet presuming that the remainder of the theory changes no
more than necessary, a clear taxonomy of the consequences of different species
of logical revision may be seen to emerge.

1.5. Heuristic Contexts
In 1.3 we saw how helpful msrp could be in reconstructing the history of
alternative logic. However, Lakatos’s greatest contribution to the philosophical
analysis of logical methodology is to be found in his Proofs and Refutations.
Much of this work is spent in an attempt to articulate what he would come to
call positive and negative heuristics for research programs in mathematics, a
goal in which he was strongly influenced by the work of George Pólya.35 At
the center of Lakatos’s idealized heuristics is a useful account of the variety of
responses to anomaly and their significance for theoretical development, which
may be applied to both formal and empirical subjects. He distinguishes four
strategies of response: “monster-barring,” “monster-adjusting,” “exception-
barring,” and “monster-exploiting” (Lakatos 1976, 14 ff.).36 Monster-barring is
the strategy of excluding anomalous cases from consideration by constructing
ever tighter definitions of the subject matter. “Using this method one can
eliminate any counterexample to the original conjecture by a sometimes deft
but always ad hoc redefinition of the [subject matter], of its defining terms,
or of the defining terms of its defining terms” (ibid., 23). Exception-barring
“plays for safety” by restricting the domain of the theory so that the anomalous
area is no longer treated. Exception-barring coincides with “monster-barring
in so far as [the latter] serves for finding the domain of validity of the original
conjecture; [but] reject[s] it in so far as it functions as a linguistic trick
for rescuing ‘nice’ theorems by restrictive concepts” (ibid., 26). In its most
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primitive form this amounts to seeking to acknowledge the anomalies without
altering the theory (ibid., 36). Monster-adjustment redefines the purported
counterexample into terms that no longer conflict with the theory. Finally,
monster-exploiting is the employment of anomalies as motivation for theoretical
innovation and development. Primitive exception-barring, monster-barring, and
monster-adjustment are strategies from the negative heuristic: They represent
increasingly sophisticated methods for resisting the pressure for change exerted
by an anomaly. Exception-barring and monster-exploiting are positive heuristic
strategies: They utilize anomalies to improve the “original conjecture,” which
is the antecedent content of the theory.

Lakatos illustrates these strategies through worked examples, the most
substantial of which concerns the Euler conjecture, V − E + F = 2, which
relates the numbers of vertices (V ), edges (E), and faces (F ) of polyhedra
(ibid., 6ff.).37 This relationship can be easily verified for the five Platonic
solids (regular polyhedra whose sides are regular polygons). Further inquiry
turns up apparent counterexamples to the Euler conjecture: concave and
stellated polyhedra; hollow polyhedra; twin polyhedra, formed by joining
pairs of polyhedra at a vertex or an edge; the cylinder; and the “picture
frame.” Lakatos traces the history of attempts to prove and improve the
Euler conjecture, from its inception in the 1750s to the origins of modern
topology more than a century later. He imaginatively reconstructs the dialectic
implicit in the development of this area of mathematics as a classroom dialogue.
The methods discussed are introduced in turn as increasingly sophisticated
responses to the puzzle cases.

For example, all the counterexamples could be ruled out of consideration
by the blatantly nonexplanatory move of making satisfaction of the Euler
conjecture part of the definition of “polyhedron”: primitive exception-barring.
More productively, successive monster-barring definitions of “polyhedron” could
be adopted to exclude various counterexamples. For instance, if polyhedra are
defined to be surfaces rather than solids, then hollow solids no longer count as
polyhedra.38 Less ad hoc still is the exception-barring move of restricting the
domain of the Euler conjecture to cases to which it has been established to
apply, such as convex polyhedra, with a view to determining its precise domain
of application. Alternatively, puzzle cases may be reconciled with the conjecture
by monster-adjustment. In this way the small stellated dodecahedron may be
seen to satisfy the Euler conjecture if its faces are counted as 60 triangles,
but not if they are counted as 12 pentagrams (ibid., 31).39 For a compelling
application of this method, an explanation of why the helpful interpretation
should be adopted is required. Finally, Lakatos’s preferred method, monster-
exploiting, can be seen in two further moves: lemma-incorporation, whereby
hidden assumptions are made explicit within the conjecture, and the increasing
of content by replacing lemmata by others of wider generality.

An illustration of the spirit behind this sequence of methods is provided
by David Bloor (1978, 252ff.; 1983, 139ff.), who assimilates Lakatos’s treat-
ment of anomaly to Mary Douglas’s (1975, 306f.) anthropological account
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of possible responses to strangers.40 She classifies societies with respect to
axes representing the degree of “grid” and “group.” Grid measures the impor-
tance of internal boundaries of rank, status and so forth to a society. Group
measures the strength of the boundary separating the society from the rest
of the world. High grid, low group societies are preoccupied with internal
divisions and indifferent to the actions of strangers. Low grid, high group
societies have strong social cohesion but little internal order, and are inclined
to be hostile to strangers. Such open hostility will not work in high grid, high
group societies because an excluded stranger might be exploited by another
subgroup. Hence individuals within these societies will seek either to justify
overall exclusion of the stranger, or to assimilate him into their own subgroup.
Low grid, low group societies are competitive and individualistic; strangers
are welcomed for the advantage they may bring to individual competitors.
This structure may be represented diagrammatically (Douglas 1970, 82ff.).
A diagram of this kind (fig. 14.3) demonstrates how Lakatos’s responses to
anomaly are related to Douglas’s responses to strangers (Bloor 1978, 258). Thus
primitive exception-barring corresponds to indifference, monster-barring to
fear and aggression, monster-adjustment to assimilation, exception-barring to
well-motivated exclusion, and monster-exploiting to opportunistic exploitation.
This picture assembles the different responses into an implicit hierarchy, from
decadent primitive exception-barring, through isolationist monster-barring,
aristocratic exception-barring, and whiggish monster-adjusting to free-market
monster-exploiting.

So far we have followed Bloor (and diverged from Lakatos, for whom
sociological factors are irrelevant to rational reconstruction) in the central
assumption of the strong program in the sociology of scientific knowledge: that
theories resemble the societies that produce them, thereby associating each
strategy with a society in which it is expected to be typical. However, we can
retain this picture as an account of the heuristic practices characteristic of
different stages in the development of research programs, while abstaining
on this sociological assumption. Abstracting from the sociological detail, in
accordance with Lakatos’s principles of rational reconstruction, we may thereby
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think of each quadrant of the diagram in fig. 14.3 as a heuristic context. It is
difficult for Bloor to explain how the same societies, the same institutions, and
even the same individuals can simultaneously contribute to multiple disciplines
occupying different heuristic contexts. By decoupling sociological context from
heuristic context, it becomes easier to see why each strategy will be hard
to defend away from its home quadrant. For instance, Bloor’s (1983, 146)
contention that it would be impossible to sustain monster-barring in a low
grid, low group society immediately invites empirical counterexample. The
underlying point is more easily accepted: A methodological move that does
little more than isolate anomalies will not be of much use in an heuristic
context in which diversity and experimentation are encouraged.

1.6. A Hierarchy of Logical Reform
The hierarchy of heuristic contexts, when applied to a reform-minded logical
research tradition, yields the following sequence of possible responses to the
pressure for change of logical system.41

I Indifference: primitive exception-barring;

II Nonrevisionary responses:

a. Delimitation of the subject matter of logic:
i. monster-barring;
ii. exception-barring;

b. “Novel paraphrase”: monster-adjustment;
c. “Semantic innovation”: monster-adjustment;

III Conservatively revisionary response: monster-exploiting;

IV Nonconservatively revisionary responses:

a. Restriction of the logic: exception-barring;
b. Wholesale revision: monster-exploiting;

V Change of subject matter: monster-exploiting.

In this section we explain and illustrate the levels of this hierarchy. At the
first level is brute indifference to the problem: primitive exception-barring. We
can find plenty of examples in logic of refusal to acknowledge the existence of
a problem, particularly in the early stages of the development of a program.
Responses to the paradoxes of implication in the early development of the
classical program furnish several examples. For instance, Russell (1903, 34)
is prepared to argue that material implication offers an adequate account of
entailment, a view subsequently described by Moore (1919, 58) as “an enormous
howler.” Russell’s obstinacy might have had some advantage in maintaining
the forward momentum of the program in its earliest heuristic context; after
the program attained more systematicity, it became less defensible.42 A more
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defeatist than obstinate indifference is the counsel that we should just put up
with the problem: “the paradoxes of Strict Implication . . . are unavoidable
consequences of indispensable rules of inference” (Lewis 1932, 76).

The next step up are responses that are not revisionary of the formal
system. The first of these, delimitation of the subject matter, consists in ruling
the puzzle cases to be inappropriate for logical formalization. This could be
either monster-barring, or, if sufficiently systematic, exception-barring. The
monster-barring variant is typical of contexts where the overwhelming concern
is maintenance of the boundary of logicality. Saint Anselm’s injunction that
“the heretics of logic are to be hissed away,” quoted with approval in Burgess’s
(1983, 41) critique of relevance logic, is the motto of this approach. Further
examples include Strawson’s treatment of sentences with nondenoting subject
terms as “spurious,” and thus unfit for logical formalization;43 and Resnik’s
(1985, 228) response to apparent counterexamples to non–truth-functional
logic that “prior to the discovery of truth-functional logic no one would have
thought of them.” The context of these moves is suggestive of a low grid/high
group heuristic context: Strawson is defending a general account of logical
formalization; Resnik a general account of logical normativity.

Where the emphasis is on describing the limitations of formalization, rather
than merely maintaining them, more systematic, and thereby exception-barring,
responses result. The exclusion of vagueness from Frege’s (1879) highly pro-
grammatic attempt at a calculus ratiocinator in his Begriffsschrift exhibits this
response, since the exclusion proceeds from his attempt to articulate a logically
perfect language, and is not just an ad hoc stipulation.44 By contrast, his
proposal to exclude nondenoting terms, by providing referents for all definite
descriptions by stipulation, is more naturally viewed as monster-barring. This
assessment, and that of the Begriffsschrift as a contribution to a high grid, high
group enterprise, is reinforced by the swift recognition by other researchers in
the same program of the incompatibility of this proposal with the heuristic
context then occupied by their program.45 An example of a proposal from
a slightly less systematic program, is Peirce’s treatment of the paradoxes of
material implication as benign because of the “somewhat special sense” of “if
. . . then” used in logical contexts (Peirce 1896, cited in Passmore 1957, 140).46

This is closer to primitive exception-barring, plausibly enough, since we could
make a case for Peirce’s program being situated not quite so far along the
group axis as Frege’s, because of his development of logic against a broader
semiotic background.

The next nonrevisionary response, the novel paraphrase strategy, is most
familiar from Russell’s (1905, 480ff.) misleading form treatment of nondenoting
singular terms. Grice’s (1975) attempt to reconcile classical logic with the
idiosyncrasies of natural language by means of “conversational implicatures”
seeks to develop this method into a comprehensive account of what a suitable
parsing theory for rough classical logic should look like.47 Carnap’s proposal
for replacing vague expressions by precisified, “scientific” paraphrase prior to
formalization exhibits the same approach (1950, cited in Haack 1974, 120). An
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example from a nonclassical program is the relevantist proposal to interpret
the occurrence of “or” in prima facie valid instances of disjunctive syllogism
(which is not generally valid in systems such as R) as fission rather than
disjunction (Anderson and Belnap 1975, §16, 166). This strategy sets out to
reinterpret the anomaly to reconcile it with the formal system central to the
research program and thus employs monster-adjustment.

At its most subtle, this species of monster-adjustment can take the form
of an admonition to understand formalized propositions in a particular way,
rather than explicit paraphrase. For example, Wittgenstein (1921, §5.25; §5.254)
seeks to avoid intuitionistic problematization of double-negation elimination
(dne) by counseling that negation be understood as an operation taking a
proposition to its contradictory, rather than a constituent of propositions.48

Ramsey (1927, 161f.) sought to capitalize on this idea with the suggestion that
negated propositions be written upside down, making skepticism about dne

formally inexpressible.49 This move involves a revision of notation, although
not of the underlying system, bringing it closer to the next sort of monster-
adjusting move, semantic innovation, and, by principled exclusion of puzzle
cases from formalization, shows affinities to exception-barring. That these three
methods can be so closely related is further corroboration for the taxonomy,
since they share a heuristic context.

Also employing monster-adjustment are the various proposals to preserve
classical logic by a more complicated semantics. For example, Kripke’s (1975)
proposal to address paradoxes of self-reference by employment of three-valued
matrices that permit semantic consideration of wffs that have not (yet) received
a definite evaluation as true or false, or van Fraassen’s (1966) “supervalua-
tional” semantics.50 The proposers of both of these schemes present them as
augmenting an underlying classical semantics, a monster-adjusting step, rather
than as introducing a novel system of logic with a nonclassical semantics,
which would place them further down the hierarchy.51 There is some scope for
skepticism whether monster adjustment is sufficient for the success of these
proposals, particularly in van Fraassen’s case, because it might be argued that
the retention of classical inference compromises the problem-solving efficacy of
the semantic innovation (see Read 1995, 142). More extensive revision of the
classical logical program may still be required. All the examples of either of the
two monster-adjusting steps available to logicians occur in sophisticated and
highly structured programs, generally in response to more radical competitor
proposals: high grid, high group heuristic contexts.52

The next level of the hierarchy consists of conservatively revisionary logical
responses. These typically take the form of a switch to an extended logic in
which a satisfactory treatment of the anomalies may be developed. Numer-
ous examples can be furnished by most logical research traditions, involving
extension by various sorts of quantifiers, identity functions, set-membership
operators, and alethic, deontic, temporal, doxastic, and other modal opera-
tors. This strategy is monster-exploiting—in a modest way—and potentially
progressive, although not all anomalies will yield to this treatment. Most of



638 The Development of Modern Logic

the extensions listed have been accompanied by rearguard claims that the
resulting system is no longer purely logical or even intelligible. Examples of
both moves may be found in Quine: His claim (1970, 68) that higher order
quantification is mathematics, not logic is of the former kind, whereas his
opposition to quantified modal logic (Quine 1953) is an example of the latter
kind. These moves correspond to monster-adjusting and exception-barring
moves, respectively:53 That they are so controversial suggests that extending
a logic is a tactic from a different heuristic context. Indeed, it is a low grid,
low group move—monster-exploiting—in the modest sense that it requires
acknowledgment that the formal system is not set in stone.

This assessment of conservative extension is clearest where it is the most
radical of all proposed responses to the anomaly. By contrast with a nonconser-
vative proposal, extension seems more of a monster-adjustment strategy; this
is the role that it has in the reactionary response to recapture.54 The point
is that adopting an extended logic involves adjusting the anomalous cases
sufficiently for them to be treated in a logical theory which is conservative
over the prior theory, but also requires augmentation of the prior theory, and
is therefore monster-exploiting. A change of inferential goals not motivated by
the adoption of incompatible background theories would yield a novel research
program that was not really a competitor to the original, and therefore treated
at this level of the hierarchy. Because the background theories of the two
programs would be compatible, the goal of one system could be expressed
satisfactorily within the context of the other, hence it would be possible to
remove the conflict altogether by representing the former system within an
extension of the latter.55 Accomplishing this nonrevisionary logical response,
the aim of the reactionary response to recapture, would be an impressively
progressive achievement for the program producing the extended logic, since
it would acquire all the additional content of the other system.

In Kuhnian terms, the first three levels of the hierarchy represent the “normal
science” of a logical research program. The heuristic contexts of indifference:
“new sorts of phenomena . . . are often not seen at all” (Kuhn 1962, 24);
assimilation: “matching of facts with theory” (ibid., 34); and the limited
enthusiasm of applying an existing method to a new area: “manipulations of
theory undertaken . . . to display a new application” (ibid., 30) are all suggested
by Kuhn as typical activities of the normal scientist. However, there are two
significant contrasts between Kuhn’s position and that adopted here. First,
Kuhn distinguishes only two heuristic contexts: normal science and crisis.
Second, normal science is taken by Kuhn to be constitutive of, and dominant
within, a whole discipline, not just of a research program or tradition within a
discipline. Each of these contrasts serves to blunt Kuhn’s controversially sharp
dividing line between normal and revolutionary science. For Lakatos (1970,
69), criticism and competition are healthy, and hegemony is pathological: This
is the reverse of Kuhn’s evaluation.

In the fourth level of the hierarchy we find the responses employing a
nonconservative revision of logic. The first of these is restriction of the logic:
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avoidance of the anomaly by moving to a logic that lacks previously valid
inferences and theorems. This exclusion of the puzzle cases from treatment is
systematic, and thereby exception-barring, provided that the calculus resulting
from the restriction has a finite, well-behaved presentation (without which
the restriction would be blatantly degenerating). As the revision involved
cuts deep, solely exception-barring uses of restriction are out of tune with the
heuristic context necessary for their deployment, and are seldom encountered
as serious reform proposals. Some logics, such as Birkhoff and von Neumann’s
(1936) nondistributive quantum logic, begin life as solely restrictive steps, and
subsequently form the basis of progressive research programs, but only by
additional monster-exploiting moves.56 This is possible because eventually suc-
cessful programs can survive occasional periods of degeneration, and conflicts
between programs are not settled at the first contest (Lakatos 1970, 71).

The heuristic context sufficient for restriction characteristically results in a
more substantial revision. This is the second sort of nonconservative revisionary
response: wholesale revision, in which elements of the logical theory beyond the
formal calculus are exposed to criticism, and reformulated in response. These
elements, which include metalogical concepts, such as that of consequence,
background theories and the inferential goal, are predominantly situated within
the hard core of mature programs. So, except in the infancy of a program,
when almost all of its content is still fluid, wholesale revision will initiate a
new program, although not necessarily a new tradition. In the case of quantum
logic, this stage occurred after a hiatus of some 30 years, in which the formal
system was better known as a contribution to pure mathematics or as an
interpretation of the foundations of physics—roles in which it has continued
to progress, despite the degeneration of Putnam’s quantum logic program
(Coecke, Moore, and Wilce 2000, 6; Foulis 1997). The formal calculi associated
with the intuitionistic, relevance, and paraconsistent programs explored in
section 2 are also restrictions of that of classical logic, but all of these were
developed in parallel with, or subsequent to, more radical moves.

How does wholesale revision work? Judicious restriction can permit clar-
ification, precisification, and disambiguation of previously confused concepts.
For example, as we will show in 2.3.1, the adoption of relevance logic per-
mitted the articulation of the contrast between intensional and extensional
constants, obscured in classical logic, and a more sensitive restatement of the
consequence relation. Hence, in Lakatosian terms, the search for motivation
for exception-barring steps can lead to a revision through proof analysis of the
primitive conjecture (here the claim that a given logic is adequate for the for-
malization of natural argumentation), and thus constitute monster-exploiting.
Lakatos (1976, 50, 136) quotes with particular approval the methodological
injunction (from Seidel 1848) that “if you have a global counterexample [a
counterexample to the main conjecture] discard your conjecture, add to your
proof analysis a suitable lemma that will be refuted by the counterexample,
and replace the discarded conjecture by an improved one that incorporates
the lemma as a condition.” For Lakatos this insight was crucial to the history
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of nineteenth-century mathematics, since it initiated the “method of proofs
and refutations”—that is, monster-exploiting.57 Bloor (1978, 263ff.) argues
that this innovation was made possible by the changed social structure of
German universities that resulted from earlier government reform proposals.
What it undoubtedly shows is the adoption of a heuristic context in which
more radical methods than had previously been deemed legitimate could be
entertained.

Finally, we come to a strategy more radical than any yet addressed: change
of subject matter (see Haack 1978, 155; Beall and Restall 2000, 490). We saw
before that a change of inferential goal in which the background theories are
preserved can occur at the conservatively revisionary level of the hierarchy.
But changes of goal can also be precipitated by a nonconservative revision
of the background theories. Typically this will alter the motivation of the
whole logical enterprise, move the problem into a different area, and change
the subject matter of logic. In so far as goals and the background theories that
justify them are deep within the hard core of a program, their nonconservative
revision must initiate a change of research program, and probably of research
tradition. Thereafter the question of which program should be pursued, of
which logic should be employed, can no longer be addressed directly. It is
superseded by the question of which background theories obtain, and thereby
of which goal is being pursued.

The proper place for settling disputes of this sort is at the level at which
the background theories conflict, not at the level of the different calculi. Any
divergence at the latter level is understandable but derivative: They have
been designed to meet different specifications. Therefore the dispute is no
longer in the discipline of logic, but rather in whatever discipline threw up the
conflicting background theories. However, it is not impossible for goals and
background theories to be revised without a change of program (or tradition),
if the positive heuristic is specified in sufficiently general terms. Hence there
is a crucial difference between responding to a problem with a novel positive
heuristic whereby the goal and background theories are radically changed, and
gradually adjusting the goal and background theories, in coevolution with other
aspects of a logical research tradition, while preserving the positive heuristic.
The latter move may be understood as wholesale revision, the previous level of
the hierarchy, but the former is more profound, and can only be represented
as a change in the subject matter of logic, the final level of the hierarchy.

Among proposals of this character are accounts of logic as the science of
information flow;58 systematic approaches to informal logic;59 and perhaps
some attempts at a “feminist” logic.60 One of our goals in section 2 will be to
argue that, while the relevance, quantum, and paraconsistent programs may
be understood as wholesale revisions, intuitionism goes further and involves a
change of subject matter. It is important to observe that the nonconservative
revision of background theories involved in a change of subject matter need
not entail an inglorious revolution in the formal system.61 We explore its more
positive applications in the conclusion.



The Philosophy of Alternative Logics 641

2. What Alternative Logics Are There?
Each of the four subsections of section 2 is a case study applying the methods
developed in section 1 to a specific reform proposal. Many different nonclas-
sical systems have been promoted, particularly in recent years. One might
mention: modal and multimodal systems, including alethic, temporal, deontic,
epistemic, and doxastic modalities; paracomplete62 and many-valued logics;
free logic; fuzzy logic; second-order logic; nonmonotonic and dynamic logics;
resource-sensitive and linear logics; and many other systems. To stay within a
manageable length, and to retain some unity of focus, we have restricted our
case studies to a much smaller range. We have concentrated on systems which
have been seriously proposed as rival organons to propositional K. The focus
on the propositional case is because it is where the classical program is at its
strongest, and because the choice of quantifiers is seldom as fundamental as
that of propositional constants.

Within these constraints, we have chosen a range of systems, all of which
are independently interesting and each of which illustrates particular aspects
of our discussion of logical revisionism in section 1. The first case study is
of intuitionistic logic, K’s oldest and most familiar rival. In the second case
study we turn to quantum logic, a system proposed on empirical grounds as
a resolution of the antinomies of quantum mechanics. The third case study
is concerned with systems of relevance logic, which have been the subject
of an especially detailed reform program. Finally, the fourth case study is
paraconsistent logic, perhaps the most controversial of serious proposals.

2.1. Intuitionistic Logic
The earliest and most enduring alternative to classical logic is intuitionistic
logic, which has provided the formal component of several distinct programs.
We shall begin by setting out the distinguishing features of the formal system,
and of the two most important programs: mathematical constructivism and
semantic antirealism. More detailed exegesis exploring the differences and
important similarities of these programs follow.

2.1.1. What Is Intuitionistic Logic?

The origins of intuitionistic logic lie in constructivist philosophy of mathematics.
Like much contemporary philosophy of mathematics, constructivism originated
as a response to the crisis in the foundations of mathematics caused by the
discovery of set-theoretic paradoxes induced by the unrestricted application
of infinitistic methods. In common with several other approaches, such as
Hilbert’s formalism, constructivism sought to address this crisis by concentrat-
ing on a nonparadoxical domain of mathematics. Several different schools of
constructivism may be identified, but they all achieve this narrowing of focus
by arguing that the statements of mathematics should be understood in terms
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of proof rather than (classical) truth. This makes asserting the existence of
mathematical objects illegitimate unless there are proofs of the existence of
specific examples of each such object, that is to say, a means of constructing
the object in finitely many steps. There is a sharp divide between most con-
structivists and mainstream philosophy of mathematics since constructivism is
generally revisionary of mathematics, claiming that certain hitherto acceptable
areas of mathematics should be discarded.63

It is possible to reconcile this attitude to mathematics with the retention
of classical logic.64 However, from the characteristic intuitionistic stance,
mathematics is foundational, and logic is an anthology of a posteriori rules
which mathematics has been found to obey. Hence it would be begging the
question against the intuitionist to regard the existence of classically grounded
constructivist programs as an argument against intuitionism: So to argue
would be to presume the priority of (classical) logic, which the intuitionist
specifically disputes (Haack 1974, 93). This intuitionistic stance originates with
Brouwer, who defended his program as the recognition that “mathematics
is an essentially languageless activity of the mind, having its origin in the
perception of a move of time” (Brouwer 1952, 141). Logic is then no more than
a formalization of the language used to describe this activity: If permitted to
run unchecked, it risks outstripping the intuitions constitutive of mathematics.
Subsequent intuitionists have placed less emphasis on Brouwer’s Kantian
approach to intuition; the key notion that remains is that because provability
is the touchstone of good mathematics, mathematicians should cleave closely
to it, and not rely on generalizations over “objects” for which no construction
has been provided.

Adherence to these scruples requires the abandonment of certain familiar
principles of classical logic, such as the law of the excluded middle (lem),
A∨¬A, and double-negation elimination (dne), ¬¬A � A. For, if constructions
are the only warrant for mathematical assertions, the occurrence, in any non-
finite domain, of mathematical propositions for which we can construct neither
a proof nor a refutation, conflicts with the unrestricted assertion of lem.
And the establishment of the lack of a construction establishing the lack of a
construction of the proof of a proposition cannot be transformed into a proof
for that proposition, contradicting dne. Generalizing the interpretation of the
constants behind the rejection of these principles yields the Brouwer–Heyting–
Kolmogorov (bhk) interpretation:

i. c is a proof of A ∧ B iff c is a pair (c1, c2) such that c1 is a proof of A
and c2 is a proof of B;

ii. c is a proof of A ∨B iff c is a pair (c1, c2) such that c1 is a proof of A or
c2 is a proof of B;

iii. c is a proof of A→ B iff c is a construction that converts each proof d
of A into a proof c(d) of B;

iv. nothing is a proof of ⊥;
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v. c is a proof of ∃xA(x) iff c is a pair (c1, c2) such that c1 is a proof of
A(c2);

vi. c is a proof of ∀xA(x) iff c is a construction such that for each natural
number n, c(n) is a proof of A(n).65

¬A is introduced by definition as A → ⊥. Hence c is a proof of ¬A iff c is
a construction which would convert a proof of A into a proof of something
known to be unprovable. So a proof of ¬¬A would show how any construction
which purported to convert a proof of A into a proof of something unprovable
could itself be converted into a proof of something unprovable. This amounts
to saying that A cannot be shown to be unprovable, which is clearly too weak
to establish that A is provable, hence the failure of dne.

In accordance with his view of logic as a subordinate activity, Brouwer did
not himself pursue the axiomatization of a system concordant with his program.
The first complete axiomatization of a logic meeting the constraints of the
bhk interpretation was developed by Heyting (1956, 101f., citing his 1930).66

It is this calculus which has been subsequently designated “intuitionistic
logic” (henceforth J). If we temporarily disregard the variant interpretations
given to the constants and atomic propositions of the two systems, we can
observe that J is a proper subcalculus of K: All theorems and valid inferences
of the former hold in the latter, but not vice versa. Indeed, we can see by
application of the bhk interpretation that all of the axioms of a Hilbert-style
presentation of K are preserved, except those which yield lem (or equivalently
those giving dne, in this context ¬¬A → A), as are all of the operational
rules of a natural-deduction presentation of K, except dne. One consequence
is that the connectives and quantifiers may not be interdefined in J as they
are in K. In the natural-deduction presentation of J an additional rule of
absurdity elimination, ⊥ ⇒ A, is introduced. Although the consensus is to
regard this as justified by the bhk interpretation, some constructivists have
demurred. Hence Johansson (1936) omits this rule from his system, yielding
minimal logic, a proper subcalculus of J, which also satisfies the constructivist
constraints. Some superintuitionistic subcalculi of K have also been promoted
as formalizing constructive reasoning, but none of these systems has attracted
the same degree of support as J (see van Dalen 1986, 275ff.). In sequent-
calculus presentation the similarities of the constants of J and K are even
clearer, since the difference between the two systems may be restricted to the
understanding of the deducibility relation, which is constrained in Gentzen’s
(1935, 82) calculus LJ such that there may be at most one formula to the right
of the turnstile.67

The other principal intuitionistic program is semantic antirealism.68 This
program has the same roots as the mathematical program, but diverges crucially
from Brouwer by defending J as appropriate to a respectable meaning theory
for language, rather than to the prelinguistic content of mathematics (Prawitz
1977, 5). This alternative focus on knowability, rather than the narrower notion
of provability, makes the program more readily applicable to nonmathematical
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discourse.69 The central line of argument behind the semantic antirealist
adoption of J is to dispute the intelligibility of the classical inferential goal, that
is, epistemically unconstrained truth. As Michael Dummett (1991, 316) would
have it, the classical conception of truth is “a piece of mythology, fashioned,
like the centaur, by gluing together incompatible features of actual things. It
has all the properties of explicit knowledge, save only that it is not explicit.”
A brief outline of the support advanced for this claim might run as follows.

For the classicist, all propositions have truth values, including propositions
whose truth values we are not in a position to ascertain. These so-called
verification-transcendent propositions must be either true or false, even though
there are no means of determining which. The crux is a demonstration of the
untenability of this position: the manifestation argument.70 This proceeds
from the observations that understanding a proposition requires knowledge of
its meaning, and that such understanding must be publicly manifestable as the
recognition of whatever is constitutive of meaning. But the truth conditions
of verification-transcendent propositions cannot be fully stated. Hence, if
meaning is truth-conditional, the meaning of these propositions cannot be
fully manifested, thus the propositions cannot be properly understood. Yet
such propositions are not unintelligible, so meaning cannot be expressed in
terms of classical truth.

Instead, Dummett promotes an alternative theory that reduces the meaning
of terms to the conditions for their warranted assertibility. This permits an
antirealist account of verification-transcendent propositions which does not
forfeit their meaningfulness. In particular, it motivates the adoption of J, since
that calculus preserves warranted assertibility—by reasoning parallel to that of
the bhk interpretation—and is the most natural result of linking the meanings
of the logical constants to their assertibility conditions. Alternatively, but
to the same effect, the semantic antirealist program can be conceived of as
retaining a truth-conditional account of meaning, but with a radically revised
account of truth. Hence the antirealist argues that all truths are in principle
knowable, whether by replacing the notion of truth with that of warranted
assertibility or by subjecting it to epistemic constraint.

This is not the place for a thorough critique of semantic antirealism, but
we note certain immediate lines of response. One important point is that
it is the loss of the principle of bivalence, that all propositions are true or
false, which underpins the semantic antirealist’s logical revisionism. However,
the manifestation argument is a challenge not to this principle, but to the
thesis that truth may transcend knowability. Hence the revisionist argument
overlooks a conceptually possible position—called Gödelian Optimism by Neil
Tennant (1997, 159ff.)—of accepting the manifestation argument as justifying
epistemic constraint, while retaining bivalence, and thereby K.71 The Gödelian
Optimist holds that truth is both knowable and bivalent: that is, that there
are no classical truthmakers which may in principle transcend our ability to
come to know the truth of the propositions they make true (and likewise for
falsehood). Of course, if “in principle” is interpreted at all strictly, then this
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position clearly becomes untenable. Yet the intuitionist must also be on his
guard against an unduly conservative reading of “in principle knowable” that
would reduce his position to an unwelcome extremism, such as strict finitism,
or even the contingency of mathematics.72

Furthermore, even if accepting epistemic constraint imposes a revised logic,
perhaps that revised logic need not be J. Dummett himself (1976b, 83f.)
once tentatively proposed a meaning theory grounded in falsification rather
than verification. The propositions of this theory would respect a logic which
was neither K nor J, but rather dual to J: dne would be admissible, but
double-negation introduction would not be, and so forth. However, this pro-
posal accepts the revisionary force of the manifestation argument; it merely
channels it in an unexpected direction. Yet it could be argued that Dummett’s
requirements for an acceptable meaning theory could be met by a theory that
was independent of the choice of logic.73 Such a theory might proceed by
giving equal significance in the constitution of meaning to the consequences of
assertion, as well as the warrant for assertion. Some step of this kind may well
be required anyway, to accommodate empirical discourse, which offers inde-
pendent motivation for this meaning theory.74 Finally, a variety of arguments
have been advanced that turn on the alleged proof-theoretic superiority of J
to K. We return to this strategy in 2.1.3.

The two historically substantive programs just outlined do not exhaust the
possible applications of J as a rough logic.75 As an alternative, one might
propose an application of J in which the propositions received their classical
interpretations. Since the deducibility relation of J is a proper subrelation
of that of K, in such a program J would be sound with respect to classical
semantics, although (perhaps tolerably) incomplete. Something of this kind
has been suggested as a response to the sorites paradox (Putnam 1983, 285f.).
Although there has been some subsequent discussion, no fully articulated
program has yet emerged.76 In particular, although it is clear that intuitionistic
semantics would be inappropriate, it is not clear what should be employed
instead (Read and Wright 1985, 58; Putnam 1985, 203). Sketchy as this program
is—and it may well remain so—it still serves to demonstrate that the formalism
of J does not in itself necessitate the sweeping revisions generally promoted on
its behalf. Although this shows that J could in principle be promoted within
a logical theory which was otherwise substantially classical, in practice its
adoption has been advocated as resulting from dramatic revisions of classical
background theories.

2.1.2. How Are Intuitionistic and Classical Logic Related?

The closest relationship that can obtain between two logics is equivalence,
but J is inequivalent to K. The two systems may be formulated with the
same atomic propositions, the same constants (at least typographically), and
therefore equiform classes of wffs and of sequents. However, the two classes of
sequents would be partitioned into valid and invalid subclasses in a different
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fashion, hence J would appear to be nonconservatively revisionary of K. The
only difficulty with this assessment is that there are several well-known ways
of embedding K into J. Each of these approaches is a variation on the double-
negation translation, which maps classical wffs to intuitionistic wffs in such a
way that the validity of sequents in which the wffs occur is preserved, in a sense
to be made precise shortly. The first such translation is due to Kolmogorov
(1925, 428):77

A∗ = ¬¬A, for atomic A;
(¬A)∗ = ¬A∗;

(A ∧B)∗ = ¬¬(A∗ ∧B∗);
(A ∨B)∗ = ¬¬(A∗ ∨B∗);

(A→ B)∗ = ¬¬(A∗ → B∗);
(∃xA)∗ = ¬¬∃xA∗;
(∀xA)∗ = ¬¬∀xA∗.

Then �J A iff �K A
∗. Alternative versions were produced independently of

Kolmogorov, and of each other, by Gödel (1933a) and Gentzen (1933, 60f.).78

Gödel’s version runs as follows:

A∗ = ¬¬A, for atomic A;
(¬A)∗ = ¬A∗;

(A ∧B)∗ = A∗ ∧B∗;
(A ∨B)∗ = ¬(¬A∗ ∧ ¬B∗);

(A→ B)∗ = ¬(A∗ ∧ ¬B∗);
(∃xA)∗ = ¬∀x¬A∗;
(∀xA)∗ = ∀xA∗.

Gentzen’s translation is identical to Gödel’s except that he translates A→ B
as A∗ → B∗. In a related fashion, Gödel established a similar theorem and
anti-theorem preserving translation of (propositional) J into the modal system
S4. That is �J A iff �S4 A

∗, where A∗ is recursively defined as follows:

A∗ = A, where A is atomic;
(¬A)∗ = ¬�A∗;

(A ∧B)∗ = A∗ ∧B∗;
(A ∨B)∗ = �A∗ ∨�B∗;

(A→ B)∗ = �A∗ → �B∗,

or alternatively, as follows (Gödel 1933b, 301):79

A∗ = A, where A is atomic;
(¬A)∗ = �¬�A∗;



The Philosophy of Alternative Logics 647

(A ∧B)∗ = �A∗ ∧�B∗;
(A ∨B)∗ = �A∗ ∨�B∗;

(A→ B)∗ = �A∗ → �B∗,

McKinsey and Tarski (1948, 13) also established this result for a simpler
translation, which has become the most familiar of the three. We shall refer to
this as the gmt translation; it proceeds as follows:80

A∗ = �A, where A is atomic;
(¬A)∗ = �¬A∗;

(A ∧B)∗ = (A∗ ∧B∗);
(A ∨B)∗ = (A∗ ∨B∗);

(A→ B)∗ = �(A∗ → B∗).

All three translations may be straightforwardly extended to intuitionistic
predicate logic and a quantified extension of S4.81

Might these translations be used to show that J could be presented as
an extension of, and therefore not a rival to, K? If this were so, it would
be either because K was equivalent to a proper reduct of J, by the double-
negation translation, or because J was equivalent to an established extension
of K, by one of the translations into S4.82 In assessing this challenge, note
that equivalence as introduced in 1.4 is a relationship on wffs requiring the
preservation of inferences as well as theorems and invalidity as well as validity.
Gödel’s S4 translations preserve only theorem-hood and antitheorem-hood,
and are therefore insufficient for our purposes. The gmt translation can be
shown to preserve deducibility as well (Epstein 1995, 289, contra Haack 1974,
97). However, it is a translation into S4: There is no corresponding map from
S4 to J. Hence J has not been shown to be equivalent to S4.

The more serious proposal is that a double-negation translation might
establish that K is equivalent to a proper reduct of J. It can be shown that
if Γ � B1 ∨ · · · ∨ Bn is valid in K, then �Γ∗ � ¬(¬B∗1 ∧ · · · ∧ ¬B∗n) is valid
in J¬,→,∧,∀ and vice versa, where ∗ is defined by one of the double-negation
translations given above, Γ∗ is the result of applying ∗ to each A ∈ Γ, and �Γ∗
is the result of prefixing every member of Γ∗ with � (Gallier 1991, 74). J¬,→,∧,∀
must be a proper reduct of J because all of the constants of J are primitive,
precluding the introduction of ∨ or ∃ by definitional equivalence (McKinsey
1939, 156f.). Is this relationship between K and J¬,→,∧,∀ an equivalence
relationship? It maps the valid inferences of K to valid inferences of J¬,→,∧,∀;
it maps the valid inferences of J¬,→,∧,∀ to valid inferences of K; it maps the
invalid inferences of K to invalid inferences of J¬,→,∧,∀; but it provides no
means of mapping the invalid inferences of J¬,→,∧,∀ to invalid inferences of
K. All four mappings are required for equivalence. An identity function from
the wffs of J¬,→,∧,∀ to the wffs of K will preserve validity but not invalidity,
because weak counterexamples such as Peirce’s law or dne, which are valid in
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K but invalid in J (and a fortiori in J¬,→,∧,∀), will be translated into their
valid counterparts in K. It seems unlikely, although conceivable, that any
mapping sufficiently ingenious to preserve both validity and invalidity could be
found. Moreover, it can be shown that the double-negation translations do not
preserve any of the presently available semantics for J, so any such proposal
would also require (perhaps unattainable) semantic innovation (Epstein 1995,
396). The underlying problem is that the double-negation translations define
embeddings of K in J¬,→,∧,∀: The system into which K is translated is a proper
subsystem of J¬,→,∧,∀. Establishing the equivalence of K to this subsystem
would not show that J extended K, but (unremarkably) that J extended
a system nonconservatively revisionary of K.83 We must conclude that J
is neither equivalent to K nor an extension of K, and therefore that it is
nonconservatively revisionary of K.

The next major question about how J is related to K is whether J recaptures
K. In formal terms this is easy to answer. The class of wffs generated from
effectively decidable atomic formulae will behave classically under closure by
the constants of J (Dummett 1959b, 167). That is, the class of wffs such that
� A ∨ ¬A, for all atomic propositions A, and � A(t) ∨ ¬A(t), for all atomic
predicates A and terms t, form a system equivalent to K: J recaptures K.
However, this does not address the “politics” of recapture. In 1.4 we identified a
spectrum of responses to the possibility of classical recapture by a nonclassical
logic with a spectrum of political positions. Superficially, the constructivist
and semantic antirealist programs in which J is characteristically deployed
are clear examples of the “left-wing” response: The possibility of recapture
is denied or rejected as irrelevant. The radical-left strategy of ensuring that
recapture does not work is unavailable without revising J, since J recaptures
K, so both programs must be on the center left. However, this assessment is
somewhat overhasty: It is possible to make more productive use of the recapture
result. Proponents of both intuitionistic programs do sometimes describe K
as unintelligible: For instance, Dummett remarks that “intuitionists . . . deny
that the [classical] use [of the logical constants] is coherent at all” (Dummett
1973c, 398).84 This would suggest hostility to classical recapture. Yet although
this hostility may be maintained by some intuitionists, in general the situation
is more eirenic. In both programs it is generally conceded that there is a
domain of propositions for which K is applicable (for example: Brouwer 1952,
141; Dummett 1959b, 167; 1973b, 238). Indeed, Dummett suggests that this
“common ground” is sufficient for the intuitionist to gain an understanding of
the classical meaning of other, disputed formulae which, although not “accepted
as legitimate,” is at least “not wholly opaque” (Dummett 1973b, 238). This
would suggest that remarks inimical to recapture should be taken as hyperbole,
leaving open the possibility of a center-right attitude.

There are several reasons why the intuitionist should welcome recapture,
but are they enough for a center-right attitude? For a long time intuitionists
were obliged to appeal to K to prove results in the metalogic of J, such as the
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completeness of the first-order system. Until intuitionistically acceptable proofs
were produced (Veldman 1976; de Swart 1976), this provoked the classical
criticism that the intuitionist was indulging in a practice that he wished to deny
to others (Tennant 1997, 305f.).85 Such criticism has sufficient rhetorical force
to make the intuitionist’s position appear exposed, but in principle he is on
perfectly safe ground, providing that all of his employment of strictly classical
inference occurs within a decidable domain. Even now that an intuitionistic
metalogic is practicable, a case may be made that the intuitionist should retain
a classical metalanguage, at least as an alternative to the intuitionistic version.
For, as Dummett points out, insistence on the employment of the logic of a
reform proposal throughout the metalanguage serves to insulate the proposal
from criticism, and at the cost of handicapping its ability to persuade the
practitioners of other systems of its merits (Dummett 1991, 55).

Here we should be careful to distinguish the practical claim, that the
classicist will be more readily convinced by metalogical argument in classical
terms, from the stronger methodological claim, that some specific system
(perhaps K) must be employed in the metalogic for the constants to be
properly interpreted.86 The practical claim merely asserts the persuasive value
in “preach[ing] to the Gentiles in their own tongue,” as Meyer (1985, 1)
describes the analogous enterprise in relevance logic. The Gentiles should not
really need a translation in this instance, since the deducibility relation of J
is a subrelation of that of K, which ensures that all intuitionistically valid
proofs are classically valid too. Dummett (1991, 55) wishes to maintain the
stronger claim, and argues that the metalogic should be as neutral as possible.
(However, this eventually turns out to be a neutrality distinctly friendly to J,
to paraphrase Dummett’s [1973a, 603] characterization of a rather different
claim to neutrality.) The crucial difference between the two claims, which
Tennant (1997, 305) accuses Dummett of having missed, is that the former
cannot ground the latter without opening K, as much as any other system, to
the accusation that it is seeking to resist criticism through question-begging
self-justification.

The foregoing argument is reprised in the analysis of the constants em-
ployed in the bhk interpretation: Unless they are understood classically, the
interpretation cannot explain intuitionistic usage to the classicist (Makinson
1973, 77). Fortunately, the domain in which the interpretation is carried out is
effectively decidable, and thereby recaptured in J. In addition, the Brouwerian
account of logic as subordinate to mathematics should be seen as favorable
toward classical recapture. If logic is merely the a posteriori codification of
valid modes of mathematical reasoning, there can be no objection to some
aspects of this reasoning fitting more than one codification (see Heyting 1956,
74). This, with the points made before, motivates the retention of K as a limit
case of J, that is, center-right recapture. However, against this suggestion it
should be recalled that center-right recapture would require the intelligibility
of the inferential goal of K—epistemically unconstrained truth—within the
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theory of J. At least some proponents of J would regard this as unsustainable,
relegating J to center-left classical recapture.

Conversely, it might be possible to move even further to the right, at
least within the constructivist program. Most constructivists have followed
Brouwer in holding that classical mathematical results remain unjustified
until a constructive proof is forthcoming. However, there is an alternative
tradition in which these results are regarded as having their own, weaker, sort
of legitimacy. Hence Kolmogorov (1925, 431) argues that we should “retain
the usual development” of what he calls “pseudomathematics” alongside the
development of constructive mathematics, since he suggests that it is at least
consistent intuitionistically.87 Kolmogorov’s approach has much closer affinities
to the formalism of Hilbert’s program than has Brouwer’s: Whereas Brouwer
seeks to partially license infinitistic material independently, both Hilbert and
Kolmogorov seek fully to ground it in finite mathematics.88 On Hilbert’s
account, “real” mathematics is restricted to finitistic results; the remainder,
“ideal” mathematics, can still be a useful heuristic for finite results, providing
that its relative consistency can be established. Kolmogorov (1925, 417, 431)
argues that his program has a twofold advantage over Hilbert’s: The finite
basis is grounded in construction, not just consistency, thereby answering any
charge of arbitrariness; and the existence of the double-negation translation of
K into J offers a ready means for a relative consistency proof.

Following Kolmogorov’s insight, one might regard a proper subsystem of
J¬,→,∨,∀ as the logic of pseudomathematics—providing that such a system
equivalent to K could be demonstrated, although it is not clear whether this
is feasible. The logic of real mathematics would then be the stricter system
resulting from an extension by independent, constructive, notions of disjunc-
tion and existential quantification: J. This hypothetical program would thus
exhibit the “reactionary” response to recapture. However, it remains strictly
hypothetical: Not only does it rely on an equivalence relation that we have
no reason to believe obtains, it would also require an argument that disjunc-
tion and existential quantification are not intersystemically invariant (that is,
cannot be identified) between K and J. There may be some justification for
the latter point: Because the focus to the constructivist’s challenge to classical
mathematics is existence, it is understandable that he might have objections
to the elimination rules for disjunction and existential quantification. However,
we saw that these rules are retained in their classical form in axiomatic and
natural deduction presentations of J: in both cases the revision appears to be
of negation, which on this hypothetical program would be untouched. Further-
more, intuitionistic criticism of the elimination rule for disjunction would seem
readily to generalize to reductio ad absurdum, even of the intuitionistically
acceptable variety.89 Finally, one might abandon J as such, and pursue issues
in constructive mathematics in a version of K, extended either by a modal
constant, or by additional constants for constructive disjunction and existential
quantification.90 This would be a clear-cut case of reactionary recapture, in
which the priority of K would be wholly unchallenged.
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2.1.3. The Significance of Proof Theory

If a formal system is to be promoted as a rough logical theory, and thereby
as an organon, it must be provided with a suitable semantics and proof theory.
This makes these aspects of the theory targets for critics of the enterprise,
since if they are unequal to their task the theory will be blocked. Conversely,
the advocate of a nonclassical program has much to gain by finding fault with
classical semantics or proof theory. We briefly addressed the significance of
the semantic interpretation of J in the last section; we return to this line of
argument in discussing relevance logic, in 2.3, where the issue has been a much
greater focus of contention. However, in the advocacy of J rather more atten-
tion has been paid to the role of proof theory. Whereas in semantics, a formal
system either has or does not have a plausible interpretation, without which
it cannot be readily promoted as an organon, in proof theory a wide variety of
desiderata have been canvassed as hallmarks of good logical practice, engender-
ing considerable complication. In particular, we must be careful to distinguish
between those proof-theoretic properties which serve a practical, but dispens-
able, purpose—such as enhancing the ease of use of the system, or permitting
a greater faithfulness to natural argumentation—and those properties which
are claimed to be indispensable to the employment of any coherent system.

Many different proof-theoretic properties have been suggested as important
for either or both of these purposes: Tennant (1996, 354f.) lists 14 different
suggestions, without exhausting all possibilities.91 Some of these serve only
the former, practical purpose, such as the requirement that proofs have a “nice
mereology.” Others, such as “preservation of preferred species of truth” and
“relevance by restricted transitivity of deduction,” respectively, are either clearly
satisfied by K,92 or clearly not satisfied by J. Either way these properties do
not discriminate in favor of J. Of the potentially decisive properties, the most
frequently invoked are separability, inversion, normalizability, and harmony.

A system is separable if the operational rules for each constant contain no
other constants, and every wff is derivable iff it is also derivable in a system
in which the only operational rules are those for the constants contained by
that wff (Ungar 1992, 7 n8). Hence, in the terminology of 1.4, a system will
be separable if each of its proper reducts is equivalent to the system generated
by the rules expressible in that reduct. The inversion principle requires that
each elimination rule relates to the corresponding introduction rule as the
inversion of a function relates to that function, “in the sense that a proof of
the conclusion of an elimination is, roughly speaking, already available if the
premiss of the elimination is inferred by an introduction” (Prawitz 1981, 242).
So if the inversion principle applies, whenever the premisses of an elimination
rule are obtained by application of the corresponding introduction rule, the
conclusion of the elimination rule could have been obtained at an earlier stage
in the proof. This gives rise to reduction procedures for the constants, whereby a
passage of a proof in which a wff occurs as both the conclusion of an application
of the introduction rule and a premiss of an application of the elimination rule
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may be eliminated. If no such passages occur in a proof then it is in normal
form. Normalizability requires that all proofs can be placed in normal form.
On certain additional assumptions the reduction procedures will then serve
as an equivalence relation on proofs, whereby two proofs which reduce to the
same normal form are equivalent (Ungar 1992, 155f.). Finally, a constant is in
harmony if (1) the conclusion of its introduction rule is the strongest wff so
derivable which may be eliminated by the elimination rules (where one wff is
stronger than another if the latter may be derived from the former); (2) the
major premiss of its elimination rule is the weakest wff licensing the derivation
which may be introduced by the introduction rules; and (3) (1) and (2) can be
established using precisely the constant’s elimination and introduction rules,
respectively (Tennant 1997, 321, simplifying somewhat).

The practical utility of these properties is not in doubt. Separability permits
constants to be studied in isolation; normalizability assembles proofs into
equivalence classes, and so forth. But this does not show that a system lacking
these properties would be incoherent, and not just inconvenient. Harmony
will be required by any proof-theoretic theory of meaning, to ensure that the
warrant granted by the assertion of a wff does not exceed the warrant for that
assertion. But relativizing the requirement to such a theory of meaning would
be to beg the question; once again this is to shift the debate onto the choice
of inferential goal. Conversely, one might imagine that separability should
be inimical to any sufficiently holistic theory of meaning. Harmony may be
employed to block the admission of mischievous constants, such as Prior’s
(1960) tonk, but it is not the only way this may be achieved.93 Nevertheless,
some requirements along these lines would seem reasonable constraints on any
plausible proof theory. However, we have not yet seen that J is better placed
than K. Each of the four properties of separability, inversion, normalizability
and harmony is a necessary but insufficient requirement for the next on the
list (Tennant 1996, 358; 1997, 314). So if the intuitionist could show that K
is not separable he would have a powerful argument against its cogency as
an organon; conversely, if the classicist can establish this property he is well
placed to begin recovering the others.

It is well known that separability fails for the usual natural-deduction
presentations of K. Peirce’s law, ((A → B) → A) → A, is a theorem of K
but cannot be proved solely from the natural deduction rules for →. However,
it is also well known that separability holds for most other presentations of
K, notably the multiple-conclusion sequent calculus (Read 1995, 229). The
intuitionistic response to this move is that multiple-conclusion systems are
unacceptably classical because they involve sequents that cannot be given a
sufficiently constructive interpretation (see, for example, Tennant 1997, 320).
The classical understanding of Γ � B1, . . . , Bn is that the commas to the
right of the turnstile function as implicit disjunctions. But for the derivation
of such a disjunction from Γ to satisfy the bhk interpretation (at least in
cases where Γ contains only nondisjunctive propositions), a derivation of a
specific disjunct from Γ must exist. This need not be the case here: The
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multiple-conclusion sequent calculus for K validates inferences which do not
meet this constraint. There are two natural responses to this argument. First,
intuitionistic squeamishness about multiple conclusions seems misplaced, since
although Gentzen characterized the difference between the sequent calculi for
J and K as a restriction of the former to single conclusions, the minimum
necessary constraint on the multiple-conclusion presentation of K required
to yield a presentation of J is much more modest. All that is required is
that applications of the right-hand introduction rules for → and ∀ (and ¬, if
negation is taken as primitive) be restricted to situations in which there is
only one wff on the right-hand side of the concluding sequent.94 Thus there is
no proof-theoretic objection to multiple-conclusion presentations of J. Indeed,
there are such systems,95 and they can be shown to be sound and complete
with respect to the standard Kripke semantics for J, so it cannot readily be
argued that they lack an interpretation.

Second, and more important, this intuitionistic complaint misses the point.
The original claim was that separability was a general proof-theoretic property,
exhibited by any reasonable system, but failing for K. We have seen that K
has this property in multiple-conclusion presentation. Even if the presentation
was intuitionistically unacceptable, the most that would be established is that
separability fails for K, if intuitionism is right. How could the classicist be
moved by such a conclusion? Less polemically, the intuitionist’s argument rests
on the bhk interpretation of disjunction, and thereby on a constructive account
of truth. Once more the debate has been shifted to the choice of inferential goal.

What of the other proof-theoretic desiderata? In their standard formulations,
inversion, normalizability, and harmony all fail for K. However, in a similar
vein to the defense of classical separability, arguments have been produced to
show that intuitively plausible analogs hold for some presentations of K (and
indeed sometimes fail for J).96 In each case a similar intuitionistic retort could
be made, that nonconstructivist principles have been invoked.97 But by the
same token this would be question-begging unless buttressed by independent
argument for the adoption of the constructive account of truth. Again the
focus of the argument would be shifted from comparison of the formal systems
to choice of inferential goal.

So, in practice, considerations of proof theory fail to shift the debate from
a conflict within the background theories as to the inferential goal best fitted
to the understanding of natural argumentation to a conflict between formal
systems over the formalization of that argumentation. This is the character
that one would expect revisionism to exhibit in an heuristic context focused
on the subject matter of logic.

2.1.4. The Character of Intuitionistic Revisionism

So far we have primarily been concerned with formal aspects of the advocacy
of J: syntax, semantics, and proof theory. However, we saw in 1.1 that research
programs for rough logics must contain additional features: a parsing theory,
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an inferential goal, and background theories. As we shall see in the remainder
of this chapter, the advocates of most nonclassical logics wish to retain broadly
classical background theories. Hence they seek to modify the inferential goal as
little as possible, and to revise the formal system in such a way as to permit a
more natural and transparent parsing theory. We have shown that the advocacy
of J is a very different enterprise. Both the mathematical constructivist’s and
the semantic antirealist’s programs are motivated by a substantial revision of
the background theory, which in both cases induces a strongly nonclassical
inferential goal. Hence the former wishes to stipulate in his background theory
that mathematics be constructive rather than classical, and therefore requires
a logic that pursues proof rather than truth; and the latter insists in his
background theory that the antirealist theory of meaning is the only coherent
option, and therefore requires a logic that pursues warranted assertibility rather
than epistemically unconstrained truth. In both cases the change of inferential
goal can be represented as substituting something else for (classical) truth, or as
offering a nonclassical account of truth, but this is an essentially terminological
distinction: Either way, the inferential goal has been substantially revised. Such
fundamental revisions will in turn affect the choice of parsing theory—if the
formal system is designed to respect a different principle, natural argumentation
will have to be cashed out in different terms. However, in contrast with other
nonclassical programs, this change is of no special importance to the overall
revision, and is not intended to achieve any particular gain of transparency or
simplicity.

In 2.1.1 we demonstrated that the standard arguments for intuitionistic
revisionism strongly conform with this picture. In both cases the argument
originates outside the domain of logic: The constructivist wishes to challenge
classical mathematics; the antirealist wishes to challenge the realist theory of
meaning. Hence the revision can be placed in the final level of the hierarchy of
revision sketched in 1.6: “change of subject matter.”98 A characteristic feature
of this species of revisionism is that the positive heuristic, which dictates
the methodology of the ongoing logical research program, is focused more
specifically on a revision of the background, and less on the details of the
preferred system, than is the case with more modest revisions.

In 1.3 we stressed the importance of distinguishing between differently
focused programs, or different stages in the development of a program. Our
concern here is with the intuitionistic program at the point of its divergence
from the classical: an ongoing schema for logical development, rather than the
sort of completed organon by which the salient motivating background theory
might be furthered—if that is even attainable. This schema can be conceived of
either historically, as (close to) the earliest stage of the intuitionistic program at
which it is properly distinguishable from the classical program; or conceptually
as (close to) the initial revision of the latter-day, more compelling, classical
program.

Several points can be advanced in favor of this analysis of the intuitionistic
programs. Within the constructivist program we have seen that there has been
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considerable promotion of a conception of logic as subordinate to mathematics.
This has resulted in toleration of disputes as to which logic is most appropriate
for the success of the program (Heyting 1956, 74, and 2.1.1). Within the
antirealist program it has been argued that the program could be conducted
without the adoption of nonclassical logic.99 This implies that the adoption of
J is not required for continuation of the antirealist program, and thereby that
the choice of logic is not part of the indispensable hard core of that program.
Incidentally, this version of the antirealist program, and the dual suggestion
at the end of 2.1.1, which combined J with a classical background, would
confront J directly with K. However, this direct dispute between the formal
systems would be fomented only by the counterfactual expedient of employing
one or other system in an unfamiliar program. Finally, arguments have been
advanced that attempt to concentrate the dispute between J and K within
the domain of logic. However, we saw in the last section that these arguments
invariably require the invocation of assumptions from the background theory
to have any prospect of success. Try as we might, the dispute between J and
K keeps returning to the choice of inferential goal, and thereby to the content
of the background theory. This would be surprising if the two systems were
rival formalizations of a common inferential practice, as many other disputes
might be characterized. In this case it serves to reinforce an analysis of the
dispute as intrinsically extralogical.

Where two logical research programs differ in inferential goal it is reasonable
to ask whether either goal might be represented within the other system. We
have seen how this might be achieved for K and J, through extension by a
modal constant of provability (or “ancillary” use of constructive constants)
and by classical recapture, respectively. If the difference of goal was the most
fundamental difference between these two programs, such a strategy would be
sufficient to effect a reconciliation. If systems from both programs could whole-
heartedly reproduce the inferential practices of the other program, it would be
straightforward to find bridge laws between the two salient systems, making
the choice of program little more than conventional. However, we have had
little success in pursuit of this aim. We showed in 2.1.2 that J¬,→,∧,∀ cannot
be equivalent to K, despite an initial impression to the contrary. Conversely, it
is highly unlikely that an extension of K would be intuitionistically acceptable.
If the relationship between the two programs was asymmetric, such that one
program could reproduce the inferential practice of the other, but not vice
versa, this could be regarded as an impressive feat of Lakatosian monster-
exploiting by the more successful program. It could be argued that the gmt

translation of J into S4 shows that the classical program, of which S4 is a part,
has achieved this feat. However, although this move makes the intuitionistic
program intelligible to the classicist, it is difficult to see it as doing justice to
that program. In particular it would ignore the intuitionist’s criticism of the
classical principles which underpin S4 as much as they do K.

The underlying obstacle to both of these attempts to defuse the dispute
through a reductive analysis of the intuitionistic program is that they do not



656 The Development of Modern Logic

take account of the change of background theory which is intrinsic to the conflict.
Any viable attempt at reconciling the classical and intuitionistic programs
must also reconcile their background theories. This is not facilitated by the
presence of flat contradictions of familiar aspects of the classical background
within the hard core of both intuitionistic programs. There is still some scope
for maneuver since, unlike the intuitionistic programs, the classical program
need not be construed as placing its background theories within the irrevisable
positive heuristic. Conversely, the intuitionistic programs, unlike their classical
counterpart, do not require that the formal system be irrevisable. Hence it
may be possible to retain the irrevisable components of both programs, by
pursuing K within an antirealist program (Wright 1982, 468ff.). This effects a
reconciliation, but at the expense of abandoning J altogether.

2.2. Quantum Logic
The promise held out by the quantum-logical program is that by employing
a novel logic derived from the mathematics of quantum mechanics (qm) we
may resist the counterintuitive metaphysical consequences normally associated
with the adoption of this physical theory. Our chief concern in discussing the
program is not so much its success or failure as its conceptual viability. Is the
proposed move a true revision of logic or not? First we discuss the background
to quantum logic, and introduce a specific formal system, QL.100

2.2.1. What Is Quantum Logic?

The logical system we shall be concerned with was first proposed by John
von Neumann in 1932.101 In collaboration with Garrett Birkhoff in 1936 he
showed how a formal system could be derived from the mathematics of qm,
but this work was not pursued further for at least another 20 years. qm is
concerned with certain measurable properties—observables—such as position,
momentum, and spin, which can be given a numerical value by experiment. A
quantum mechanical system, S, consisting of one or more particles, has a full
description in its state, which is given by a wave function Ψ(ri, t) where ri
are the positions of the particles and t is the time. The solution space of the
wave function is the Hilbert space H(S).102 Although the wave function itself
is unobservable, observables are represented by self-adjoint operators on the
wave function. The range of each of these operators is a subspace of H(S),
that is, a topologically closed set of the vectors of H(S), one which is closed
under addition of vectors and multiplication by scalars. Hence these subspaces
yield H(S) when taken together.

Thus Birkhoff and von Neumann were able to observe that there is a one-
to-one correspondence between (true) elementary propositions of S, U(m, r, t),
which attribute the value r to some measurable physical magnitude m at
time t, and these subspaces of H(S). Hence, U is true iff the subspace to which
it corresponds, h(U), is a subspace of H(S); 
 U is valid iff h(U) = H(S),
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and U semantically entails V iff h(U) ⊆ h(V ). Birkhoff and von Neumann
proceed to show that the subspaces of H(S) may be arranged in a lattice,
L(S), by employment of set-theoretic operations.103 Set-theoretic inclusion,
⊆, is reflexive, transitive, and antisymmetric, and may therefore serve as a
partial ordering, ≤, on H(S). The intersection of two subspaces, h(U) ∩ h(V ),
is itself a subspace, and represents their greatest lower bound. Although the
union of two subspaces is not a subspace, we can use a similar operation, the
linear union of two subspaces, h(U)⊕h(V ), which results in the space spanned
by the union set of both their basis vectors. This is the smallest subspace of
H(S) containing both h(U) and h(V ), and therefore their least upper bound.
Hence L(S) is a lattice.

In addition, Birkhoff and von Neumann demonstrate that L(S) is ortho-
complemented. Orthocomplemented lattices have a greatest or unit element, %,
a least or zero element, ⊥, and every element a has an orthocomplement a⊥,
such that a⊥⊥ = a; the least upper bound of a and a⊥ is % and their greatest
lower bound is ⊥. H(S) itself contains all its subspaces (obviously) and thus
corresponds to %. The null-space 0, which contains only the null-vector, is
a subspace of all Hilbert (sub)spaces and may therefore serve as ⊥. The set-
theoretic complement of a subspace is not itself a subspace, but again we can
use an analogous operation: The orthogonal complement of a subspace, h(U)⊥,
is the subspace consisting of the vectors orthogonal to the elements of h(U).
(Two vectors are orthogonal if their inner product is the null vector.) Hence
L(S) is an orthocomplemented lattice, or ortholattice. However, it is with
the substitution of orthocomplementation for set-theoretic complementation
that we have made our greatest departure yet from the orthodoxies of classical
set theory, and indirectly, classical mechanics and classical logic. Not only do
complementation and orthocomplementation diverge sharply in their results,
but in orthogonality we have introduced an element alien to set theory.

The ortholattice L(S) may be taken as the algebraic presentation of a logic,
QL. Hence the correspondence between the propositions of S, U , and the
subspaces of H(S), h(U), can be extended by identifying logical constants
with features of the lattice of subspaces as follows: ¬U is defined as the
proposition V such that h(V ) = h(U)⊥; U ∧ V is defined as W such that
h(W ) = h(U) ∩ h(V ); U ∨ V is defined as W such that h(W ) = h(U)⊕ h(V );
U ⊃ V ≡def ¬U ∨ (U ∧ V );104 quantifiers are introduced by analogy with ∧
and ∨. The logic thus defined diverges from K, most notably in disjunction.
Pertinently, the distributive law, A∧ (B ∨C) �� (A∧B)∨ (A∧C), fails where
the dimension of H(S) is greater than 1, as it is in all practical cases. (More
fundamentally, whereas the Lindenbaum algebra of K is Boolean, that of QL
is a partial Boolean algebra (Bub 1991, 27)—that is, a system of Boolean
algebrae overlapping in a certain way—and is not embeddable into any Boolean
algebra (Kochen and Specker 1967). Failure of distributivity is not necessarily
the most acute account of the divergence of QL from K. Indeed, on a radical
interpretation (Bub 1989, 202), defining validity over partial Boolean algebrae
rather than Boolean algebrae, distributivity would be valid in QL.)
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Birkhoff and von Neumann do not propose QL as an explicit revision of K,
let alone as a resolution of the anomalies of qm. An argument for the latter
position was subsequently advanced by Finkelstein (1969, 204ff.), and used
by Hilary Putnam to motivate his revisionist program.105 This approach is
the most philosophically conspicuous defense of QL, but it has been shown
to be substantially flawed (see Gardner 1971; Gibbins and Pearson 1981; and
Redhead 1994, 167f. for one important line of criticism, or Gibbins 1987, 148f.;
Sklar 1992, 200 for another). However, the success of this application of QL is
independent of the program’s philosophical viability. It is this viability, not
whether QL may serve to resolve the anomalies of qm, with which we are
principally concerned. It is plausible to suppose that these are also Putnam’s
priorities, since his real agenda is to show that his rejection of a priori knowledge
extends to logic (see Putnam 1975, x). This explains why QL is ignored in
(Putnam 1965), a paper on qm, despite being discussed in (Putnam 1962), a
paper on epistemology, and why Putnam has been such a fair-weather friend
to the quantum logical program: He needs to show the revisability of logic
on empirical grounds, he does not need it to be actually revised. Hence the
philosophical viability of the quantum logical program is enough to achieve
Putnam’s purposes, even if the program does not succeed on its own terms.

However, historically, it has been the promise of a realist understanding of
qm that has made QL most attractive, not the promise that the paradoxes of
quantum mechanics would dissipate if addressed “quantum-logically.” And this
approach still holds the most promise for the future of the program (see Dickson
2001 for an up-to-date defense). It is a notorious feature of qm that some
propositions are complementary, or incompatible with each other. For instance,
it may be possible to fully determine either the position or the momentum of
a particle, but they cannot be determined simultaneously. Employment of QL
maintains this feature because the subspace which represents the conjunction
of a proposition stating the position of a particle with a proposition stating
the momentum of that particle is zero dimensional, hence the conjunction
is logically false. Thus either proposition may be true, but their conjunction
must be false, as we would expect, since it corresponds to an observation we
cannot perform.

2.2.2. Is Quantum Logic Compatible with Realism?

Is the combination of the QL program with a realist metaphysics tenable?
To what extent is the quantum logician committed to this combination? For
example, Putnam (1994, 276) renders the true proposition that an observable
has a value by the disjunction q1 ∨ q2 ∨ · · · ∨ qN , where each qi attributes a
different value to the observable, ensuring that there is some j for which qj
is true. However which j may only be clear sub specie æternitatis. So far, so
nonclassical: The tension with realism arises when we attempt to provide the
nondistributive calculus of QL with a semantics. The Kochen–Specker (1967)
argument shows that no such semantics can satisfy the realist “admissibility
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criterion” that a truth valuation will only be admissible if it maps propositions
onto the two element Boolean algebra of 0 and 1. Because QL is explicitly
characterized by its non-Boolean structure, this “criterion” may look like an
instance of the reprehensible strategy of attempting to discredit a revisionist
proposal by assuming a contested principle in the metalanguage.

However, as Putnam has more recently argued, following a suggestion from
Dummett, the admissibility criterion is necessary if we are to be able—even if
only in our imagination—fully to visualize the quantum state of affairs.

[As a metaphysical realist] whenever I guess that a disjunction is
true, I must guess that a disjunct—a specified disjunct—is true.
Whenever I guess that a statement is true, I must guess that its
negation is false. If I guess that a conjunction is true, I must guess
that every conjunct is true, and if I guess that two compatible
propositions are true, I must guess that their conjunction is true.
And, since S ∨ ¬S is a tautology in quantum logic, I must guess
that one of each pair of propositions of the form S, ¬S is true. But
now, even if the world somehow does not obey Boolean logic, my
guesses will certainly do so. (Putnam 1994, 279)106

Dummett’s point is that the realist stance obliges us to adopt a Boolean
algebra at least for our “guesses” about the truth values of propositions. For,
if we believe, as realists, that every proposition of qm has a determinate (if
perhaps unverifiable) truth value, then it should not be impossible, but merely
staggeringly unlikely, that we should correctly guess the truth value of every
such proposition. However our realism would constrain these guesses. Hence, if
we guess that some disjunction is true, for instance, we must also guess that at
least one specific disjunct is true, to maintain our hypothesis of the determinate
truth value of qm propositions. But this means that realism would entail that
our guesses formed a two-element Boolean algebra. So our guesses would
comprise a mapping from QL to such an algebra, which is impossible. Hence
the combination of a realist metaphysics with a non-Boolean metalanguage
would oblige us to deny that we could even imaginatively fully visualize the
world our metaphysics hypothesized. This would render us Boolean creatures
in a (to us necessarily ineffable) non-Boolean world. (The later) Putnam takes
this to be a reductio of the QL program.

In outline, the Kochen–Specker argument shows that QL cannot be given
a Boolean semantics, and the “guessing” argument shows that this makes
QL incompatible with realism. Several lines of response to this impasse have
been advanced. The Kochen–Specker argument depends on a constraint on
value assignments, the functional composition principle, which states that
the operators of qm and the values possessed by the corresponding observ-
ables have a common algebraic structure. This principle depends on three
assumptions (Redhead 1987, 133): (1) the so-called realist assumption that
all observables have sharp values in all states; (2) a one-one correspondence
between operators and observables; and (3) the existence of an observable
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possessing and measured by a given value for every operator yielding that
value. If any of these assumptions is abandoned, then the Kochen–Specker
argument will be blocked.

If the “realist” assumption (1) is dropped, the Kochen–Specker argument is
blocked by relating the value of the observable to the context in which it is
measured. This leads in the direction of the Copenhagen interpretation of qm,
and away from the chief selling point of QL, the retention of our “common
sense” metaphysical intuitions. If QL is to be promoted as a revisionary
program, rather than a practically convenient calculus, any response to the
Kochen–Specker argument which yields the Copenhagen interpretation must
be rejected. However, that is not to say that dropping assumption (1) is in
itself irreconcilable with our intuitions.

Dropping assumption (2) has been suggested by Bas van Fraassen (1973,
cited in Redhead 1987, 134f.). This results in many different observables
corresponding to each nonmaximal operator. (An operator is maximal if it cor-
responds to a complete set of commuting observables. Thus an operator yielding
both the magnitude of the momentum of a particle and one of the momentum’s
Cartesian components is maximal, whereas an operator yielding only one of
these values is nonmaximal.) Each of these “split” observables is identified by
its relationship to a different maximal operator. Since the Kochen–Specker
argument cannot be derived from consideration of maximal operators alone,
it must be blocked by this splitting of observables (Redhead 1987, 134, citing
Maczynski 1971). As a cautionary consideration, it has been demonstrated that
this position entails accepting some form of nonlocality, and thereby perhaps
sacrificing one of our common sense intuitions (Redhead 1987, 139ff., citing
Heywood and Redhead 1983). Yet this falls far short of a demonstration that
the main freight of these intuitions is incompatible with QL.

Arthur Fine (1974, 264) proposes that we drop assumption (3), in which
case there would be a unique observable corresponding to every nonmaximal
operator, but the measurement procedure associated with that operator would
not necessarily yield the correct value of the observable. Redhead (1987,
135f.) complains that this scheme does not offer any explanation of which
measurements do in fact yield values obtaining in the world. However, this
would seem to misread Fine’s strategy, which is to deny the need to talk in
terms of “real,” “possessed” values.

The suspicion addressed in this section was that the quantum logical program
may be fundamentally incoherent, because inescapable features of QL were
incompatible with the assumption of realism in the hard core of its philosophical
background. However, we have shown that there are at least two promising
strategies for defusing the Kochen–Specker argument without abandoning
realism. This blocks the conclusion of the “guessing” argument, that for a
realist the shift to the quantum logical program would render the reality
of the world ineffable. These methods may have difficulties of their own,
but the combination of realism and QL is clearly not inherently unstable.
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An alternative would be to concede the ineffability of the world, disputing
whether this is untenable, and whether it is incompatible with realism. Properly
understood, the assumption of realism in the philosophical background of a
quantum logical theory does not make K the only acceptable calculus, which
suggests that the metaphysical indebtedness of QL is not as great as suspected.

2.2.3. (2b) or Not (2b)?

We shall now turn to a more familiar critical strategy. In his criticism of
Putnam’s advocacy of quantum logic, Dummett (1976a, 285) characterizes the
possibilities for logical revision as follows:

Let us assume . . . a revision from classical to some non-standard
logic: let us call their advocates C and N . Then there are four
possible cases according to which of the following two pairs of
alternatives hold. (1) N rejects the classical meanings of the logical
constants and proposes modified ones; or (2) N admits the classical
meanings as intelligible, but proposes modified ones as more, or at
least equally, interesting. And (a) C rejects N ’s modified meanings
as illegitimate or unintelligible; or (b) he admits them as intelligible,
alongside the unmodified classical meanings. If cases (2) and (b)
both hold, then we are in effect in a position in which only relabeling
is involved.

“Relabeling” is defined by Dummett (ibid.) as a merely terminological change,
such that although we may relinquish some sentences, or accept other, previ-
ously rejected sentences, we do not change our attitude to any propositions.
Such a change would be on a par with translation; we wouldn’t expect the
German edition of a logic textbook to describe different systems of logic from
its English counterpart—although the sentences would be different—because
we would hope that the same propositions were expressed.

As Dummett notes, intuitionistic logic satisfies (1), since its proponents
affect to find K unintelligible. (Interestingly, he doesn’t ask whether it falls
into [1a] or [1b]. We saw in 2.1.2 that there is a well-known translation of
J into a modal extension of K, so [1b] would appear the more appropriate.
A simplistic analysis might then suggest that such a facility of one logic to
encompass another is strong evidence for its superiority. That this analysis
is mistaken [as discussed in 2.1.4] is in itself suggestive that unintelligibility
is not a necessary condition for significant dissent.) Quantum logic, however,
Dummett argues to be an example of (2b), and thus of no more than heuristic
usefulness.

Dummett argues that the quantum logical program must be tolerant of
the introduction of the classical constants since it is committed to a realist
understanding of atomic propositions (that is, propositions attributing some
determinate value to a physical quantity of a system at a certain time).107 Of
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course, Putnam denies this imputation (see his 1974 in particular); but has
he failed to recognize to how much he is committed to K? On Dummett’s
account, although QL precludes the conjunction of propositions representing
the simultaneous measurement of incommensurable values of a system, never-
theless the values that such measurements would yield, were they possible, are
a matter of fact. If we measure the momentum of a particle, we are necessarily
ignorant of the position that it had at the time of the measurement; but of all
the propositions attributing a position to it at that time, one and only one is
true. Dummett (1976a, 272) argues that such epistemological realism ensures
that this epistemically unconstrained truth must be preserved by a classical
logic. Thus the actual logic of the envisaged situation is classical and the QL
calculus merely an addendum, tracking our (necessarily incomplete) knowledge
of that situation. Crucially, the (realist) quantum logician must recognize K
as intelligible, if that is the logic of how things really are. Conversely, the
classicist should have no objection to the employment of the QL constants
as supplementary to his own, providing the two are not confused. Hence QL
is (2b).

We discuss Dummett’s argument in two stages: first, by questioning whether
QL really is (2b); second by disputing whether this assessment is as damaging as
he suggests. In the last section we addressed an argument similar to the first of
these stages: that, on realist assumptions, QL collapses into K. Here Dummett
only endorses a weaker result: that the proponent of QL must concede the
intelligibility of K. An uncompromising response to both arguments would be
to accept the Kochen–Specker argument and the conclusion of the “guessing”
argument, and thereby concede our inability fully to describe the world. On
this understanding the ultimate structure of the world would be non-Boolean,
committing us to the rejection of one formulation of a realist stance. However,
many of our common-sense intuitions would be preserved: Sharp values would
be ascribed to all observables in all states, measurement would be noncontextual
and there would not need to be any action at a distance. Such an approach
would make QL self-sufficient, in that all levels of reality would be described by
the same system. This might be seen as exhibiting a confidence missing from
an account on which the most fundamental level was Boolean, and therefore
described by a different logic.108

However, the “damaging” concession of K’s intelligibility might still seem
to be inevitable, since the conceptual resources of K are immediately available
to QL: K is recaptured as the system generated by compatible propositions
of QL (see Delmas-Rigoutsos 1997, 65f. for a proof of this result). But as a
purely formal result this need not undermine the integrity of the quantum
logical program any more than the recapture of K in J undermines that of the
intuitionist program. Formal equivalence to a proper subsystem is not sufficient
for intelligibility. This is why the “center left” response to the recapture result—
accepting the formal connection, while flatly denying mutual intelligibility (see
1.4)—is available in both programs. Hence recapture does not entail that (2b)
is satisfied.
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The far-reaching consequences of accepting the conclusion of the “guessing”
argument, as Putnam (1994, 295 n65) subsequently notes, mark a disanalogy
with the transition to non-Euclidean geometry which motivated his advocacy
of QL. However, this need not vitiate the overall program. An allied strategy
would be to side-step the Kochen–Specker argument by giving QL a many-
valued semantics.109 To generalize this point, we may observe that there is
a variety of possible candidates for a calculus on which a semantics for QL
might be constructed, and that that which is most efficient at preserving our
common sense physical intuitions need not be K. But if the semantics for QL
are nonclassical, then Dummett’s argument that QL meets his condition (2)
does not go through. He would only be able to show that QL were (2b) if the
paracomplete calculus which provided its semantics could be shown to be so.

However ingenious this may be, it proceeds on the assumption that Dum-
mett’s analysis of logical difference is unexceptionable. As we have seen, a
relationship of intelligibility is central to this account. Systems which are
mutually intelligible (2b) are seen as mere terminological relabellings, and not
interestingly different. This sort of logical difference is recognizable as that
of Quine’s (1970, 81) heterodox logician who employs “and” for disjunction
and “or” for conjunction. Quine’s antirevisionist thesis is that all apparent
logical revision can be so characterized; of course, Dummett wants to leave
some scope for logical revision. Mutually unintelligible systems (1a) are in-
commensurable at the level of logic, and represent a dispute at the level of
the theory of meaning (Dummett 1976a, 288f.). We have already observed
that J, naturally Dummett’s paradigm example of a dispute at the level of
the theory of meaning, is (1b) rather than (1a), that is, it is intelligible to the
classicist. By parity, we may assume that (2a) logics are treated similarly to
(1b) logics, and thus that whenever K and the nonstandard system are not
mutually intelligible, they receive the same analysis as mutually unintelligible
systems. Thus Dummett’s position is a simple dilemma: Either the difference
between the nonstandard and classical systems is merely relabeling, or the
two systems are utterly incommensurable. Like Cardinal Newman (1839), he
holds that “when men understand what each other mean, they see . . . that
controversy is either superfluous or hopeless.” We shall suggest that this is a
false dilemma.

Dummett’s position is reminiscent of the account of the divergence of scien-
tific theories advanced by Feyerabend.110 On this account, when two theories
differ significantly there are changes of meaning in apparently common terms
which are sufficiently substantial to make the two theories incommensurable.
That is to say that neither theory is intelligible from the perspective of a
practitioner of the other theory. Hence on Feyerabend’s account we must
forfeit two of the familiar strategies for theory comparison: consistency and
derivability. If the theories are incommensurable they cannot be inconsistent,
nor can one encompass the other. Some of Feyerabend’s critics (for example,
Laudan 1977, 143) have concluded that this amounts to an abandonment of any
possibility of objective comparison. In fact, he advanced a variety of strategies
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for theory comparison, most of which appeal to some broader common factor
between theories which are not semantically comparable.111 This analogy may
seem strained, since Dummett’s basis of comparison is the theory of meaning
and he explicitly rejects any role for empirical considerations, whereas at
least one of Feyerabend’s bases of comparison is empirical observation and he
explicitly rejects semantic comparability.112 However, the crucial difference
is that Dummett is talking about logic, whereas Feyerabend is talking about
empirical science. In both cases they argue that theories should be assessed by
their fit to the appropriate normative constraints since the terms in which the
theories are expressed are semantically incomparable. The theory of meaning
is a normative constraint on logic, just as empirical observation is a normative
constraint on science; logical theories are expressed in terms of logical constants
which, for Dummett, are semantically incomparable, because not mutually
intelligible in cases of genuine difference, just as for Feyerabend scientific terms
are semantically incomparable, since in cases of genuine difference the theories
in which they occur are incommensurable.

A corollary of this account of theory appraisal is that there are two possibili-
ties for theory divergence. We may disagree either about which set of normative
criteria is appropriate or we may disagree about which theory best captures an
agreed set of criteria. But Dummett (1976a, 288) is exclusively concerned with
the former, hence the only prospect he sees for QL is in the revision of the
theory of meaning.113 Should the other species of disagreement be so readily
dismissed? It may seem eccentric to regard K and QL as competitors to be
appraised by exactly the same class of criteria, although in other disputes,
such as that with relevance logic, this seems more plausible. However, the QL
case does not exhibit the radical discontinuity of normative criteria that char-
acterizes the dispute with intuitionistic logic. The Dummettian classification
excludes the possibility of the coevolution of logical theory and normative
criteria. Where the dispute is not explicitly couched in terms of the revision
of the purpose for which the logic is to be employed, it is not unreasonable
to expect that, while key features of the criteria are preserved, others may
be revised in the light of developments in the theory. In this evolutionary
rather than revolutionary scenario we would expect that many—and hope that
all—of the meanings of the logical constants may be preserved.

2.2.4. Quantum Logic and Meaning Variance

In pursuit of an account of evolutionary change, the analogy between Dum-
mett’s account of logical revision and Feyerabend’s account of scientific theory
revision is once more of use. In response to Feyerabend’s thesis of the semantic
incomparability of theoretical terms, his critics advanced formal accounts of
how terms may be retained across the transition between theories. For example,
Arthur Fine (1967, 237f.) argues that

Term S in theory T is carried over into the theory T ′ [if] the
following circumstances are present:
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1. There is a characterization of S in T that is
a. both meaningful and true in T ′, and
b. such that, in appropriate and typical situations in which
T is employed, this characterization could be offered as a
definition of S or as an explanation of what S means in T .

2. There are conditions C that can be formulated in T ′, such that
a. objects of T ′ that satisfy C are suitable objects for T ;

i. if S is a predicate term, then, whenever objects satisfying
C satisfy S in T , they satisfy S in T ′;

ii. if S is an operation term, then the result in T of applying
S to objects satisfying C is the same as the result in T ′
of applying S to the same objects;

iii. if S is a term for a magnitude, then. . .114

Can we apply this analysis to logical revision? Further assessment will require
us to cash it out in logical terms. Thus theory T becomes K, theory T ′
becomes QL, and the terms, S, whose meanings we would wish to see carried
over, are the standard metalogical vocabulary—whose definitions are common
to both systems and thus readily satisfy both clauses—and all the logical
constants. Introduction and elimination rules for the constants in a natural
deduction or sequent calculus system would be the most plausible candidates
for characterizations meeting Fine’s clause (1)(b).

Since Gentzen, there has been an extensive program of looking for the
meaning of the logical constants in these sequent calculus or natural deduction
operational rules. In so far as this amounts to an attempt to reduce semantics
to syntax, it has met with considerable problems.115 However, as Fine is at
pains to point out, our present requirements fall short of a demand for the
meaning of S, and hence for the meanings of the constants; thus more modest
proposals, such as that of Kosta Došen (1989, 1997), should be adequate. He
defends syntactic “ultimate analyses” as sufficiency conditions for the identity
of the constants. The operational rules for a constant in a sequent calculus
presentation show how an ultimate analysis in terms of the structural rules may
be conducted. Hence the question of the identity of the system is separated
from that of the identity of the constants, showing how the same constants
could figure in more than one system. Identical constants can occur in distinct
systems if their operational rules are preserved. As Došen (1989, 367) shows,
the relevance system LR can be derived from the same class of operational
rules as K, with the difference between the logics occurring wholly at the
level of the structural rules. Hence we have, in Došen’s “ultimate analyses,”
characterizations of the constants of K that are meaningful and true in LR,
and which could be offered as an explanation of what the constants mean
in K. This satisfies Fine’s clause (1); if we specify classes of propositions
with sufficient care we should also be able to provide a condition C which
recaptures K and thereby meets clause (2). Therefore, if we trust Fine’s analysis
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to provide sufficient grounds for meaning retention, we have a demonstration
that Dummett’s classification is not exhaustive, since the transition from K
to LR is not merely a matter of relabeling. Can QL be similarly analyzed, or
must it fall into the Dummettian dilemma of mere heuristic extension versus
fundamental revision of normative constraints?

Sequent calculus and natural deduction presentations have been developed
for QL (notably in Nishimura 1980, Cutland and Gibbins 1982, and Delmas-
Rigoutsos 1997). However, none of these systems shares the operational rules
of K: Either an additional nonclassical operational rule is required for negation
or additional clauses concerning the compatibility of the premisses must be
introduced. Although it would be premature to rule out future developments
in this field, we do not yet have a system in which the constants share an
“ultimate analysis” with those of K. Hence we cannot show that QL meets
Fine’s conditions for meaning invariance as robustly as LR.

However, we may be able to meet these conditions with something less formal.
In Putnam’s (1969, 189f.) original defense of quantum-logical revisionism he
enumerates nine “basic properties” of the constants which hold in QL:

1. p implies p ∨ q;
2. q implies p ∨ q;
3. if p implies r and q implies r, then p ∨ q implies r;

4. p, q together imply p ∧ q;
5. p ∧ q implies p;

6. p ∧ q implies q;

7. p and ¬p never both hold (p ∧ ¬p is a contradiction);

8. (p ∨ ¬p) holds;

9. ¬¬p is equivalent to p.

(1), (2), and (3) closely resemble disjunction introduction and elimination;
(4), (5), and (6) closely resemble conjunction introduction and elimination;
(7) closely resembles negation elimination; and (9) is double negation elimina-
tion. To this we may add something approximating to negation introduction,
say “if p implies absurdity, then ¬p holds,” since by orthocomplementation
p ≤ ⊥ ⇒ % ≤ p⊥. Hence we have characterizations of the salient constants
that are meaningful and true in QL and could be offered as explanations of
their meaning in K; the first clause of the Fine criteria is met.

As we have already observed, compatible QL propositions generate K,
hence we can also meet his second clause by making the recapture condition
C a compatibility relation on the propositions of QL, specifically that for any
a, b meeting C, a ∧ (¬a ∨ b) ≤ b. This can only be “center right” recapture,
since we are seeking to articulate a program which rejects both of Dummett’s
alternatives: unintelligibility, which would mandate a “left-wing” response to
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recapture, and mere relabeling, which would allow “reactionary” recapture
(at most). Thus the constants of QL satisfy at least one characterization of
meaning invariance, and we have a motivation for regarding them as evolving
out of the constants of K rather than as being added onto those constants
as additional terminology. Of course, a program of this character may not
meet with success, but our purpose has been merely to show that it is not
conceptually precluded.

However, Fine’s characterization of meaning invariance is not unique: John
Bell and Michael Hallett (1982, 363ff.) employ a different characterization
to argue that the meaning of negation cannot be preserved by QL. On their
account, a term t which occurs in two structures L and L′ with common
primitives a, b, . . . , and is definable in terms of those primitives in one structure
but not in the other, or is so definable in both but in nonequivalent ways, does
not have the same meaning in both structures. As they show (365), classical
negation and QL negation do not meet their condition. Classical negation
can be defined set-theoretically solely in terms of the partial ordering on its
underlying lattice; QL negation cannot. (As we noted in 2.2.1, it employs an
orthogonality relation, expressive of mutual inconsistency, which corresponds
to the perpendicularity of subspaces of a Hilbert space.) Bell and Hallett’s
condition for meaning invariance is much stronger than Fine’s: It requires not
only the existence of a common characterization of the disputed term, but
also the nonexistence of inequivalent characterizations. Is their condition too
strong?

Margaret Morrison (1986, 406ff.) has an argument that suggests that it
is. She shows that on Bell and Hallett’s account, simultaneity relative to
an observer must change its meaning between Newtonian space-time (nst)
and Minkowski space-time (mst) because it is uniquely definable in terms of
“neither causally precedes” in nst but not in mst. Moreover, it can be shown
that simultaneity cannot be otherwise defined in mst (Malament 1977, 299).
Hence on Bell and Hallett’s account, special relativity does not reconceptualize
the understanding of space-time; it changes the subject of physics. Since this
conclusion is unacceptable, we have a counterexample to their treatment. The
following consideration may reinforce this assessment: Meaning invariance
is claimed in two different sorts of cases: where theories compete with one
another and where one theory succeeds another (Leplin 1969, 73). In the
latter case we would expect the new theory to emerge out of the assumptions
of its predecessor, perhaps retaining enough of the successful parts of that
theory for it to persist as a limit case. In the former case we are comparing
autonomous theories, presumably related as siblings by descent from some
common ancestor, but unlikely to have enough in common for either to be a
limit case of the other.

Although both accounts aim for generality, Bell and Hallett’s is motivated
by competition and Fine’s by transition. This is explicit in Fine (1967, 237),
who presents his task as identifying the “generally discernible circumstances
which hold when a term is retained in the transition from one theory to
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another . . . [and which] themselves provide the rationale for retaining the term.”
Although Bell and Hallett (1982, 363) talk of “the passage from one [theory]
to the other,” their account characterizes the two theories as beginning from a
common set of primitives, a presentation more suggestive of competition than
transition. Furthermore, each account is at its most persuasive when addressing
the scenario by which it was motivated, and, conversely, at its most vulnerable
when addressing the other scenario. As we saw, Morrison’s counterexample to
the Bell and Hallett account is an instance of transition; conversely, criticism
of the Fine account typically employs an example of competition.116 There
is, of course, a sense in which K and QL are competing systems, but the
basis of that competition is precisely that QL purports to supersede K. If
the revisionist program under consideration were to be vindicated, QL would
succeed K just as qm has succeeded classical mechanics. Hence it is Fine’s
account which is better suited to the sort of revision at issue; and it is Fine’s
account that supports our conception of that revision.

The last section began with Dummett’s analysis of the prospects for logical
revisionism in terms of either relabeling or unintelligibility. In this section we
have shown this to be a false dilemma, and argued that the program for the
adoption of QL occupies a middle position. Such a program may not succeed;
but it is at least not conceptually impossible.

2.3. Relevance Logic
Both of the reform programs we have discussed so far have origins more or less
independent of the classical logic research program. In contrast, the programs
of relevance and paraconsistency addressed in the next two sections evolved in
direct response to the perceived shortcomings of classical logic. One result of
this difference is that it is necessary to consider a variety of different formal
systems within each program to gain a convincing sense of either proposal.

2.3.1. Why Make Logic Relevant?

The disagreement which relevance logic has with classical logic is over the
concept of logical consequence itself, or as its original advocates called it,
“entailment.” The two names most commonly associated with the relevance
logic program are those of Alan Ross Anderson and Nuel Belnap. However,
the crucial idea for the program was first voiced by Wilhelm Ackermann in a
paper published in German in 1956, “Begründung einer strengen Implikation,”
that is, a foundation for a rigorous implication. This rigorous implication,
Ackermann wrote,

should express the fact that a logical connection holds between
A and B, that the content of B is part of that of A, or however
one wishes to express it. That has nothing to do with the truth or
falsity of A or B. Thus one should reject the validity of the formula
A → (B → A), since it permits the inference of B → A from A,
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and since the truth of A has nothing to do with whether a logical
connection holds between B and A. (113)

Thus the connective “→” is intended to express the existence of a logical
connection—entailment—between its components. It is, therefore, similar
to the calculus of strict implication in extending classical logic with a new
connective, “→,” sharing Lewis’s dissatisfaction with the power of “⊃” to
express such a connection. However, the theory of “→” differs from that of
“�” (strict implication) in two ways, ways that make the new calculus a rival
and not just a supplement of classical logic.

First, the calculus of entailment, as Anderson and Belnap came to call it,
rejects not only the paradoxes of material implication, such as A→ (B → A),
noted in the quotation from Ackermann, but also the paradoxes of strict
implication. Thus, although A∨¬A and ¬(A∧¬A) are theses, B → (A∨¬A)
and (A ∧ ¬A) → B are not. Actually, the calculus of entailment can be seen
as completing the project that Lewis started but failed to complete. For Lewis
had written in 1914:

That the merely contrary to fact implies anything is repugnant to
common sense. But does the impossible—the absurd supposition—
imply anything and everything? And is the necessarily true, whose
denial is absurd, implied by any proposition whatever? When we
include S9 in our postulates, we assume that this is the case. . . . If
one object to the notion that absurdities imply anything, and that
the necessarily true is implied by anything, then it is only necessary
to substitute M6 . . . for S9. . . . This change will eliminate the above
theorems and others which have a like significance. (Lewis 1914,
245–246)

Even in 1917, he could write: “A relation which does not indicate relevance
of content is merely a connection of ‘truthvalues’, not what we mean by a
‘logical’ relation or ‘inference’ ” (Lewis 1917, 356). Lewis, like MacColl before
him,117 set out a project of relevance, but eventually settled for a system
containing the strict implicational paradoxes. MacColl said he was forced to
this by “the exigencies of logic,”118 Lewis (1914, 246) that such implications
were exemplified in everyday reasoning. Ackermann showed that logic did not
so force them; and Anderson and Belnap (1975, §5) diagnosed the fallacies of
relevance and modality that misled Lewis.

But if, for example, (A ∧ ¬A) → B) is not a valid entailment, then we
should hope that B should not be a logical consequence of A∧¬A either. This
brings us to the second way in which the theory of “→” departs from that of
“�.” Coherence requires us actually to revise the basis of classical consequence
to which “→” is added. All the tautologies in truth-functional connectives are
valid in relevance logic; but the consequence relation is different, even over
the truth-functional vocabulary. A ∧ ¬A 
 B is one consequence which fails;
notoriously, so too is (A ∨B) ∧ ¬A 
 B.
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Lewis’s most famous argument for the validity of A ∧ ¬A → B runs as
follows:

A ∧ ¬A→ A by Simplification
so A ∧ ¬A→ A ∨B by Addition
but A ∧ ¬A→ ¬A by Simplification again
so A ∧ ¬A→ (A ∨B) ∧ ¬A by Adjunction
but (A ∨B) ∧ ¬A→ B often called Disjunctive Syllogism (ds)

or Modus Tollendo Ponens
so A ∧ ¬A→ B by Transitivity (Cut).

We can repeat the argument with 
 in place of →. So if we want to reject the
paradoxes of strict implication by adding a connective “→” for which they
fail, and we want our theory of entailment to reflect, that is, to express in the
language, our theory of consequence, we need to reject both A ∧ ¬A 
 B and,
consequently, (A ∨B) ∧ ¬A 
 B.

However, these two consequences appear to follow immediately both from
Tarski’s conditions on consequence and from his semantic analysis of the
relation (Tarski 1930). First, consider the following moves:

A 
 A by Reflexivity
so A 
 A,B by Monotonicity
hence A,¬A 
 B by ds

so A ∧ ¬A 
 B since the premise set is essentially conjunctive.

We have labeled the central move here “ds,” for it consists in inferring from the
fact that A∨B is a consequence of X (the conclusion set is essentially disjunc-
tive) that B is a consequence of X given ¬A. If that move is legitimate, then
from A∨B 
 A,B we can infer A∨B, ¬A 
 B, that is, ds: (A∨B)∧¬A 
 B.

Establishing the apparent validity of A∧¬A 
 B is even quicker semantically.
For the multiple-conclusion sense of consequence is that X 
 Y whenever every
model of X satisfies some wff in Y , that is, there are no models of X that do
not satisfy some wff in Y . But there are no models of A ∧ ¬A. So there are
none which do not satisfy B. Hence, it seems, A ∧ ¬A 
 B.

There needs to be a twofold revision of the account of 
 to accommodate the
rejection of these inferences as irrelevant. Let us consider the formal account of

 first. On the one hand, monotonicity seems warranted by the fact that the
premise set is intended to be read conjunctively, the conclusion set disjunctively.
For both of the following inferences (commonly referred to as strengthening
the antecedent and addition, respectively) are relevantly valid:

if A 
 B then A ∧ C 
 B,
so, arguably, A,C 
 B
and if A 
 B then A 
 B ∨ C,
so, arguably, A 
 B,C.
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However, accepting monotonicity is problematic, on account of the following
inferences (provable by the deduction theorem and ds):

if A,B 
 A then A 
 B → A (Positive Paradox)
and if A 
 A,B then A,¬A 
 B (Ex Falso Quodlibet)
whence ¬A 
 A→ B. (Negative Paradox).

All three conclusions are relevantly unacceptable, so some move in their
deduction must be rejected.

In both cases (monotonicity coupled with the deduction theorem, on the
one hand, and coupled with ds on the other), the diagnosis offered by the
program of relevance logic was that there is an equivocation, manifested in
the use of sets as the components of the consequence relation. Monotonicity is
valid, if one thinks of the terms of the consequence relation extensionally, as
simply sets of premises and conclusions; but a tighter connection between their
constituents is needed to warrant the deduction theorem (or conditional proof )
and ds. Compare strengthening the antecedent with the following thought.
Take the classically valid move of importation:

A ∧B → C 
 A→ (B → C).

Let C = A; then since by strengthening the antecedent, A ∧ B → A is valid,
we can infer A→ (B → A), positive paradox. So importation is not relevantly
valid. What is needed is some other (in fact, stronger) connection between A
and B, one not subject to strengthening the antecedent (and monotonicity).
Let us write A ◦B for this connection (connective)—we call it “fusion.” Then

A ◦B → C 
 A→ (B → C)

is relevantly valid. Correspondingly, we need a similar connection between
premise-formulae. Let us continue to use comma (,) for extensional combination
(i.e., set union) and introduce semicolon (;) for this intensional connection.
Then premise-collections are built up in two ways, forming what we can call
“bunches,” intensional or I-bunches and extensional or E-bunches (i.e., sets):

1. any wff is an I-bunch,
2. if X, Y are bunches, X;Y is an I-bunch,
3. any nonempty set of bunches is an E-bunch,
4. nothing else is a bunch.

Thus bunches are the appropriate objects for premise-combination. Can they
also act as conclusion-combination? Multiple conclusions are disjunctive. Ex-
tensional disjunction is the familiar truth-function, ∨. What is intensional
disjunction? It is usually written “+,” it resists addition (just as fusion re-
sists strengthening the antecedent), and it satisfies ds (just as fusion satisfies
conditional proof ):

from A→ B + C we can relevantly infer A ◦ ¬B → C,
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and
from X 
 B;Z we can relevantly infer X;¬B 
 Z.

Ex falso quodlibet and negative paradox are blocked by the failure of addition
for “+” (and monotonicity for “;”).

Let X[Y ] denote a bunch X containing a subbunch Y at a distinguished
place.119 Then we can rewrite Tarski’s conditions on consequence in a relevantly
acceptable way as follows:

X 
 X (Reflexivity)
if X[Y ] 
 Z[W ] then X[Y ′] 
 Z[W ′] (Monotonicity),

where Y ⊆ Y ′ and W ⊆W ′, that is, Y ′, W ′ are E-bunches containing Y , W ,
respectively, and

if X[Y ] 
 Z and V 
 Y then X[V ] 
 Z.120 (Cut)

Compactness and substitutivity remain as before.121

So much for the formal theory. We still have a semantic puzzle, to solve
which we need a revised version of the semantics. If X 
 Y holds whenever
every model of X makes some member of Y true, how can efq fail?—indeed,
if X and Y are now bunches, what is the semantic account of consequence?

Let us focus on efq first: A ∧ ¬A 
 B. To invalidate this, it seems we must
make A ∧ ¬A true and B false. But surely we cannot make A ∧ ¬A true?—
that is why efq is thought to be valid. The solution comes from Kripke’s
semantics for modal logics, in particular, his semantics for nonnormal modal
logics (Kripke 1965, §3), in which one considers nonnormal worlds, “worlds”
which are not necessarily consistent or complete, and by interpreting “¬” by a
cross-world relation. We let ∗ : W → W , the worlds or indices of the model
structure, be such that a∗∗ = a. Then we say that ¬A is true at a ∈ W
provided A is false at a∗. Hence both A and ¬A may turn out true at a, for
some a; thus, taking “∧” truth-functionally, A ∧ ¬A may be true at a while
arbitrary B is false there: A ∧ ¬A � B.

Similarly, if A is true at a, B false there, and A false at a∗, then A∨B and
¬A are true at a, consequently invalidating ds in the form (A ∨B) ∧ ¬A 
 B.

Ackermann’s initial system Π′ was amended by Anderson and Belnap to
form their system E of entailment, by dropping Ackermann’s rule γ:

from A ∨B and ¬A to infer B.

This is a rule form of ds. It is an admissible rule of E, but not necessarily of
E-theories, which was their reason for omitting it from Ackermann’s formu-
lation.

Subsequently, a range of neighboring systems was developed. Notable are
R, the calculus of relevant implication, dropping the modal condition (viz.
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restricted permutation) on the “→” of E (much as “⊃” is related to “�”),
and R�, the result of adding necessity explicitly to R, defining A ⇒ B as
�(A→ B) for “→” of R. Surprisingly, R� turned out to differ slightly from
E (matching “⇒” of R� to “→” of E), and interest has subsequently turned
away from E to R�, but more particularly toward R.

E and R are now well-established examples of what in the 1990s came to
be called “substructural logics,” logics with restricted structural rules. This
is a proof-theoretic characterization, embracing the relevance logics, linear
logic, BCK-logic, and several others. Monotonicity (in Curry’s notation, K)
is a structural rule—we saw that we needed to restrict its application to the
intensional combination in relevance logic. Another structural rule is contraction
(W ), contracting occurrences of X,X (that is, repetitions of premises or
conclusions) to X. In R it holds for both the extensional and intensional
combinations; in the system RW and linear logic it is restricted in various ways.
Relevance logic is BCW-logic, in which fusion satisfies the structural rules
B, C, and W ; linear logic is BC-logic, and classical logic is BCWK-logic.122

The system E is BC∗∗W-logic, with restricted permutation, C∗∗.
The semantics of E and R was developed independently in four ways in the

late 1960s and early 1970s. The key was to adapt Kripke’s accessibility relation
R of the modal logics to create a ternary relation of relative accessibility, where
Rabc might now be read “a and b are compossible relative to c” or “c makes
true the fusions of what a and b make true,” that is, if a 
 A and b 
 B
(that is, A is true at a and B is true at b) and Rabc then c 
 A ◦ B. The
relational semantics for R is based on frames 〈0,W,R,∗ 〉 in this way (Anderson,
Belnap, and Dunn 1992, §48). Kit Fine showed how one could even develop
an operational semantics, replacing the relation R by a binary operation ◦
(fusion) on worlds, ◦ : W 2 → W .123 Recall that “◦” (the connective) is the
“residual” of “→”:

X ◦A 
 B iff X 
 A→ B.
In particular,

(A→ B) ◦A 
 B iff A→ B 
 A→ B.
Hence

(A→ B) ◦A 
 B.

Thus if a 
 A→ B and b 
 A, a ◦ b 
 (A→ B) ◦A and so a ◦ b 
 B (exploiting
a systematic ambiguity in the sense of “◦”).

We let an operational frame for R consist of a quintuple 〈0,W, ◦,∗ ,≤〉
subject to certain constraints (loc. cit.). An interpretation I for R consists of
an operational frame and an assignment V: SL×W → 2 (where SL is the set
of propositional letters) such that

3.1 if V(A, a) = 1 and a ≤ b then V(A, b) = 1 for A ∈ SL.
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We extend V to a valuation (a 
I A, i.e., A is true at a under I):

a 
I A if V(A, a) = 1 for A ∈ SL,4.1
0 
I t,4.2.1
a 
I T for all a ∈W ,1244.2.2
a 
I ¬A if a∗ �I A,4.3
a 
I A ∧B if a 
I A and a 
I B,4.4.1
a 
I A ∨B if a 
I A or a 
I B,4.4.2
a 
I A ◦B if b 
I A, c 
I B and b ◦ c ≤ a,4.4.3
a 
I A→ B if whenever b 
I A, a ◦ b 
I B,4.4.4
a 
I X ◦ Y if b 
I X, c 
I Y and b ◦ c ≤ a,5.1
a 
I X, where X is an E-bunch, if a 
I Y for all Y ∈ X.5.2

Then X 
 A if for every interpretation I, and all a ∈ W , a 
I A whenever
a 
I X.

To show that, for example, A 
 B → A fails in R, take the frame W =
{0, 1, 2} with ◦, ∗ and ≤ defined by the tables:

0 0 1 2 ∗
0 0 0 0 0
1 0 1 2 2
2 0 2 0 1

≤ 0 1 2
0   
1 ×  ×
2 × × 

and let V(A) = {1}, V(B) = {2}. Then 1 
I A ∧ ¬A and 1 
I (A ∨B) ∧ ¬A,
but 1 �I B, so A ∧ ¬A � B and (A ∨ B) ∧ ¬A � B. Moreover, 1 
I A but
1 �I B → A, since 2 
I B but 2 = 1 ◦ 2 �I A. So A � B → A.

2.3.2. Does Relevance Logic Recapture Classical Logic?

Recall the “political” spectrum of responses to the possibility of recapture,
ordered by their degree of radicalism. Least radical is the reactionary position
that the new system should be interpreted as an extension of the old. Next
comes the center-right position, in which the old system is understood as a
limit case of the new. The left-wing positions involve a rejection of recapture,
either as formally valid but unilluminating, because of an incompatibility
elsewhere within their research programs, or as formally untenable. Relevance
logic provides an excellent illustration of this account, because all of these
positions can be identified among the attitudes of its proponents.

In their classification of relevant attitudes, Belnap and Dunn distinguish ir-
relevant logicians, (including classical logicians) who see no connection between
relevance and entailment; relevant logicians in the wide sense, who acknowledge
the importance of a formal characterization of relevant entailment; relevant
logicians proper, who accept systems such as those listed in the last section as
offering such a characterization; and relevantists, who advocate these systems
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as attempts at an organon for natural argumentation.125 Of these only the
relevantists are genuinely revisionary of K. They can be further subdivided
in terms of their response to ds, crucial to recapture because it is one way of
representing the difference between relevant and irrelevant systems. Hence ds

may be regarded as either always valid: soft relevantism, which collapses into
an irrelevant system;126 or sometimes valid: hard relevantism, or never valid:
true relevantism.127

In terms of the political spectrum, relevant logicians, in so far as they retain
K, are on the reactionary right; hard relevantists (if they can systematize
the valid instances of ds sufficiently well) are either center right, if they
acknowledge the cogency of the recaptured system, or center left, if they do
not; and true relevantists are on the radical left (or the center left if they can
offer some alternative method of recapture). So only hard (and perhaps true)
relevantists will be seriously interested in developing a successful recapture
criterion.

Hard relevantism can be subdivided in terms of the strategies employed to
justify the valid instances of ds.128 Belnap and Dunn suggest four possible
strategies: (1) the “I’m all right, Jack” strategy: specifying a contradiction-free
domain in which no counterexamples to ds could occur; (2) the deductivist’s
strategy: proceeding by analogy with the deductivist’s response to inductive
inference; (3) the “leap of faith” strategy: a specific version of (2), in which
relevantly unacceptable inferences are defended “on faith as well as judgement”;
(4) the “toe in the water”: disjoining the (Ackermann)129 falsity constant f
to the conclusion of all relevantly unacceptable inferences. (2) and (3) are
clearly insufficiently concrete proposals to be of present use.130 John Burgess
(1983) subdivides (1) into (1a) systematic enthymematic relevantism, in which
the recapture domain is specified by conjoining additional premiss(es) to the
inferences of that domain, and (1b) hybrid relevantism, in which the recapture
domain is ensured by the presence of certain background assumption(s), or
super-premiss(es).131 He also identifies a further strategy: (5) fission relevan-
tism, whereby (extensional) ds obtains whenever intensional ds, ∼A,A+B � B,
is valid for the same A and B.132 Both (4) and (5) are formulated in ways
that do not lead straightforwardly to a recapture constraint.

All five strategies are susceptible to criticism. Both (1a) and (1b) are open
to the objection that they are either circular or regressive: (1a) essentially
involves appending to disputed inferences an additional premiss asserting the
legitimacy of that inference (Anderson, Belnap, and Dunn 1992, §80.4.1, 503),
and (1b) can be shown to rely on an appeal to ds at a higher level (Burgess
1983, 52).133 (For example, in Mortensen’s presentation of [1b], the validity of
ds is supposed to be assured in a domain of wffs which are negation-consistent
and prime. That is to say that no more than one of A and ∼A, for all A, are
contained in the domain and at least one of A and B is in the domain whenever
A ∨B is in the domain. Thus if ∼A and A ∨B are in the domain, then A or
B must be in the domain, by primality, but it cannot be A, by consistency,
so it must be B. This licenses ds within the domain, but employs ds in the
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metatheory—which must therefore be presumed to be prime and consistent
for the strategy to work.) The common feature of these circularity or regress
criticisms is that they turn on a scrupulosity about the justification of deduction
which occurs elsewhere only in the motivation of generally skeptical theses.
Hence (1a) is the first step of Carroll’s tortoise (1895, 279) and (1b) exhibits
the circularity conspicuous in most attempts to justify deduction (Haack 1976,
186, for example). Meyer (1978, 45f., with acknowledgment to Kripke) identifies
the tortoise connection, drawing the moral that the difficulty of justification
here is no greater than for relevantly unobjectionable inference.134 The same
point can be made for (1b), wherein we can appeal to familiar moves such
as Goodman’s (1954, 67) reflective equilibrium or Dummett’s (1973d, 296)
explanatory/suasive distinction. Even if we remain unconvinced, we are no
worse off than usual.

A potentially more serious criticism of all five recapture strategies is that
they miss the point of relevance logic (Read 1988, 145ff.). Relevance logic is
motivated by dissatisfaction with the classical account of entailment, not by
fear of inconsistency.135 The specification of a locally consistent domain allays
the latter concern, but not necessarily the former: Other counterexamples
to classical inference may remain, preventing recapture. Such is the case
in the true relevantist “Scottish plan” account of validity which one of us
has espoused: It construes validity as “the impossibility of true premisses
fuse false conclusion” rather than “the impossibility of true premisses and
(∧) false conclusion” (Read 1988, 147, emphases added). This permits an
inconsistency-free counterexample to ds: an assignment of A and B such that
(∼A ∧ (A ∨B)) ◦ ∼B is true.

An example lets A be “Socrates was a man” and B, “Socrates was a stone.”
Since A is true, A ∨ B is true; but it would not follow from the falsity of
A that Socrates was a stone. (For that we would need the stronger—and
false—intensional claim that “If Socrates was not a man, then he was a stone,”
that is, A + B.) However, this counterexample to ds does not occur in the
domain specified by an intensional interpretation of the Mortensen recapture
criteria of negation consistency and primality. On this understanding negation-
consistency would be the noncotenability of A and ∼A within the domain, that
is, ∼ ((A is in the domain) ◦ (∼A is in the domain)). Primality would require
that whenever A∨B was in the domain, that if A was not in the domain then
B was, and vice versa, that is (A is in the domain) + (B is in the domain). (As
we would expect, the distinction between intensional and extensional constants
would collapse in any domain satisfying these criteria.) If ∼A ∧ (A ∨B) were
in the domain, ∼A would also be in the domain by extensional conjunction
elimination, whence A would not be in the domain, by intensional consistency.
But A ∨B would be in the domain, by extensional conjunction elimination,
hence B would be in the domain, by intensional primality. Therefore ∼B
would not be in the domain, by intensional consistency, so ∼A ∧ (A ∨B) and
∼B would not be cotenable. Thus these criteria specify a domain in which
ds obtains—even for the true relevantist—and thereby recaptures K. (We
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have not established that this domain would be interestingly nonempty. Hence
the true relevantist may still have compelling grounds for adopting one of the
left-wing responses to this recapture result.)

Hence we have plausible grounds for regarding the theory of R as a successor
to that of K: the product of a glorious revolution.136 If the true relevantist
characterizes R in such a way that recapture fails (although we have shown
that he need not), then his logical theory should be regarded as a competitor
to that of K: An inglorious revolution would have occurred. Since his claim
is that K is so bad a choice of organon as to be just wrong, this should
not disturb him. However, his quarrel with K is not as fundamental as that
of the intuitionist.137 The true relevantist’s competition to the classicist’s
theory would acknowledge considerable common ground. Not only would the
true relevantist argue that his constants were intended to analyze the same
operations of natural argumentation that are addressed in K, he may also
share the classicist’s background theories.

2.3.3. Pure and Applied Semantics

It has been alleged that none of the semantics for relevance logic (specifically
R) qualify it as a plausible reform proposal. Jack Copeland’s (1979, 1983a,
1983b, 1986) version of this argument proceeds on two essentially distinct
levels. The first level is a contention that the Routley–Meyer semantics for R
are “pure” rather than “applied.” This distinction between pure and applied
semantics is intended to capture the difference between constructing a suitable
algebraic structure at a wholly theoretical level, and providing a convincing
philosophical explication of the components of such a structure. The second
level of Copeland’s critique is a claim that legitimately to persuade classical
logicians of the advantages of R over K, the advocates of R should provide it
not only with an applied semantics but with one that assigns classical meanings
to all of the constants of R.

To assess Copeland’s first level of criticism it is necessary to clarify the
pure/applied distinction to which he alludes. At root, this may be seen as
reflecting an important difference among the motivations for logical endeavor:
the distinction we drew in 1.1 between “rough” and “smooth” logic. Examples
of each may be identified among relevant and neighboring systems. Whereas
abelian logic (Meyer and Slaney 1989) and linear logic (Troelstra 1992) are
demonstrably smooth, a case can be made for the syntax and proof theory of
R being, if anything, significantly rougher than those of K. The success of R
as a progressive revision of K, with respect to its status as an organon, hangs
on the success of this case—which is what Copeland wishes to dispute.

As Copeland himself (1983a, 197) observes, the distinction between pure and
applied semantics has been made by many authors on different occasions.138

Consequently, it may be drawn in several different ways:

1. One of the earliest statements of the distinction is due to Carnap, who
distinguishes between pure semantics as the abstract semantics of for-
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mal languages and applied, or descriptive, semantics as the empirically
determined semantics of natural language (Blackburn 1995, 820, citing
Carnap 1942).

2. In a related vein, the distinction may be thought of as parallel to that
between pure and applied mathematics, as appears to be implicit in
Plantinga’s (1974, 127) statement that “applied semantics . . . places more
conditions upon the notion of modelhood.”139 These pure and applied
activities are of the same kind, but unlike the former, the latter is apt for,
and informed by, application to empirical matters. The actual application
is a different practice again—an applied mathematician working on partial
differential equations may be conscious of the importance of his work
to physics and engineering, but he will leave the actual application to
physicists and engineers. Hence it might be said that this difference is
really between pure and applicable semantics. The actual application
would then be something else, such as parsing theory.

3. The distinction can be read as including the application of applicable
semantics (applied semantics in sense (2)) within the definition of that
discipline. Hence this is a distinction between theoretical and practical
activities, wherein the latter is understood as including the former, as
well as the means of applying it to the world. This is the sense which
the distinction has for Kirwan (1978, 107; see Copeland 1983a, 197), and
that which Dummett (1973d, 293) appeals to as “the distinction between
a semantic notion of logical consequence, properly so called, and a merely
algebraic one.”

4. Applied semantics have also been introduced as exclusively the activity
of applying pure semantics to the world. This is the fashion in which
one of us at one time chose to address the matter, distinguishing formal
semantics from the theory of meaning (Read 1988, 166).

Hence applied semantics may be understood as applicable semantics (2), the
application of this sort of formalism (4), or both (3). It is a further question
for interpretations (2) and (3) whether applied semantics and pure semantics
are mutually exclusive or whether the former is a special case of the latter. All
of these different senses are translatable into each other; the only danger is
that it may be unclear which is intended. Henceforth we adopt interpretation
(2), regarding applied semantics as a special sort of pure semantics, meeting
additional conditions.

Semantics are crucial to rough logics, since they help link the smoother
aspects of a system to the argumentation it aims to codify. Pure semantics
are pursued entirely at the smooth level, by merely presenting another formal
system onto which the syntax can be mapped. Only if pure semantics can be
grounded convincingly in the natural language meanings of its components
can an applied semantics, and thereby a rough logic, be established. To see
how this works, the connection between logic and natural argumentation must
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be explored in a little more detail. The logics considered consist of syntactic
systems of deductions, Γ � Δ, among essentially abstract well-formed formulae.
A semantic interpretation for such a system maps these formulae onto the
propositions of a system of inferences, Γ′ 
 Δ′. The validity of a deduction is
characterized in terms of its derivability from the syntactic rules of the system,
whereas that of an inference is characterized in terms of the preservation of the
inferential goal of the system (for present purposes, truth). So far this is just to
connect one formal system to another; semantics can go no further than this.
However, applied semantics generates a formal system which can be related to
natural argumentation, a linkage which is accomplished by the parsing theory,
which governs how the language of natural argumentation is formalized, and
informed by the inferential goal and the background theories. In particular the
background theories impose constraints on what sort of theory of meaning may
be employed. It is within the theory of meaning that philosophical questions
about how language is related to the world are addressed. Some logical research
programs impose tight constraints on how these questions should be answered,
as we saw with the Dummettian program in 2.1.1; others are more liberal.

Hence the semantics of a rough logic must be applicable, which is to say
that they must be parsing theory-apt (pta). This additional condition consists
in the formal notions invoked by the semantics being such that they can be
related to the world in some intuitively convincing fashion. The philosophical
defense of this intuitive conviction is the responsibility of the theory of meaning;
there may be competition among different theories of meaning as to which
accomplishes this task most effectively for a given semantics. Parsing theory
has the humbler task of formalizing natural argumentation. As far as possible,
this should be neutral as regards theory of meaning, although it cannot be
accomplished at all unless a theory of meaning can be attempted. A logic
occurring within the sort of research program with which we are concerned
must not only be rough, it must also be feasible as an organon. This might
be understood to impose a further condition on the semantics (generality):
that they should be interpretable in a way that permits the formalization of
natural argumentation in general, rather than merely the argumentation of
some specific discourse.140 This might be paraphrased as the requirement that
an organon be global rather than strictly local in application.141 In a strictly
local system recapture of any global system is effectively blocked, in that even
if such a system could be recaptured it would be interpreted in a fashion that
defeated its intent. A purist might insist that such systems fail to be logic, as
they are not subject-independent.

2.3.4. Criticism of the Semantics for Relevance Logic

Copeland claims that there is not enough explanation of R or ∗ to justify their
status as applied semantics, and suspects that they may be ad hoc as well as
inexplanatory. For these criticisms to be effective, Copeland must make his
dissatisfaction explicit. Unfortunately for the clear exposition of his dialectic,
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although this explication is attempted in his earliest paper, the two levels of
his argument which we identified in 2.3.3 are clearly distinguished only in later
work.142 Both I (at least for the positive reduct R+) and R are similar to
their analogs in the possible worlds semantics for modal logics. Presumably
Copeland has no criticism of such systems; indeed, much of the precedence
he cites for the applied/pure semantics distinction is concerned with their
success. The salient difference is the analog of possible worlds in the Routley–
Meyer semantics: Unlike possible worlds, “set-ups” can be either incomplete
or inconsistent. Initially he regards this widening as illegitimate, because it is
harmful to the classical account of negation (Copeland 1979, 402), but that is
to confuse the first and second levels of his argument. To be nonclassical, even
if unexpectedly, is not to be inexplanatory. On a more sympathetic reading
set-ups may seem a useful and progressive generalization of conventional modal
semantics, proceeding along a path already taken by much less controversial
systems such as Stalnaker’s C2 (1968, 34), the semantics for which includes
the inconsistent world λ.143 Of course, such generalizations will not appeal to
modal realists, whose understanding of possible worlds is as (descriptions of)
worlds as actual as the real world—unless they are prepared to countenance
actual inconsistencies. (And if they can do that, they can employ the more
economical dialetheist semantics, in which some propositions are evaluated as
both true and false simultaneously. See 2.4.2.) However that leaves Copeland’s
criticism conditional on establishing the unintelligibility of any account of
possible worlds other than modal realism.

In later writing Copeland (1986, 487) accepts the understanding of set-ups
by analogy with possible worlds as a plausible basis for an applied semantics.
However he then argues that if these worlds are possible, they cannot be
inconsistent; if they appear to be inconsistent that must be a result of employing
nonstandard negation (ibid., 488f.).144 This is in part a reprise of his earlier
argument, and in part an underestimate of the generalization of possible
worlds in use, thereby punning on “possible.” Of course, it would still be
open for Copeland to assert the incoherence of any generalization sufficient to
articulate the Routley–Meyer semantics, but as shown in the last paragraph,
this presumes an argument that modal realism is the only intelligible reading
of possible worlds. Moreover, his argument depends not just on his second
level, but on a strengthening of it: that negation in relevance logic is not only
not classical but not negation.

Of all the novelties of the Routley–Meyer system, Copeland concentrates
most on the ∗-operation, as it is here that he believes his criticisms have
the greatest chance of success. He contends that the ∗-operation is ad hoc
because its properties were devised solely to preserve the negation axioms
of R (Copeland 1979, 410). So they may have been; but ad hocness is a
methodological complaint, not a historical one: What is at issue is whether
there is a convincing rationale for ∗, not what prompted its discovery. If we
can exhibit a plausible role for ∗ in natural language, then we can answer this
criticism, and also establish its intelligibility. Generalizing its application from
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worlds to propositions, Routley and Meyer (1973, cited in Copeland 1979)
read A∗ as a “weak affirmation” of A, where to affirm a proposition weakly
is to refrain from affirming its negation. This seems plausible, but Copeland
(1979, 409) objects that it is absurd to attribute any sort of affirmation to such
inanimate or insensible individuals as may brutely refrain from the utterance of
negations. However, as Meyer and Martin (1986, 312) remind us, the essential
content of ∗ is “failure to deny,” which is well within the capabilities of rocks,
infants, and suchlike.145 The mistake is not in attributing weak affirmation to
rocks, but in engaging them in conversation in the first place: Only if you initiate
such conversations will you have cause to attribute propositions to rocks.

Taken together, these observations suggest that a sufficiently intuitive
rendering may be given to all of the technicalities of the Routley–Meyer
semantics to regard it as applied.

The second level of Copeland’s argument is that any semantics employed in
the advocacy of R over K must assign classical meanings to all the constants.
First, this is in need of unpacking: The “classical meanings” of the constants
is equivocal. On the strongest understanding we could regard the meaning
as given by all the instances of use, but then only K could have classical
meanings. This may be what Quine (1970, 81) intends in his discussion of the
“deviant logician’s predicament,” but it cannot be what Copeland has in mind,
unless he is setting the relevantist the impossible task of establishing that K
is relevant. Conversely, we might seek to derive the meanings of the constants
from their introduction and elimination rules; but in this case Copeland’s
criterion is just that which we introduced in 2.2.4 to defend the preservation
of classical meanings by the constants of QL. We argued there that a similar
case could be made for the constants of R (or at least the closely related LR)
provided that it recaptured K, which we demonstrated in 2.3.2. Presumably
Copeland is concerned with the definition of the interpretation function, I,
which diverges noticeably from the classical in its treatment of implication and
negation. Even if we concede that this difference is especially important, we
must then ask to what use Copeland hopes to put it; does he have a plausible
account of the advocacy of logical revision?

Although Copeland (1983a, 199) talks of preserving the classical meaning
of all the propositional constants, his primary concern is with negation. (It is
perhaps more easily excusable to say that the meaning of implication is not
preserved (making the theory of R an ingloriously revolutionary competitor to
that of K), since that is precisely the focus of the reform. However, an argument
that the relevant constant represents a progressive precisification of the concept
imperfectly articulated by the classical constant, and thus that the theory of
R is a glorious successor to that of K, would appear equally applicable to both
implication and negation.) Copeland maintains that the classical meaning of
negation must be preserved if the classicist is to be convinced that ds is invalid.
But if we are to convince the classicist qua classicist that ds is invalid then we
must mislead him, for ds is valid in K. If the question is rather whether ds is an
acceptable move in natural argumentation, then the classicist has no monopoly
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over the understanding of the terms involved. The relevantist must show that
his system is a preferable formalization to the classicist’s K; if this involves
the reform of negation as well as implication, then so much the better—if we
improve the understanding of both constants—provided each reform is well
motivated. Relevant logicians have claimed the disambiguation of the intuitions
underlying negation as an incidental achievement of their program (Meyer
and Martin 1986, 310). Hence we can draw a distinction between Boolean
negation, which captures the intuition that not-A is true precisely when A
is false, and De Morgan negation, which captures the intuition that not-A is
true when A implies something objectionable.146 In K these negations collapse
into each other, but in relevance logic they can be distinguished. Since R can
be conservatively extended to R¬, by introducing Boolean negation which
captures the missing classical features, in particular validating ds, Copeland’s
concerns can be allayed—as he acknowledges (1986, 486).

This raises the question of how best to understand such “classical relevance
logics” incorporating both flavors of negation. Copeland is inclined to dismiss
De Morgan negation as not really negation at all. Hence he denies that any
system incorporating it can be interestingly paraconsistent, and presumably
shares with Meyer the belief that relevance logics will come to be regarded
as conservative extensions of K by the addition of non–truth-functional im-
plication operators rather than as rivals, a transition similar to that made
by modal logics. Conversely, it is possible to argue that De Morgan negation
is the true heir to the imperfectly articulated negation of K, and that it is
Boolean negation that is either unintelligible or not recognizable as negation
(Priest 1990, 209). This would make good on our earlier claim that the theory
of R could be regarded as a glorious successor to that of K. We shall return
to this debate in the next section. Finally it might be argued that the correct
inference to draw from the relevantist account of negation is that it is not a
univocal notion, and that a good logic should be sensitive to the variety of
its possible uses. Such a logic would have a classical reduct, but one with a
much narrower range of employment than K simpliciter, and in this respect it
would represent a departure from the classical program.

2.4. Paraconsistent Logic
In recent years some of the most sustained and trenchant criticism of the
classical program has come from the advocates of paraconsistency. The focus
of their proposed reforms is the classical treatment of inconsistency. In K
arbitrary propositions may be derived from inconsistent premisses, since A,
∼A � B, ex contradictione quodlibet or ecq, is a valid inference. Any logic
with a consequence relation for which ecq is a rule may be said to detonate,
or to be explosive (Priest and Routley 1989a, 151). Any inconsistent theory
which is closed under an explosive logic, such as K, will be trivial, that is, it
will contain all the propositions of the underlying language (ibid.). (A theory
is inconsistent iff there is some A such that the theory contains both A and
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∼A.) The aim of paraconsistency is to formalize systems that are not explosive,
so that inconsistent but nontrivial theories may be closed under them. These
systems are called paraconsistent logics and the inconsistent, nontrivial theories
in which they are employed are called paraconsistent theories.147

2.4.1. What Is Paraconsistency?

Paraconsistency is the focus of two closely related yet fundamentally distinct
research programs. Although all levels of these programs differ, at least to
some degree, the key point of divergence lies in the background theory, the
philosophical assumptions constraining the choice of formal system. The weakly
paraconsistent research program shares the classical background assumption
that the world is consistent.148 Hence its aim is to provide an account of
situations in which some of the information under consideration is presumed
to be in error: Corrupt computer databases, conflicts of laws, human belief
systems, and confusions in the development of science have all been cited as
exemplifying this phenomenon.149 All of these cases are most readily modeled
as inconsistent theories in which some form of logical inference applies. Yet
in each case, some discrimination between good and bad information is still
possible, so the theories cannot be trivial, hence their inference relation must
be paraconsistent. The stronger paraconsistent research program, known as
dialetheism, holds that theories of this kind may be accurate descriptions of
the world, and thus forbears from assuming the consistency of the world in its
background theory.150 This program is often motivated by the exhibition of
alleged inconsistencies in (the best accounts of) the world, such as paradoxes
of self-reference and antinomies in the foundations of mathematics and in
accounts of motion (Priest 1987, part three). However, subscription to the
program does not strictly require belief in the inconsistency of the world,
merely agnosticism about its consistency (Routley, Meyer, Plumwood, and
Brady 1982, 60ff.).

The weak paraconsistentist may accept the familiar assumptions of clas-
sical background theory unamended, hence his dispute with the classicist is
wholly at the level of logic. By contrast, the dialetheist, as we have seen, must
diverge from classical background theory. Does that mean that the real focus
of the dialetheist’s dispute with the classicist is outside the logic? We drew
this conclusion for the major intuitionist research programs, which we saw
(in 2.1.4) to be most successfully defended through their independently com-
pelling nonclassical background theories. However, the revision of the classical
background proposed by the dialetheist (at least qua dialetheist) is not as
comprehensive, nor is its advocacy as remote from the choice of logic. For the
minimum revision of the classical background theory required for dialetheism
is toleration of inconsistencies in the world. But strictly speaking, consistency
and inconsistency are properties of theories, not of the world. So this revision
of the classical background theory amounts to advocacy of a paraconsistent
system as essential for the best description of the world. The content of any
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such advocacy must ultimately turn on the comparison of logics, not of back-
ground theories. For both the dialetheist and the weak paraconsistentist the
foci of their disputes with the classicist are in the foreground of their logical
theories.

The foreground of a logical theory contains the formal system and its atten-
dant metatheory and semantics, and also a parsing theory and an inferential
goal. Paraconsistency requires no more than modest revision of the last two of
these components. Both paraconsistent programs promise a degree of concep-
tual simplification of the classical parsing theory, since they obviate the need
for a procrustean reinterpretation of all apparent contradictions as hidden
equivocations,151 and because they offer the prospect of a simple articula-
tion of the concepts of naïve semantics (Priest 1987, 157ff.), which require
appeal to hierarchies of metalanguages in the standard classical presentation.
Both programs can also seek to avail themselves of the attitude to truth
preservation—the classical inferential goal—exhibited by the proponents of
relevance logic: that they aim to revise only the concept of preservation, and
not that of truth, and are therefore engaged in a wholly logical task. We shall
consider how successfully this attitude may be maintained.

2.4.2. Can Paraconsistency Be Formalized?

What is the formal content of the paraconsistent programs? Both programs
require a consequence relation in which ecq is blocked. There are several
ways of revising K that achieve this. Perhaps the most direct is to retain the
inference A ∧ ∼A � B, but block ecq by excluding the rule of adjunction,
A, B � A ∧ B, and thereby blocking the inference A, ∼A � A ∧ ∼A.152 The
resultant nonadjunctive systems thus tolerate inconsistency, but detonate in
the presence of explicit contradictions. This makes them unsuitable for the
dialetheist program, since if the world is inconsistent, we would expect some
contradictions to be true. There are also a number of reasons to doubt the
suitability of nonadjunctive systems for the weak paraconsistency program (see
Priest and Routley 1989a, 157ff. and 171ff). In particular, adjunction is such a
fundamental feature of our understanding of conjunction that it is hard to see
how any nonadjunctive constant could adequately represent conjunction.153

Furthermore, should this drawback be remedied through the extension of a
nonadjunctive system by a different conjunction constant, and, say, then valid
inferences close enough to ecq to endanger (at least the motivating intuitions
of) paraconsistency, such as A&A, ∼(A&A) � B, may be obtained (Priest and
Routley 1989a, 160).

Alternative routes to the formalization of paraconsistency run through a
reconsideration of the rules for implication. Classical (material) implication
has certain properties that are inimical to paraconsistency. Chief among these
is the negative paradox of implication (npi), ∼A � A→ B, which leads to ecq

in the presence of modus ponens, an indispensable feature of any reasonably
recognizable implication, as follows:
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A
∼ A

npi

A→ B
mp .

B

Many paraconsistent systems, such as the nonadjunctive systems considered
before and the broadly relevant systems addressed next, also drop the positive
paradox of implication (ppi), B � A→ B. However, it is possible to formulate
paraconsistent systems which retain this rule, known as positive-plus systems.
Chief among these are the sequence of systems Cn, for 0 ≤ n ≤ ω, developed
by da Costa (1974, 498f.).154 C0 is just K, presented axiomatically in the
manner of Kleene (1952, §19, 82). Da Costa introduces a new “consistency”
operator ◦, such that A◦ iff ∼(A ∧ ∼A), which is intended to be understood
as “A is not a source of inconsistency.” The ◦ operator may be iterated, with
A(n) standing for A◦ ∧A◦◦ ∧ · · · ∧A◦···◦. Each Cn nonconservatively extends
C0 by additional axioms for (n), which state that the consistency of wffs
ensures the consistency of their combinations: A(n) ∧ B(n) → (A ∧ B)(n),
A(n)∧B(n) → (A∨B)(n), and A(n)∧B(n) → (A→ B)(n), and by substituting
the axiom B(n) → ((A→ B) → ((A→ ∼B) → ∼A)) for the classical axiom
((A→ B) → ((A→ ∼B) → ∼A)) (da Costa 1974, 500). In the limit case, Cω,
this axiom is simply omitted.

There are a number of problems with the positive-plus account of paracon-
sistency. In the first place, retaining ppi in paraconsistent systems involves
the sacrifice of inferences such as modus tollens and transposition (trans.),
A→ B � ∼B → ∼A (Priest and Routley 1989a, 177). Otherwise the system
can be shown to detonate:

∼ A

A
ppi

B → A
trans.∼ A→∼ B → i .∼ B

Moreover, it is possible to derive explosive inferences of the form A∧∼A∧A(n) �
B in most of the interesting inconsistent theories for which Cn might be hoped
to offer a paraconsistent formulation (ibid., 167).

Some of the more general problems for positive-plus systems foreshadow
difficulties common to all paraconsistent logics to which we shall return in
later sections. First, it is disputable whether da Costa’s constant “∼” offers
an adequate account of negation. As the sketch of the Cn systems makes
clear, the law of noncontradiction, � ∼(A ∧∼A), does not apply in da Costa’s
paraconsistent systems—indeed, its addition to any of them causes a collapse
into the explosive C0. The law of noncontradiction might be regarded as a
necessary part of any adequate analysis of negation (see 2.2.4). In particular,
its failure suggests that, in traditional terms, A and ∼A are subcontraries
rather than contradictories (Priest and Routley 1989a, 165). Two statements
are contraries when it is logically impossible for them both to be true, and
subcontraries when it is logically impossible for them both to be false (Straw-
son 1952, 25).155 Statements that are both contraries and subcontraries are
contradictories. While a statement may have many contraries and subcon-
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traries, its contradictory is unique, and should be picked out by the negation
of the statement. The informal definitions may be formalized as: A and B are
contraries iff � ∼(A ∧B); A and B are subcontraries iff � A ∨B (Priest and
Routley 1989a, 165).156 � A ∨ ∼A is a theorem of all of da Costa’s systems,
but � ∼(A∧∼A) is not a theorem of any of them, so the ∼ constant generates
subcontraries, not contradictories, and fails to analyze negation. Furthermore,
although it would be possible to augment Cn by a contradictory-forming
negation constant, any such constant would satisfy ecq, and so fail to be
paraconsistent (ibid., 166).

The second problem arises from the so-called Curry paradoxes of naive
semantics and naive set theory.157 The first of these may be regarded as a
generalization of the (strengthened) liar paradox, a statement that says of
itself that it is not true. If such a statement is not true then it is true, but if it
is true then it is not true, so it is both true and not true. Many paraconsistent
systems can accept this conclusion, and dialetheists regard it as evidence for
the inconsistency of the world. The Curry paradoxes are more recalcitrant.
The semantic form is a statement, A, which says of itself that if it is true
then so is B, where B may be any arbitrary statement, that is, A says (or is
equivalent to) TA→ B. Application of the truth scheme of naive semantics,
P ↔ TP , yields (TA→ B) ↔ TA. From this we may reason to an arbitrary
conclusion as follows:

TA→ (TA→ B)
abs

TA→ B (TA→ B) → TA
mp

TA
TA→ (TA→ B)

abs

TA→ B
mp ,

B

providing that the implication constant obeys the absorption principle (abs),
A → (A → B) � A → B (Priest and Routley 1989a, 172f.). An analogous
result arises from the application of the abstraction principle of naive semantics,
A(x) ↔ x ∈ {x : A(x) }, to a “Curried” version of the Russell paradox (let
C = {x : x ∈ x→ B }).

abs is dependent on the structural rule of contraction (w), since:

A→ (A→ B) � A→ (A→ B)
mp

A,A→ (A→ B) � A→ B
mp

A,A,A→ (A→ B) � B
w

A,A→ (A→ B) � B → i .
A→ (A→ B) � A→ B

Because w is admissible in most familiar systems, in particular J and K, abs

is a property of implication in these systems (ibid., 176f).158 Cω and C1 can be
shown to extend the positive reducts of J and K respectively, by introduction
of the da Costa ∼, hence their implications exhibit abs, as do those of the
other Cn systems (ibid., 177). Thus these systems are trivialized by Curry
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paradoxes, and are unsuitable for some of the most important paraconsistent
applications.

The remaining route to the formalization of paraconsistency is more promis-
ing—and more familiar. All relevance systems block ecq, since it is a blatantly
irrelevant inference. And, as we saw in 2.3.4, some relevance systems may be
given a paraconsistent semantics.159 However, most systems of semantics for
relevance logics preclude the simultaneous ascription of truth and falsity to
the same proposition, contrary to our expectations of a dialetheic semantics.
Furthermore, a system can be paraconsistent despite validating some irrelevant
inferences: The relevance and paraconsistent programs overlap but do not
coincide (Read 1988, 138f.). We will follow Priest in calling all systems that
achieve paraconsistency by rejecting ds broadly relevant, even if they are not
strictly relevant.

A variety of different systems of logic and of semantics have been proposed
within the broadly relevant approach, however, several of the more interesting
systems coincide in their zero-degree reducts (that is, for ∼, ∧ and ∨).160 This
reduct can be characterized in semantic terms by matrices resembling Kleene’s
(1952, §64, 332ff.) strong matrices, but with both truth and the middle value
designated. (Conventionally, these matrices are understood as paracomplete,
with the middle value therefore undesignated.) Formally, this gives us a set of
valuations V = {−1, 0, 1} and a valuation function v such that v(∼A) = −v(A),
v(A ∧ B) = min[v(A), v(B)] and v(A ∨ B) = max[v(A), v(B)] (Avron 1994,
219). The consequence relation may then be characterized as Γ � Δ iff for all
valuations v, if v(A) ≥ 0 for all A ∈ Γ then v(B) ≥ 0 for some B ∈ Δ (where
Γ and Δ are sets of propositions) (ibid., 225). An equivalent, but somewhat
more perspicuous, presentation of this reduct may be given by thinking of the
truth values as sets of the standard values, identifying 1 with {t}, −1 with
{f} and 0 with {t,f} (Priest 1987, 94f.).

The treatment of implication is somewhat more problematic. Material
implication could be introduced by definition, but would not satisfy modus
ponens, since there are countermodels to A, ∼A ∨B 
 B, as we would expect
in a “broadly relevant” system. We suggested that mp was an indispensable
feature of implication. However, its failure does prevent the derivation of
the Curry paradoxes, and on these grounds material implication has been
recommended as a suitable implication for the system adumbrated in the
last paragraph (Goodship 1996, 158). We return to this suggestion shortly.
To block the derivation of these paradoxes while retaining mp requires an
intensional, non–truth-functional implication for which abs fails. This can be
achieved in a similar fashion both in relevance systems, such as Routley’s DK,
and in irrelevant systems, such as Priest’s LP.161 However, both approaches
require substantial semantic innovation, and are therefore exposed to criticism
similar to that of the semantics for relevance logic discussed in 2.3.4. The
semantics for LP are simpler than those for R, since they can dispense with
the ∗-operation and employ a binary rather than a ternary accessibility relation
(devices primarily introduced to avoid dialetheism). However, to block abs,
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the accessibility relation is obliged to be nonreflexive, an equally startling
development (Priest 1987, 107).162 Semantics for DK may be developed in
a similar fashion, although with less simplicity (ibid., 114), or algebraically
(Priest and Routley 1989a, 179f.); both approaches require counter-intuitive
assumptions.

Despite these drawbacks, the broadly relevant approach to paraconsistency
is still the most promising, and we concentrate on it for the remainder of
this chapter. It is genuinely paraconsistent—there is no source of trivializing
inferences, not even the Curry paradoxes—and it is suitable for dialetheism.
However, it is still susceptible to the charge that its constants do not have
the senses that they purport to have, and therefore that it only succeeds by
changing the subject. To respond to this accusation the paraconsistentist must
be able to offer an argument that his constants formalize the same intuitions
as the classical constants. We turn to this issue in 2.4.4, but first we address
the recapture of classical logic in paraconsistent logic.

2.4.3. Classical Recapture in Paraconsistent Logic

Classical recapture is an important result for both paraconsistent programs.
All paraconsistentists advocate the employment of systems that can tolerate
inconsistency, but they acknowledge that inconsistency will be rare in most dis-
courses, and unknown in some (ibid., 144). Dialetheists propose their program
as a successor to the classical program. Hence they see the retention of K as a
limit case, usable in consistent situations, as evidence of the methodological
superiority of dialetheism (ibid., 148; Priest 1989a, 143). Thus the pursuit
of a satisfactory account of classical recapture has been the focus of much
important work within the dialetheist program, and this issue will repay a
little careful attention.

Since we are now chiefly concerned with broadly relevant paraconsistent
systems, it is natural to expect there to be close analogs between the paracon-
sistent and relevance accounts of recapture. In 2.3.3 we analyzed the role of
recapture for relevance logics by rehearsing a fourfold itemization of recapture
strategies (derived from Anderson, Belnap, and Dunn 1992, §§80.4.1ff., 503ff.).
Belnap and Dunn distinguish (1) the “I’m all right, Jack” strategy: specify-
ing a contradiction-free domain; (2) the deductivist’s strategy: proceeding by
analogy with the deductivist’s response to inductive inference; (3) the “leap
of faith” strategy: defending the disputable inferences “on faith as well as
judgement”; (4) the “toe in the water”: disjoining a notion of falsity to the
conclusion of all disputable inferences. The focus of all accounts of recapture
are the “quasi-valid” inferences: inferences that are classically valid but fail in
LP, the analog of weak counterexamples in intuitionism (Priest 1989b, 625).
The simplest of these approaches is (1): If the domain of discourse is free
from contradictions, then the paraconsistent countermodels to the quasi-valid
inferences will be absent, and classical inference will be employable without
reservation. The difficulty is to specify a condition by which the consistency of
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a domain could be guaranteed. The consistency operator of da Costa’s systems
Cn, A◦ ≡def ∼(A ∧ ∼A), would be futile in LP, since � A(n) is a theorem of
LP. Indeed, it may be shown that no such propositional operator on single
wffs of LP will do the trick (unless LP is augmented by nullary constants:
Priest 1987, 139). Nor can we specify the consistent domain as the class of
wffs for which ecq holds: If this criterion is expressed in a paraconsistent
metalanguage it is compatible with the presence of some A and B such that
B is not a consequence of A and ∼A (Batens 1990, 219). Something more
sophisticated is required.

At different points Priest appeals to all four strategies.163 However, his chief
account (Priest 1987, 141f.) seeks to formalize the intuitions behind (3).164

To this end he appeals to the fact that all theorems of K are also theorems
of LP, to establish that whenever A1, . . . , An � B is a quasi-valid inference,
� ∼(A1 ∧ · · · ∧An) ∨B is a theorem of LP (Priest 1989b, 625). Writing G for
(A1 ∧ · · · ∧An), we may then reason as follows:

G ∼ G ∨B ∧i

G ∧ (∼ G ∨B)
dist.

(G∧ ∼ G) ∨ (G ∧B)
G∧ ∼ G ∨i

(G∧ ∼ G) ∨B

G ∧B ∧e

B ∨i

(G∧ ∼ G) ∨B ∨e .
(G∧ ∼ G) ∨B

Hence, if we can accept the premisses of A1, . . . , An � B, and accept that it is
quasi-valid, we can accept the disjunction of the conclusion with the “crucial
contradiction” of the inference, (A1 ∧ · · · ∧An)∧∼(A1 ∧ · · · ∧An) (Priest 1987,
143). Since all (crucial) contradictions are at least false, the account so far is a
version of strategy (4). Priest proceeds from here by appealing to

Principle r: If a disjunction is rationally acceptable and one of
the disjuncts is rationally rejectable, then the other is rationally
acceptable. (ibid., 141)

Representing rational acceptability and rejectability as modal propositional
operators �AA ≡def “it is rationally permissible to accept A” and �RA ≡def
“it is rationally permissible to reject A” (Doherty 1998, 488), Priest’s principle
r may be interpreted as �A(A ∨B), �RA � �AB. (We may write ∼�∼ as �,
rational obligation, and retain ♦ and � for the alethic modalities of possibility
and necessity.) Because �A is closed under logical entailment of its arguments,
we may now reason from the acceptability of the premisses of a quasi-valid
inference to the acceptability of its conclusion, providing that the crucial
contradiction is rationally rejectable:

�AG �A(∼ G ∨B)
Closure of �A

�A((G∧ ∼ G) ∨B) �R(G∧ ∼ G)
r .�AB

Hence if A ∧ ∼A is rationally rejectable for all the wffs, A, of some domain,
then that domain will recapture K.
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There are a number of problems with this account. Chief among these is
that we might obtain some proposition P which it was rational both to accept
and to reject. We might then argue:

�AP
Closure of �A

�A(P ∨Q) �RP
r ,

�AQ

which would establish the rational acceptability of an arbitrary proposition,
or even of 0 = 1 (Goodship 1996, 155f.). In anticipation, Priest (1987, 123)
asserts that joint rational acceptance and rejection is not possible, on the
grounds that acceptance and rejection must be manifest in behavior, and the
two behaviors could not be manifested simultaneously.

Nevertheless, certain paradoxical propositions have been advanced as coun-
terexamples to this claim (initially in Littman 1991, cited in Priest 1995, 61).
Such propositions are of the form A: “It is irrational to believe A.” (That is,
A = �RA.) If one believed A, one would believe that it is irrational to believe
it, which would be irrational. So it is irrational to believe A, so A is true, and
so one ought to believe it. Hence we can conclude that we ought to accept A,
because it is true, and that we ought to reject it, because believing it would be
irrational. A similar conclusion is derived in Smiley’s (1993, 22) presentation
of a (strengthened) liar paradox: “This statement is untrue.” For Priest (1987,
90) this proposition is both true and untrue.165 Hence Smiley argues that we
are rationally obliged to accept it, because it is true, and to reject it, because
it is untrue. Thus he claims that Priest must abandon his claim that rejection
and acceptance are incompatible, or acknowledge that truth and untruth are
also incompatible.

Goodship (1996, 153) regards these paradoxes (so-called Littman sentences,
after Littman 1991) as telling against Priest’s claim for the incompatibility
of rational acceptance and rejection, which she construes as “one cannot
be rationally obliged to both accept and reject something,” and thereby
against r. However, as Doherty (1998, 483) points out, Priest’s incompatibility
claim is not concerned with �AA and �RA, but with �AA and �RA; it
alleges an incompatibility of rational permissibility, not of rational obligations.
Priest (1993, 40; 1987, 243) is quite prepared to countenance incompatible
rational obligations, “rational binds,” since he denies that ought implies can,
and in particular that �P → �P . For any Littman sentence A, it follows
that �AA ∧ �RA, a counterexample to Goodship’s incompatibility thesis,
but not to Priest’s. If we could arrive at �AA ∧ �RA, we would have a
counterexample to Priest’s incompatibility thesis (although not to Goodship’s),
but no such proposition can be derived from a Littman sentence, unless �P
implies �P , which Priest (1987, 243) denies. In the absence of such strengthened
counterexamples, r would be undamaged by this attack.

However, Doherty (1998, 488) suggests two further problems for r. First,
he thinks that a proposition such as “It’s raining” is sufficient to generate
a strengthened counterexample, since it could be rationally accepted at one
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time and place (or under one precisification) but rationally rejected at another,
making it both rationally acceptable and rationally rejectable. But this point
trades on equivocation of precisely the kind that the employment of propositions
or statements rather than sentences is designed to avoid (Strawson 1952, 4).
“It’s raining,” shorn of any context, as it must be for Doherty’s purposes, is not a
proposition. Of course, this exception-barring stratagem—responding to issues
such as vagueness or time through the parsing theory—is one that nonclassical
logicians such as Priest typically wish to minimize. But it can still be the
most appropriate response when these issues are not of immediate concern:
A formalism should not contain any more logical machinery than necessary.
And when these issues are addressed within the logic,166 the intolerability of
the required equivocation is laid bare. Doherty (in correspondence) is also
concerned that if rational acceptability and rejectability are spelt out in terms
of epistemic probability, as Priest (1987, 143) suggests they might be, then their
assessment, and therefore the extent of the recapture domain, will be subjective,
varying from individual to individual, and from time to time. But providing
that the assignment of probabilities is at least internally coherent, this might
be thought to be a harmless, even welcome feature for a paraconsistent system:
that it should be able to accommodate contrasting intuitions about the extent
of consistency. All that is required is that, wherever and however the boundary
is drawn, the recapture domain should validate all and only classically valid
inferences, and this result would be secured by r.

A more serious problem for Priest’s account of recapture in terms of rational
acceptance and rejection concerns its apparent indebtedness to specifically
classical concepts. He wishes to argue that LP is sufficient for all our needs;
unlike some (weak) paraconsistentists he is not content to retain a classical
metalanguage. Indeed Priest (1987, 88f.) rejects the distinction between object
and metalanguage. Hence he is vulnerable to arguments suggesting that some
disputed classical principles are ineradicable from his program.167 If such
arguments carry any weight they present Priest with a dilemma: either he must
smuggle in concepts from the system he claims to have superseded or concede
the unintelligibility within his (supposedly self-sufficient) system of material
essential to the formulation of that system. Moreover, he cannot without
circularity respond to this dilemma by an appeal to recapture, if recapture is
itself dependent on classical principles.168 Even inessential inexpressibility is
problematic, at least polemically, since Priest (1987, 24ff.) has promoted his
system over more familiar classical and paracomplete responses to paradox by
stressing the natural-language expressive completeness apparently exhibited
by his system, but not by its competitors.169 If his system is also expressively
weaker than natural language he loses this competitive advantage.

The situation can be most easily understood in terms of the spectrum of
responses to recapture described in 1.4. We have seen that all paraconsistentists
require a connection to classical logic: to describe consistent domains and
to defend themselves against a charge of having changed the subject by
introducing novel constants. So both “left-wing” responses must be rejected:
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The radical left-wing response claims that recapture must fail because of an
incompatibility between the formal systems; the center-left response claims that
recapture is insignificant because of incompatibilities elsewhere in the logical
theories. Priest must also reject the reactionary response, which would reduce
paraconsistent logic to an extension of K, because he holds that paraconsistent
logic is the “One True Logic.”170 This leaves only the center-right position: an
understanding of K as a limit case of a more general theory, a position which
Priest has good independent reasons for wishing to endorse.

However, Priest’s account of acceptance and rejection endangers the ten-
ability of this position. We have seen that if these propositional operators are
adequate for the justification of r, they must be incompatible. But incom-
patibility is a negative property. It cannot be expressed suitably in terms of
paraconsistent (that is De Morgan) negation, as ∼∃A(�AA ∧ �RA), since, as
Priest (1987, 90f.) himself concedes, this would not rule out ∃A(�AA∧�RA),171

which would permit the detonation of r. Perhaps Priest could devise a more
sophisticated—genuinely exclusive—account of incompatibility. But then he
would be open to the introduction of Boolean negation (¬) into his system by
the definition (Batens 1990, 216):

i. ¬A � ∼A;

ii. ¬A and A are incompatible.

This extension of LP would also be an extension of K, and thus mandate a
reactionary response to recapture.

We shall discuss the significance of Boolean negation for paraconsistency
in greater detail in the next section. But even if its introduction here could
somehow be blocked, the reactionary response would still seem to be the most
credible. If rejection and acceptance are taken seriously, then LP and similar
systems may be understood as generated within a calculus of acceptance and
rejection based on K. In effect, we have been utilizing just such a calculus
informally in our articulation of Priest’s account of recapture. The basis of the
formal presentation of such a system would be the equivalencies: v(A) = {t} iff
�AA∧�R∼A; v(A) = {t,f} iff �AA∧�A∼A; v(A) = {f} iff �RA∧�A∼A.172

Negation could then be De Morgan (paraconsistent) within the scope of the
�A and �R operators, but Boolean (classical) elsewhere. Specifically, we can
see that the �R operator cannot be formulated without a characterization of
exclusion, that is, of Boolean negation. For, from the foregoing equivalencies,
we can see that �AA iff t ∈ v(A) and �A∼A iff f ∈ v(A), but �RA iff t /∈ v(A)
and �R∼A iff f /∈ v(A). The negations within t /∈ v(A) and f /∈ v(A) must
be Boolean lest these statements be compatible with t ∈ v(A) and f ∈ v(A),
respectively. (If t ∈ v(A) is compatible with t /∈ v(A), then �AA is compatible
with �RA, which is ruled out in Priest’s informal characterization of these
terms.)

It might be thought that Priest’s (1991) modified account of recapture—
wherein the quasi-valid inferences are default assumptions within a nonmono-
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tonic system—might fare better (Goodship 1996, 157). However, as Priest
(1991, 322) makes clear, this system (LPm) improves on his earlier account
only by offering a less contrived formal theory of reasoning, not by offering a
clearer explication of how, if “we remain within the domain of the consistent,
classical logic is perfectly acceptable.” In particular, LPm is no more able
than LP to specify the classical consistency of a domain. Moreover, LPm
does not preserve the classical account of inconsistency, since ecq can never
be validated (Priest 1991, 326). So a consistent domain closed under LPm
is not equivalent to the same domain closed under K. The move to LPm
would not seem to remedy the difficulties with recapture. There are still some
possibilities remaining: Priest could argue that the circularity in his definition
of rejectability is not vicious, or he could embrace the reactionary approach to
recapture, by abandoning global paraconsistency, while retaining dialetheism.
Both avenues require further development, although only the first would still
be revisionary of logic.

2.4.4. Boolean Negation and Curry Implication

We saw in 2.4.2 that the main problem for the formalization of paraconsistent
systems is the provision of accounts of negation and implication that reflect
our intuitions but resist trivialization. Specifically, we are concerned with
Boolean negation (¬) and Curry implication (↪→), which we shall take to be
any negation constant satisfying ecq and any implication constant satisfying
mp and abs. We have seen that the unrestricted presence of these rules is
explosive. There are a number of points that the classicist may make to exploit
this apparent predicament for the paraconsistentist.

First, he may argue as follows:173 Boolean negation and Curry implication
are intelligible notions. They are absent from any genuinely paraconsistent logic,
on pain of trivialization. So paraconsistent logics are expressively incomplete.
The issues which dialetheism claims to resolve, such as the paradoxes of self-
reference, may be addressed in consistent, expressively incomplete systems:
there is no need to endorse a paraconsistent system. There are several lines
of reply. Firstly, the weak paraconsistentist is untouched by this criticism:
the superiority of his program for the analysis of inconsistent theories does
not rest on expressive completeness. Second, it is disputable whether systems
intolerant of inconsistency are, ceteris paribus, preferable to systems which can
tolerate inconsistency. Traditionally, the inconsistency of a theory has been
regarded as catastrophic, but precisely because of traditional features of logic,
such as ecq. If these are absent, inconsistency is a less compelling criticism. In
effect, the assumption that paraconsistency is a desperate measure, only to be
countenanced when every other option has been exhausted, begs the question
against paraconsistent logic. Moreover, whereas the expressive incompleteness
of the consistent treatments of the paradoxes of self-reference typically affects
notions employed in the treatment itself, ¬ and ↪→ are not employed at any
stage of Priest’s account (Priest 1990, 202).174
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However, the main paraconsistent response to this argument is more bold:
a denial that ¬ and ↪→ represent intelligible notions. At first sight, this seems
extraordinary, since both constants can be introduced into a system such as LP,
either proof-theoretically or semantically. However, it is a familiar point that
constants may not be introduced by arbitrary stipulation of proof-theoretic
rules: Some additional constraints must be satisfied (Prior 1960). Various
candidate constraints have been mooted, either semantic, which leads to the
second means of introducing these constants, or proof-theoretic. Constraints of
the latter kind are generally based on the requirement that the new constant
should extend the underlying system conservatively (Belnap 1962).175 Both ¬
and ↪→ trivialize paraconsistent systems containing truth-predicates satisfying
the truth schema of naive semantics, and are therefore not conservative of such
systems. However, as Priest (1990, 205) acknowledges, they are conservative
of (some) paraconsistent systems without truth-predicates. Since these truth-
predicates conservatively extend the systems to which they are appended, it is
only the combined presence of the rules for ¬ or ↪→ with such a truth-predicate
that is nonconservative. Hence Priest (ibid.) concludes that the conservative
extension test cannot tell us which of these is to blame, and is therefore
ineffectual in defense of the intelligibility of ¬ or ↪→.

The constants must be included within a semantics before they can be
accepted as intelligible. The LP semantics for ¬ may be expressed truth-
conditionally, as:

¬A is true iff A is not true;
¬A is false iff A is not false,

in contrast to the semantics for De Morgan negation:

∼A is true iff A is false;
∼A is false iff A is true. (Priest 1990, 207)

Hence the truth conditions for ¬ incorporate negation. If this negation is
De Morgan negation, then A and ¬A may be true together, and therefore
there are counterexamples to ecq for ¬. If that negation is Boolean negation
then these truth conditions cannot settle the issue of whether ¬ is intelligible,
since they must presume its intelligibility, question-beggingly. Similarly, Priest
(ibid., 212) claims that the semantics for ↪→ must be given either in terms of
the existing constants, in which case the derivation of the Curry paradoxes is
blocked, or in terms of itself, which would be question-begging as a defense of
its intelligibility.

Hence the paraconsistentist can respond to the classical argument with the
claim that he is not compelled to concede the intelligibility of ¬ and ↪→. The
classicist may respond to this that these constants are perfectly intelligible to
him, and that they capture indispensable features of natural argumentation: If
the paraconsistentist persists in using his own constants instead, then he has
changed the subject. This is a dispute about the location of the hard core of the
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characterization of implication and negation, within (a) the classical program,
and (b) natural argumentation. If the features possessed by ¬ and ↪→, but
not by ∼ and →, that is ecq and abs, were part of the hard core of (a), then
it would be impossible fully to characterize ¬ and ↪→ without them. Hence
any adequate characterization of these constants in K would be false in LP,
precluding the identification of ¬ with ∼ and ↪→ with →. Even so, it would still
be possible for the paraconsistentist to argue that ecq and abs were absent
from the hard core of (b), and pursue an ingloriously nonclassical program.

We have already seen that many of the same difficulties afflict the provision
of an applied semantics for contraction-free logics, such as LP, as for relevance
logics. Yet the search for applied dialetheic semantics is an ongoing program,
and there are some grounds for optimism. The requirement for nonreflexive
worlds, interpreted as situations in which the laws of logic differ, may be
unexpected, but at least the most counterintuitive features of the Routley–
Meyer semantics for relevance logics, such as the ∗-operator, are not needed
(Priest 1992, 299). Goodship (1996, 158f.) suggests retaining contraction and
resisting Curry paradoxes by employing only the material conditional, ⊃, for
which mp fails. This would make an applied semantics much easier to achieve,
but would necessitate a justification of the surprising claim that mp is not one
of the core intuitions of implication. Some solace might be found in the result
that mp for ⊃ is valid in LPm.

If center-right classical recapture can be motivated, then much the same
diagnosis can be made for LP as for the relevance systems assessed in 2.3. LP
would be a glorious revision of K with at least the prospect of a sufficiently
applied semantics for the system to be viable as an organon. However, we saw
in the last section that although center-right recapture is claimed by Priest,
that claim cannot yet be regarded as substantiated. His account of recapture is
in danger both of question-begging in the definition of rational rejectability and
of accidentally conceding the intelligibility of Boolean negation. If these defects
cannot be remedied, then Priest will be forced into a version of Dummett’s
dilemma:176 Either K and LP will be mutually unintelligible, or LP will be
expressible within an extension of K. Both strategies may be coherent ways of
articulating dialetheism, but neither is Priest’s program.

3. Conclusion
Our first priority in these concluding remarks is to underscore some of the key
aspects of the argument of the preceding sections. The first section addressed
the dynamics of logic, explaining how and why changes of logic occur and how
they can be justified by an exploration of a methodology of theory change
for logic. Our account began (1.1) with an account of the broader context
of logical systems: logical theories, which include not only syntax, semantics,
and metatheory, but also a parsing theory, a set of inferential goals, and the
background philosophical theories by which these goals are informed. In 1.2
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we offered a clarification of the idea of “revolutions” in the formal sciences.
We distinguished four salient possibilities: three sorts of revolution, which
we called “inglorious,” “glorious,” and “paraglorious,” and no revolution at
all (stasis). A glorious revolution is a transition between theories in which
the key components of the original theory are preserved, despite changes in
their character and relative significance. In a paraglorious revolution, new
key components are added, but in an inglorious revolution key components
are lost. If Dummett’s dilemma adequately describes the prospects for logical
revision, then only stasis and inglorious revolution can occur. Hence, to show
this to be a false dilemma, it suffices to show that there can be glorious
(and/or paraglorious) revolutions in logic. Not only would this produce a richer
characterization of logical revision, but also, a fortiori, an answer to Quine’s
(1970, 81) alleged predicament.177

But the most important aspect of any dynamics of logic must be an account
of the diachronic character of logical theories. Here (1.3) we appealed to the
treatment of research programs and research traditions by Imre Lakatos (1970)
and Larry Laudan (1977, 78ff.), offering a synthesis of the two approaches and
exploring how they may be adapted to the case of logic. One result of this
treatment was an explanation of how the temptation to see logic as irrevisable
arises from confusion between research programs of different depths within
the same tradition. In 1.4 we introduced a characterization of “recapture,” the
means by which the inference relation of one system may be preserved as a
special case within another system. As we were to show in section 2, classical
recapture provides an explanation of the special status that K retains in most
nonclassical systems which does not diminish their originality. Returning to
Lakatos (1976) in 1.5, we derived a characterization of the possible responses
to anomalous data within a research program, which we termed “heuristic
context”: the practices characteristic of a specific stage in the development of
a research program.

This measure of how open a program is to reform and revision generated a
range of historically familiar positions, and assembled them into an implicit
hierarchy (1.6). The hierarchy begins with ways of dealing with recalcitrant
features of natural argumentation that do not involve revision of logic, and
continues with the adoption of nonrival logics. However, the most interesting
levels are those in which logic must be revised. We distinguished between
“restriction of logic,” “wholesale reform of logic,” and “change of the subject
matter of logic.” Restriction of logic avoids an anomaly by moving to a new
logic which lacks previously valid inferences and theorems. Wholesale reform of
logic builds on the former move by exposing to criticism and reformulation the
elements of a logical theory beyond the logical system, including metalogical
concepts, such as that of consequence, background theories, and the inferential
goal. Change of the subject matter of logic is a change of inferential goal
precipitated by nonconservative revision of background theories. This shifts
the focus of the dispute from the discipline of logic to whatever discipline
threw up the conflicting background theories.
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In section 2 we applied the picture developed in section 1 to four specific
reform proposals. The purpose of these case studies is twofold: collectively,
they serve to demonstrate the applicability of our general picture of logical
reform to some of the most extensively discussed proposals; and individually,
they offer an opportunity to explore the finer detail of a variety of different
debates within especially illustrative contexts. The first case study (2.1) was a
discussion of intuitionistic logic (J). After exploring the detail of the principal
research programs by which J is advocated, we demonstrated that translations
between J and K and between J and S4 do not establish equivalence between
the related systems. We showed that J recaptures K. The significance of
metalogic and proof theory for logical revision has been the focus of an ongoing
debate in the philosophical advocacy of J. We exhibited this as a false lead, at
least as far as both of the chief intuitionistic research programs are concerned.
In contrast with most other reform proposals, the point of conflict always
retreats to the background theories. This suggests that the heuristic context
of these programs is at the final level of the hierarchy we developed in 1.6:
change of subject matter.

The second case study (2.2) was of Birkhoff and von Neumann’s QL, and the
program proposing that quantum mechanics would be better understood if this
system were adopted as an organon. This program differs from the other case
studies in its overtly empirical motivation, although, as we demonstrated in 2.1,
this does not stand up to close scrutiny. However, the program still raises some
crucial philosophical issues. Hence we used it to explore how a nonclassical
system can be cotenable with important classical background theories, and
to provide a worked example of our response to Dummett’s dilemma.

The third case study (2.3) was concerned with systems of relevance logic.
In the programs considered in the first two case studies, there is little room
for dispute over which nonclassical system is best adapted to the program’s
positive heuristic. However, the diversity of possible syntactic and semantic
systems is an important feature of the relevance and paraconsistent programs.
The relevance program also provides an excellent illustration of the possible
responses to recapture, since all four of them are instantiated within various
implementations of the program. We concentrated in this case study on the
importance of semantics for logical revision, asking what sort of semantics
must be provided for a system before it can be advanced as a viable reform
proposal. The focus of the treatment was a critique of Copeland’s claim that
the linkage of the structures of relevance logic to natural argumentation is too
weak to justify the application.

Finally, the fourth case study (2.4) was of paraconsistent logic, perhaps
the most controversial of serious reform proposals. In this chapter we took
particular care to explore some of the intricacy of evolving a system to fit
the demands of philosophical background theories. We also examined the
mechanism of recapture, which has recently been at the center of some of the
most interesting and generally applicable discussion of paraconsistent systems.
The irony of this is that, as we demonstrated in 2.4.3, classical recapture is
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much harder to achieve in paraconsistent systems than in the other nonclassical
systems in this chapter.

At the end of 1.6 we promised an important positive application for the
change of subject matter level of the hierarchy of logical heuristic contexts.
One role that a transition at this level can play is the facilitation of a glorious
revolution brought about by shifting the program onto new foundations offering
higher standards of rigor and improved generality. Klein’s Erlanger Programm
may be understood as a move of this sort within geometry. Klein’s achievement
was to found geometries not in more or less arbitrary lists of axioms, but in
the invariants under groups of transformations, each group corresponding to
a different geometry (Klein 1893, cited in Boyer and Merzbach 1989, 548f.).
Thus “geometry” was reified from a subdiscipline of mathematics to an object
of mathematical study, reconstructing an ancient subject on the modern
foundations of group theory and linear algebra (Marquis 1998, 186f.).

We may now discern two contrasting prognoses for the near future of research
into the logic of natural argumentation. This is often portrayed (Haack 1974;
Sarkar 1990, for example) as a continuing dispute among a proliferation of
largely unrelated, competing nonclassical programs, each of which seeks the
status of sole successor to classical logic. However, within the heuristic context
appropriate to the highest level of the hierarchy, change of subject matter, this
proliferation of logics may be understood to represent a refinement of logical
method. The original quarry, the best logic for natural argumentation, has
given way to something of higher generality: a structure that integrates the
best features of a plurality of logics—an Erlanger Programm for logic. The
articulation of such a structure as applied to natural argumentation is still in its
earliest stages, but much recent work toward the provision of a general account
of logical systems may lend itself to the advancement of this program.178

Because K would be subsumed within this structure as a key component, the
program might best be regarded as a treatment not of nonclassical logic but
of postclassical logic.

Further Reading
For many years, students of alternative logics were ill-served by the publishing
trade, with few monographs, no textbooks, and key results often found only
in inaccessible journals or circulating in samizdat form. In recent years, the
situation has improved beyond recognition.

No fewer than three introductory textbooks (Bell, DeVidi, and Solomon
2001; Priest 2001; Beall and Van Fraassen 2003) are now available, as well as
an accessible collection of survey articles (Goble 2001). Each of these works
considers all of the programs we discussed in section 2, except quantum logic.
Both of the major encyclopedias of philosophy to have appeared in the last
decade (Zalta 1995–; Craig 1998) offer extensive coverage of nonclassical logics,
in contrast with previous such endeavors. Even greater detail may be found
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in the vastly expanded second edition of the Handbook of Philosophical Logic
(Gabbay and Guenthner 2001–).

More specific projects include important historical work on the early years
of the intutionistic program (including Hesseling 2003) and several collections
of new work on quantum logic (including Coecke, Moore, and Wilce 2000;
Dalla Chiara, Giuntini, and Greechie 2004; Weingartner 2004). The relevance
and paraconsistent programs have benefited from the consolidation of recent
results in textbooks (Restall 2000; Mares 2004) and continue to produce new
work (Priest, Beall, and Armour-Garb 2004). Perhaps most interestingly of
all there is evidence of a renewed fascination with the phenomenon of logical
pluralism itself (Brown and Woods 2001; Beall and Restall 2006).

Notes
1. We refer to formal systems by boldface acronyms, to avert confusion with the

broader programs by which they are advocated. Hence, by K we mean classical logic,
propositional unless clearly first-order by context.

2. The difference between consequence and deductive systems corresponds to
Tennant’s (1996, 351f.) distinction between, respectively, gross and delicate proof
theory.

3. For example, K has the same theorems in ¬, ∧, ∨, and ⊃ (if A ⊃ B is defined
as ¬A ∨B) as the relevance system R.

4. Note that Dummett uses this terminology for a different distinction, specifically,
he defines smooth logics as systems in which the rules of inference and proof coincide,
and rough logics as systems in which they do not (Dummett 1973a, 436).

5. A browse through any issue of the Journal of Symbolic Logic will furnish
numerous examples.

6. The theoreticity of observation originates with Pierre Duhem (see his 1904,
145ff., and the discussion in Gillies 1993, 132ff.) and is widely discussed in modern
philosophy of science. A contrast may be drawn between two versions of this position:
a “harmless” position which simply exhibits the dependency of observations on
theory, and a stronger, more philosophically contentious position which denies that
observation and theory can be clearly distinguished (Wright 1992, 159ff.; Lakatos
1970, 96ff.). Only the “harmless” position is assumed here.

7. For an impression of the difficulties of this activity, see Walton (1996).
8. See section 2 below and chapter 17 of this volume.
9. Gillies (1992, 5) distinguishes “Franco-British” from “Russian” revolutions in

similar terms to our contrast of “glorious” and “inglorious” revolutions. Our termi-
nology may exhibit unabashed persuasive definition, but it sidesteps the historical
exegesis prompted by Gillies: Why is the French revolution more like the British
than the Russian? What are the start and end points of each revolution?

10. As pursued in many of the contributions to Lakatos and Musgrave (1970),
notably Toulmin (1970). For Kuhn’s own account of normal science see Kuhn (1962),
23ff.

11. Which is why Gillies (1992, 5) thinks the French Revolution was glorious,
since he includes the 1815 restoration of Louis XVIII within its scope. However, this
indicates the instability of assessments made on such a large scale, since there seems
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no good reason why he should not have gone further still and included the overthrow
of Louis-Philippe in 1848, which makes the whole affair inglorious.

12. This problem is exacerbated by the epistemological confusion discussed shortly.
Also see 2.2.4.

13. In Crowe’s terminology, glorious and (tacitly) paraglorious revolutions are
“formational events” and inglorious revolutions are “transformational events.”

14. R¬, the conservative extension of R with Boolean negation, is a common
extension of K and R; see Meyer (1986) for details.

15. For instance, Dauben (1984, 62), Gillies (1992, 6), and Dunmore (1992).
However, Crowe has moved from denying that there any revolutions in mathematics
(1975, 19) to suggesting that even inglorious revolutions may be possible (1988, 264f.;
1992, 313).

16. “Research programs” are introduced properly in 1.3; for the time being we
will use this phrase informally, with its literal sense.

17. Larvor (1997, 52) has an alternative argument to this conclusion: That although
mathematicians seldom misreport the phenomena of their discipline, they still err
in the explanations they offer for these phenomena. This exhibits the importance
of maintaining the distinction between science and subject matter in logic and
mathematics.

18. This is a simplification of Lakatos’s epistemology: See Larvor (1998), 64 and
Motterlini (2002).

19. For further discussion of the merits of this strategy see Preston (1997), 169ff. It
has been suggested that Lakatos (1976) exhibits a methodological anarchism absent
from msrp, since in this work he counsels against the unconditional acceptance
of any methodological rule (Larvor 1998, 87). However, that sort of anarchism is
endorsed in Lakatos 1970 (51), wherein the positive heuristic is placed outwith the
hard core; the contrast with the later Feyerabend is in the very existence of enduring
methodological constraints.

20. Ziman (1985, 2 fig. 1) gives a helpful diagram of the nesting of research
programs (although his methodology is not explicitly Lakatosian). He also notes
(p. 6) that any detailed picture of the interdependency of different areas of research
will be immensely topologically complicated. However, this need not diminish the
illustrative force of a suitable simplification.

21. This picture is inevitably an idealization, in so far as it presumes a system-
independent characterization of the hard core of different programs. This concern
is mitigated by the degree of rational reconstruction involved in any articulation of
research programs.

22. Some optimists would disagree—for example, Horgan (1996)—although not
Lakatos, who is consistently antihistoricist (see Larvor 1998, 29). In the case of logic,
such optimism would correspond to Kant’s view that logic is one of the “few sciences
that can attain a permanent state, where they are not altered any more” (Kant 1992,
534, see also 438). The dangers of this position are manifest in Kant’s further opinion
that this permanent state had been attained by Aristotle.

23. After the usage of Laudan (1977, 78ff.). Our characterization meets two of
the defining conditions of his account (common metaphysical and methodological
assumptions, and tolerance of a variety of different, even mutually exclusive, con-
stituent programs), but perhaps not the third (specification of certain exemplary
theories within the tradition).
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24. Aristotelian syllogism and an early implementation of classical logic respectively.
See Haack (1974), 26ff.

25. Quine’s position is discussed at length by Plantinga (1974), 222ff.
26. This section is based on Aberdein (2001a).
27. The earliest usage we have been able to find of the word “recapture” to

describe a relationship of this kind is Priest (1987), 146, although such relationships
have been discussed in other terms for much longer. Sometimes this has been in
a weaker sense, as the reproduction of the theorems of the prior system, or in a
stronger sense, as the reproduction of the proofs of that system. See Corcoran (1969,
154ff.) distinction between logistic, consequence and deductive systems discussed
in 1.1.

28. A sequent is, generally, a pair of sets of wffs; a single-conclusion sequent is a
pair of a set of wffs and a wff.

29. See the distinction between expressive power and deductive power drawn by
Rautenberg (1987, xvi).

30. “Perhaps . . . any genuine ‘logical system’ should contain classical logic as a
special case”: van Benthem (1994), 135. Kneale and Kneale (1962, 575) also seem to
be committed to this view.

31. In this case the situation is complicated by Belnap and Dunn’s (1981) claim
not to embrace the radical left stance themselves; rather they attribute it to “the
true relevantist,” whose position they wish to criticize.

32. “Intuitionists . . . deny that the [classical] use [of the logical constants] is
coherent at all”: Dummett (1973b), 398. But see Dummett (1973a), 238 for a more
conciliatory intuitionist response to recapture.

33. See, for example, Lewis (1932), 70 and chapter 12 of this volume.
34. Susan Haack acknowledges the possibility of such a limitation to her attempt to

define rivalry on purely syntactic grounds, although her choice of examples downplays
its likelihood (Haack 1974, 6).

35. Whose How to Solve It (Pólya 1945) he translated into Hungarian. Compare,
for instance, Pólya (1945), xxxvif. and Lakatos (1976), 127f.

36. We propose “monster-exploiting” as a shorthand for what Lakatos calls “the
method of proofs and refutations,” into which he subsumes subsidiary methods of
“lemma-incorporation” and “content-increasing” (64). Bloor (1983, 145 n12) suggests
the more colorful “monster-embracing,” citing Caneva (1981). However, Caneva
(1981, 108f.) actually uses the misleading “monster-assimilating” here, reserving
“monster-embracing” as an (equally misleading) synonym for “primitive exception-
barring.”

37. The conjecture was first published in Euler 1758, although it had been
anticipated in a manuscript of Descartes’s (Lakatos loc. cit.). As Worrall and Zahar
note in their preface to Lakatos 1976 (ix), a recurring criticism of Lakatos (1976) is
that it is derived from a narrow diet of examples, beyond which it is not applicable.
Their hope that this complaint could be answered with additional case studies from
Lakatos’s thesis, omitted in its earlier journal publication, seems precipitate: see
Anapolitanos (1989), 337. However, in recent years much more of the history of
mathematics has been fruitfully explored on Lakatosian terms (discussed at length
in Larvor 1997, 43ff.).

38. Lakatos (1976, 14ff.) extracts a wide variety of such monster-barring responses
from the literature.

39. See fig. 7, ibid., 17 for a helpful illustration.
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40. In reinforcement of this assimilation, Bloor (1983, 139 n2) notes the presumably
serendipitous employment of similar analogies by logicians, for example: “For some
[the Lewis principles, (A ∧ ¬A)→ B and A→ (B ∨ ¬B)] are welcome guests, whilst
for others they are strange or suspect” (Makinson 1973, 26).

41. The resultant hierarchy partially overlaps a similar account, from which the
quoted headings are taken, developed by Haack (1978), 153ff.

42. For example, an uncharitable reading of Strawson (1952), 88.
43. The more conservative of Strawson’s two approaches to nondenoting terms, as

reconstructed by Nerlich (1965), 34.
44. For a discussion of Frege’s treatment of vagueness, see Williamson (1994), 37ff.
45. Russell (1905, 484) criticizes Frege’s proposal as “plainly artificial”—a fairly

swift response given the comparatively limited reception of Frege’s work at that time.
See Haack (1974), 127f.

46. A more charitable reading of Strawson (1952), 88 would be to the same effect
(see note 42).

47. But see McCawley (1981), 222ff. and Davis (1998) for criticism of the Gricean
program and its claims of progress.

48. See Read (1988), 179ff. for an application of Wittgenstein’s proposal. Similar
methods have been used against other anomalies: for example, the treatment of the
paradoxes of material implication in Balzer (1993), 76.

49. See Sorensen (1999), 159f. for criticism of this suggestion and broader discussion
of the employment of orientation in logical notation.

50. Van Fraassen’s paracomplete supervaluations have been dualized to paracon-
sistent “subvaluations” by Hyde (1997) (see 2.4.2). A theory (and any logic admitting
it) is said to be “paracomplete” if for some, but not all, of its propositions, neither the
proposition nor its negation is true; that is, B � A, ¬A fails. Dually, a theory (and
any logic admitting it) is said to be “paraconsistent” if for some, but not all, of its
propositions, both the proposition and its negation is true; that is, A, ¬A � B fails.

51. Kripke (1975, 64 n18) is particularly insistent on this.
52. The identity of the more radical proposal should be obvious for most of the

examples, except perhaps Russell’s misleading form analysis. Here the competitor
theory is Meinong’s account of nonexistent objects, which Russell (1905, 482ff.)
criticizes extensively (and perhaps unjustly). Meinong’s program did not have a
formal logical presentation at this time, although proposals for remedying this have
been published subsequently, for example, Parsons (1980) and Jacquette (1996).

53. Propositions employing higher-order quantifiers appear anomalous because
they seem to be inexpressible in first-order logic. A rearguard claim that they can be
expressed elsewhere in the language is monster-adjustment, since by redefining the
anomalous vocabulary as nonlogical, it prevents conflict with the prevailing logical
theory. In contrast, a claim that a certain discourse is unintelligible represents a
principled delimitation of the subject matter of logic: an exception-barring move, as
discussed.

54. See 1.4 for details of recapture and the possible responses to it.
55. Examples of this process are the progress of the Lewis modal systems, such

as S4, from apparent rivals to K to extensions of K; and the understanding of
J, interpreted as merely a calculus of (classical) provability, in the light of the
Gödel–McKinsey–Tarski translation (see 2.1.2).

56. This system was first suggested as a progressive revision of classical logic some
30 years later, notably in Putnam (1969); see 2.2 for further discussion.
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57. Koetsier (1991) (cited in Larvor 1997, 53) complains that Seidel seems unaware
of the importance of his methodological innovation; but, as Larvor (1997) responds,
proper assessments of significance require historical perspective.

58. Typically through the application of situation theory, as in Devlin (1991): par-
ticularly programmatic passages may be found at 10f. and 295ff. But see Mares (1996)
and Restall (1996), wherein situation theory is assimilated to the less comprehensively
revisionist relevance logic program.

59. Such as that of Johnson and Blair (1997, 161), who “distinguish informal
logic from formal logic, not only by methodology but also by its focal point . . . the
cogency of the support that reasons provide for the conclusions they are supposed to
back up.” More extensive treatments may be found in Johnson (1996) and Walton
(1998).

60. The two most frequently cited sources are Nye (1990) and Plumwood (1993).
Although Nye (1990, 175) concludes her indictment of “masculine” logic with the
claim that “there can be no feminist logic,” her alternative, a dialectic of care
(ironically derived from the work of male critics, such as Paul de Man), could be
seen as a revision at the final level of our hierarchy—in which the word “logic”
itself would be jettisoned, despite the retention of some of its methods. Plumwood’s
defense of relevance logic on feminist grounds is more conservative, and might be
thought to belong in the previous level of the hierarchy. However, programs are
not characterized by their formal calculi alone: Plumwood’s revision of the classical
background theories is clearly substantial and her program not necessarily continuous
with that of the more orthodox advocates of relevance logic. Both positions have
been heavily criticized, notably by Haack (1996, xvf.; 1998, 125 n9) and Curthoys
(1997, 68ff.).

61. Of the examples given, only the informal systems and Nye’s proposal require
the loss of some key components of the formal system (indeed all of them, if she is
taken at her word, as advocating the abolition of logic). Devlin (1991, 10) is clear
that he regards K as a special case, and Plumwood’s preferred formal system, R,
also recaptures K, as we shall show in 2.3.

62. See note 50 for a definition.
63. There are exceptions to this attitude, as we shall see.
64. For instance, as attempted in Weyl’s (1918) constructive set theory (cited in

Quine 1970, 88) or Lorenzen’s (1955) “operative mathematics” (cited in Körner 1960,
153f.).

65. This presentation is essentially due to Heyting 1956, 98f., 102f., but as presented
in van Dalen (1986), 231. Further refinements of (iii) and (vi) due to Kreisel (1965,
129) may be introduced to ensure the decidability of the proof relation.

66. Earlier, partial, axiomatizations were produced by Glivenko and Kolmogorov.
67. This is actually a stronger requirement than strictly needed to obtain J, hence

J may be given a multiple-conclusion presentation (Takeuti 1975; Read 1995, 229).
68. This originated in Dummett (1959a), and has been developed extensively in

subsequent work, notably Dummett (1991) and Tennant (1997).
69. Such application is not without further difficulties: see Tennant (1997), 48,

403ff.
70. In the exposition of this argument we follow Tennant (1997), 176ff. Dummett

has presented the argument in many different locations, notably his (1973a), 466ff.
71. In so far as Dummett discusses this possibility at all (for instance, in his 1982,

258f.), he substantially underestimates its feasibility (Tennant 1997, 169f.).
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72. Ultimately, Tennant is no friend to the Gödelian Optimist, and wishes to
argue that this position is either ad hoc or incoherent (ibid., 239). However, we shall
not consider this argument here.

73. Kremer (1989, 58) suggests that the meaning theory of Brandom (1983) should
do the trick.

74. Tennant’s account of empirical discourse (1997, 403ff.) proceeds along similar
lines (although his meaning theory is intended to motivate adoption of his version of
intuitionistic logic).

75. For the distinction between rough and smooth logic, see 1.1. There are also
many smooth applications of J, for example, in computer science.

76. There has been commentary both for (e.g., Schwartz 1987) and against (e.g.,
Read and Wright 1985) the proposal. Williamson (1994, 300 n13) briefly surveys the
debate.

77. We follow Gallier (1991, 73) in presentation.
78. A more sophisticated double-negation translation, with several practical

advantages for proof theory, has been published by J.-Y. Girard (1991).
79. McKinsey and Tarski (1948, 13f.) established the preservation of antitheorems,

that is �J A only if �S4 A
∗.

80. The gmt translation embeds J within a different reduct of S4 from the Gödel
translations.

81. Rasiowa and Sikorski (1953, 93) prove this for the gmt translation; Troelstra
(1990, 297) shows how their proof may be generalized to Gödel’s earlier translations.

82. Alternatively, we could think of this as using a double-negation translation
to introduce the “missing” constants, ∨ and ∃, into J¬,→,∧,∀ by definition, which is
how the scenario is envisaged by Gödel (Kneale and Kneale 1962, 679). Since the
resultant system would be clearly equivalent to J¬,→,∧,∀, the underlying question is
the same: Is J¬,→,∧,∀ ∼= K?

83. Remember that in 1.4 we distinguished between proper subsystems, which
may have the same constants as the parent system, but only a subclass of the wffs,
and proper reducts, which have only some of the constants of the parent system, but
partition the class of inferences containing only those constants into the same valid
and invalid subclasses, and are thus extended by the parent system.

84. Further examples in this vein can be found in (Dummett 1976a, 285) and at
the end of (Brouwer 1912, 89).

85. For an argument that these results only establish completeness for at most
the positive reduct of J, see Dummett (1977), 265ff.

86. These two claims may also be distinguished in Copeland’s (1983a, 200, for
example) criticism of the semantics for R.

87. Kolmogorov’s position is discussed by von Plato (1994, 200ff.).
88. Brouwer (1952, 142) assumes an intuition of the continuum lacking in

Kolmogorov’s stricter constructivism.
89. Some constructivists have pursued this corollary, and advocated a negation-free

logic (e.g., Griss 1946). However, this (rather extreme) move cannot help here, since
we are seeking an explanation of how classical negation, but not classical disjunction,
could be seen as intuitionistically acceptable.

90. The latter being what Dummett (1991, 332f.) calls the “ancillary use of
non-classical constants.”

91. Interpolation is one notable omission.
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92. Actually, Tennant (1996, 382) seems unsure whether K preserves its preferred
species of truth. Qua relevantist, this is perhaps understandable (see 2.2), but qua
intuitionist his qualms seem to turn on a criticism of classical truth (1996, 361f.),
which moves the focus of the debate away from the formal system and toward the
goal of the system. We will see more of this move shortly.

93. The earliest account of harmony (Dummett 1973a, 396f.) expressly employs
Belnap’s conservative extension requirement, which was articulated in response to
Prior (Belnap 1962).

94. An observation of Takeuti’s (1975) cited by Gallier (1991, 40).
95. In both sequent calculus and natural deduction form. For example, GKTi

(Gallier 1991, 41) and NJ′ (Ungar 1992, 56ff.), respectively.
96. Normalization theorems have been produced for various presentations of K:

for example, Shoesmith and Smiley (1978), 366ff.; Weir (1986), 477f.; Ungar (1992),
150ff. Weir (1986, 466ff.) offers an inversion principle satisfied by K but not J, which
he argues is more natural than Prawitz’s version and offers an account of harmony
for the classical constants.

97. For example, Weir (1986, 479) anticipates that the intuitionist might respond
that his inversion principle favors stronger logics. Of course, in this case Prawitz’s
principle could be said to favor weaker logics.

98. Described as “revision of the scope of logic” in Haack’s analogous hierarchy
(Haack 1978, 155). There is some ambiguity in this use of “scope” (see Resnik 1996,
497).

99. Notably by Crispin Wright. For example, see his dissent from Rasmussen and
Ravnkilde’s claim that there are “no anti-realistically acceptable semantics which
will validate classical logic for all statements not known to be effectively decidable”
(Wright 1982, 468ff., citing Rasmussen and Ravnkilde 1982).

100. The following exposition is derived chiefly from Birkhoff and von Neumann
1936; van Fraassen 1974; Redhead 1987; and Foulis 1997.

101. Other systems of logic, such as the R3 of Reichenbach (1944), have also been
inspired by qm, but none of them have generated as much philosophical interest as
QL.

102. A Hilbert space is a complete, normed inner product space. That is, there
is a mapping assigning a real number to every element, and every pair of vectors
has an inner product. The inner product function associates a scalar u · v with a
pair of vectors u and v such that u · v = v · u, u · (v + w) = u · v + u · w and
nu · v = n(u · v) = u · nv, for any scalar n.

103. A lattice is a partially ordered set such that every pair of elements has a
least upper bound and a greatest lower bound.

104. There are several possible ways of introducing a conditional into QL, none
of them wholly satisfactory. This one, the “Sasaki hook,” satisfies modus ponens and
several other desirable constraints (Dickson 2001).

105. Putnam’s program is first suggested in his (1962, 248), and articulated fully
in his (1969).

106. Dummett’s suggestion postdates his (1976a), although the spirit of this
argument is present in that paper. The argument does not turn on the infinitude
of the system considered: a suitable finite system is given by Kochen and Specker
(1967). (See Putnam 1994, 294 n65).
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107. “The realistic terms in which [Putnam] construes statements about quantum
mechanical systems cannot but allow as legitimate a purely classical interpretation
of the logical constants as applied to such statements.” Dummett (1976a), 285.

108. For the opposite argument, in defense of a classical metalanguage, see 2.1.2.
109. Such an approach is developed in Kamlah (1981), 320ff. He employs Reichen-

bach’s three-valued system R3, which was independently developed as a logic for
qm, although a less esoteric system would do as well for our purposes.

110. Feyerabend’s position fluctuates, and is plagued by difficulties of exposition
not presently relevant. A version close to that advanced here is stated in Feyerabend
(1962), 75.

111. Preston (1997, 117) lists eight strategies suggested by Feyerabend.
112. Feyerabend circa 1962, that is; he subsequently denied any normative role to

empirical observation, notably in his (1975).
113. The approach resulting from acceptance of the result of the Kochen–Specker

argument, considered already, would be in sympathy with this analysis.
114. We abbreviate clause (2)(b)(iii) because it is clearly irrelevant to the logical

case.
115. For example, there is an extensive discussion of the problems which led

Popper to abandon his allegiance to this program (as developed in Popper 1947a
and 1947b) by Schroeder-Heister (1984).

116. For example, Hesse (1968), 48, a convincing response to which is given in
Leplin (1969), 71ff.

117. See MacColl (1906) and Read (1998).
118. “It is true that in ordinary speech the conjunction if usually suggests some

necessary relation between the two sentences it connects; but the exigencies of logic
force us to adhere to our definition, A : B = (AB′)η [i.e., A → B = ¬♦(A ∧ ¬B)]
and disregard this suggested relation.” MacColl (1901).

119. X is a subbunch of itself; Y and Z are subbunches of any bunch of which
X;Y is a subbunch; Y is a subbunch of any bunch of which any set containing Y is
a subbunch.

120. This formulation of Cut is valid; however, it does not really recognize the
multiple-conclusion nature of consequence. The full multiple-conclusion version of
relevance logic has not yet been worked out.

121. The compactness condition is that any consequence of a set is a consequence
of some finite subset of it. Substitutivity was articulated by Tarski in a later article
(1936, 415). It expresses the fact that logical consequence is formal, that what follows
from a set of premises does so in virtue of its form, not its particular content. To
articulate this thought, we need a distinction between the logical and the descriptive
vocabulary in the grammar.

122. B is associativity for fusion, or prefixing for “→,” and C is permutation for
“→.”

123. See Anderson, Belnap, and Dunn (1992), §51, where it is called the “operational-
relational semantics.”

124. On t and T , see note 129.
125. Anderson, Belnap, and Dunn 1992 §80, 489f. (The chronology of the ensuing

dialectic may appear mysterious unless it is noted that this section predates Meyer
[1978]. It was first published as Belnap and Dunn [1981], but circulated in typescript
from 1976.)

126. Pace Tennant, whose systems are omitted from this catalog.
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127. This subdivision is explicated in Routley (1984).
128. Such strategies are itemized by Anderson, Belnap, and Dunn (1992), §§80.4.1–

4, 503ff.; Meyer (1978), 85; Burgess (1983), 47ff. and Bhave (1997), 403.
129. The Ackermann constants t and f (the true and the false) represent the con-

junction of all logical truths and the disjunction of all logical falsehoods, respectively,
whereas the Church constants T and F (the trivial and the absurd) represent the
disjunction of all propositions and the conjunction of all propositions respectively
(Anderson and Belnap 1975, §27.1.2, 342). The conjunction and disjunction used here
are the extensional lattice constants, hence the conjunction of a set of propositions is
the weakest proposition which implies every element of the set, and the disjunction
the strongest proposition implied by every member of the set.

130. Meyer dismisses (2) as “recommended to the relevantist, not so much as a
concrete option but as a brand of lunacy to which he, too, can aspire” (1978, 85). He
is more favorable toward (3), viewing it as inevitable in the face of general skepticism
about deduction (ibid., 94f.), to the distaste of Routley (1984). However, this cannot
rest on a literal reading of (3), which advocates leaps of faith only for some inferences.

131. Burgess is critical of all the strategies he identifies: His purpose is to show
that disjunctive syllogism represents a class of arguments for whose validity relevance
logic is unable to account. He attributes (1a) to Routley (1981), although the position
in Routley 1984 is closer to (1b), which Burgess attributes to Mortensen (specifically,
his 1983). Belnap and Dunn only address (1a) in their criticism of (1) (Anderson,
Belnap, and Dunn 1992, §80.4.1, 503).

132. This strategy may be found in Anderson and Belnap (1975), §16.1, 165f.
133. Priest (1989b, 624) makes the same criticism of the presentation of (1b) he

finds in Routley and Routley (1972). For his preferred approach see 2.4.3.
134. Also see note 130. However, Routley argues that the tortoise’s argument

turns on a relevantly unacceptable conflation of exportation and importation, that is
of the tactics of (1a) and (1b), and thus that (1b) is the only feasible version of (1)
(Routley, Meyer, Plumwood, and Brady 1982, 30; Routley 1984).

135. One option would be to dismiss this original motivation as historical, and
focus instead on the utility of relevance logic for reasoning in potentially inconsistent
circumstances, a move encouraged by the adoption of either dialetheic or American
plan semantics (see below). Ultimately, however, this is to give up on the positive
heuristic of relevance logic and adopt that of paraconsistent logic instead (see 2.4).

136. Because R is not an extension of K—recall that extension is defined in terms
of valid inference, not just theorems (see 1.4). The class of extensional theorems of
R is equivalent to the class of theorems of K (Anderson and Belnap 1975, §24.1.2,
283f.), making K a proper reduct of R in this weaker, “logistic” sense.

137. Contra Belnap and Dunn, who suggest a parallel between intuitionism and
true relevantism (Anderson, Belnap, and Dunn 1992, §80, 489). This suggestion is
criticized at length by Meyer (1978, 18ff.) who notes a variety of disanalogies—such as
J’s origins in an already articulated philosophical system and its intrinsic non–truth-
functionality—which suggest that the intuitionist’s dissent is more fundamental.

138. He attributes the terminology to Plantinga (1974, 126ff.) and also quotes
Dummett (1973d, 293f.), and Kirwan (1978), 107 with approval.

139. In the same passage Plantinga offers “depraved semantics” as a synonym for
applied semantics, although it seems inappropriate to regard as depraved something
that must satisfy extra conditions. Some of his other remarks suggest that his position
should be seen as closer to interpretation (3) or (4).
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140. An example of a system with a semantics which clearly fails the generality
condition is Michalski, Chilansky, and Jacobsen’s 12-valued system (where each value
corresponds to a month of the year) for employment in the diagnosis of plant disease
(Haack 1978, 214). Less esoterically, we shall suggest that the American plan may
fail this condition.

141. This is approximately the distinction that Haack makes between local and
global pluralism (Haack 1974, 42ff.; 1978, 223ff.). We differ from her in excluding only
strictly local systems, which resist even the paraphrase of general argumentation—
that is, they do not recapture any system that could represent general argumentation,
under their semantics.

142. Although the distinction is first suggested by Copeland (1979, 406), its
importance to the dialectic only becomes clear in his 1983a (200). This confusion
serves to illuminate what Copeland (1983a, 199ff.) takes to be a deplorable misreading
of his 1979 in Routley, Routley, Meyer, and Martin (1982).

143. A generalization of standard possible world semantics to paraconsistent logic
with recapture of the standard system has been worked out in detail in Mares (1997).

144. It is apposite to recall the difference between a “world” in which both a
proposition and its negation are true, and a “world” in which a proposition is both
true and false. Both situations involve (at least) the generalization of some classical
notion: in the former, either the characterization of negation or that of deducibility;
in the latter, the understanding of truth and falsity. The latter situation, a much
graver revision requiring reappraisal of inferential goal and background theory, is
never required by the Routley–Meyer semantics.

145. Clarifying the relations between denial, rejection and negation is crucial to
the understanding of nonclassical accounts of negation (see Priest 1993, 36ff.). We
shall return to this in 2.4.3.

146. Of course, both flavors of negation may be represented implicationally:
Boolean in terms of Church falsehood, as A→ F , De Morgan in terms of Ackermann
falsehood, as A → f (Meyer 1986, 302ff.). The novelty of De Morgan negation is
that it captures this intuition alone.

147. The term “paraconsistent” was introduced by Miró Quesada in 1976, although
systems of this character have a much longer history (Arruda 1989, 127).

148. “Weakly paraconsistent” is Routley’s terminology (Routley, Meyer, Plum-
wood, and Brady 1982, 59).

149. Priest (1987) and Priest and Routley (1989b) both contain discussion of these
and other examples, some of which have been addressed at greater length elsewhere,
for example, Meheus (1993); French and da Costa (2002); Abe and Pujatti (2001).

150. Priest (1987, 4) offers an etymology for this neologism. Dialetheic systems
have also been called “dialectical logics,” a name which (perhaps unduly) emphasizes
their connection to the Hegelian and Soviet traditions of “dialectical philosophy”
(Routley, Meyer, Plumwood, and Brady 1982, 60 n2).

151. A clear example of the monster-adjustment strategy may be seen in Empson’s
assurance that “grammatical machinery may be assumed which would make the
contradiction into two statements” (Empson 1930, 196) and Rescher’s “difference-of-
respect” procedure (Rescher 1973, 96).

152. This strategy originates in Jaskowski (1948). More recent systems in this
tradition include those of Rescher and Brandom (1980) and Schotch and Jennings
(1989).
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153. Hyde (1997, 652ff.) defends his nonadjunctive system on the grounds that
the problem is dual to a similar drawback in supervaluational systems (they are
non-subjunctive, since A ∨ B 
 A, B fails). This gives him a nice ad hominem
argument (ibid., 654 n13) against David Lewis, who elsewhere advocates supervalua-
tionism (Lewis 1970, 228f.; 1976, 70), but is not otherwise a defense of nonadjunctive
“conjunction.”

154. In other papers da Costa formalized quantified extensions of these systems,
C∗n, and quantified systems with identity, C=

n .
155. Strawson harmlessly simplifies these definitions; most traditional logicians

additionally specified that contraries may both be false and that subcontraries may
both be true, making contrary, subcontrary and contradictory mutually exclusive
(e.g., Watts 1724, 198; Whately 1826, 34).

156. This formalization might be disputed, but not obviously to da Costa’s
advantage. In particular, Slater (1995, 452) claims that something stronger is required,
and therefore that all paraconsistent “negations” are really just subcontrary forming.

157. Originating as a generalization of the Russell paradox in Curry (1942).
158. It also holds for strict implication and the intensional implications of some

of the most popular Anderson-Belnap relevant systems, such as E and R (although
not their contraction-free relatives EW and RW).

159. The contrast between weak paraconsistency and dialetheism corresponds
to that between epistemic and ontic readings of the auxiliary truth values of the
American plan semantics (see Anderson, Belnap, and Dunn 1992, §81, 506ff.).

160. Notable exceptions include the four-valued systems, such as Belnap and
Dunn’s American plan semantics, which are paracomplete as well as paraconsistent.

161. DK is one of Routley’s “depth relevance” systems; an axiomatization may
be found in Routley, Meyer, Plumwood, and Brady (1982), 289. The adequacy of
this system for resisting triviality from the Curry paradoxes is established in Brady
(1989). A semantic characterization of implication for LP is given in Priest (1987),
106. Priest explains his preference for an irrelevant system, 110ff.

162. Reflexivity is retained for the actual world, and Priest defends the worlds
where it fails as “logically impossible situations,” where different laws of logic apply
(Priest 1992, 292).

163. (1): Priest (1987), 146, where he suggests the use of the Church falsity
constant F ; (2): ibid., 145; (3): ibid., 141f.; (4): ibid., 146. Although Priest does
not refer to Belnap and Dunn’s classification, he does cite the paper in which it
originated (ibid., 140).

164. Priest has modified the account of recapture given here, in (1991), 322ff. The
latter account is technically superior, as he observes in (1996b), 655 n9, but is still
motivated by the same considerations (Priest 1991, 322; pace Goodship 1996, 156,
who sees the accounts as diverging).

165. Priest argues that the conditional employed in the truth schema is not con-
traposible, and thus distinguishes falsity from untruth. Since he regards simultaneous
truth and untruth as no more problematic than simultaneous truth and falsity, this
does not seem to be an indispensable feature of his project. Without it, the difference
between the strengthened liar and its simpler variant (“This statement is false”)
would disappear (Doherty 1998, 489 n23).

166. As both have been in paraconsistent logic: time in Priest (1987), 204ff.;
vagueness in many different systems, summarized by Hyde (1997, 645f.).

167. We discussed similar arguments against quantum logic in 2.2.2–3.
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168. In contrast, the intuitionist, who as we suggested in 2.1.2, might appeal to
recapture in response to criticism of the use of K in completeness proofs for J. The
intuitionist can establish his recapture criterion, decidability, entirely on his own
resources.

169. Many critics of Priest have attacked this claim. The most important attacks,
to which we return in the next section, allege the inexpressibility of one or more of
the logical constants. Other attacks of this kind include those of Denyer (1989) and
Everett (1994), answered by Priest (1989c and 1996a, respectively).

170. Note that this is a feature of his global paraconsistency (monism about
paraconsistent logic) rather than his dialetheism (agnosticism about the consistency
of the world).

171. Priest (1993, 39 n8) later remarks that “ ‘exclusive’ . . . must mean more than
that the conjunction cannot be true”—but he does not say what else is needed.

172. This account may be understood as an interpretation of the “couple semantics”
of Batens (1982), cited in his (1990, 212 n10).

173. An argument of this kind is attributed to Thomason (1986) by Priest (1990,
203).

174. In contrast, the treatment of the liar paradox by Kripke (1975) takes the
paradox to be nontrue and nonfalse, notions that are ineffable within the formalism.

175. More sophisticated constraints, such as harmony (Dummett 1973a, 397),
typically incorporate this requirement. See 2.1.3.

176. See 2.2.3 for a derivation from Dummett (1976a), 285.
177. The complexity of Quine’s views on logical revision makes faithful exegesis

difficult, but an influential reading is that apparent changes of logic can always
be explained as resulting from superficial relabeling, like the consequences of mis-
translation (Haack 1974, 14f.; Morton 1973, 503ff.). This would make Quine’s view
approximate to one fork of Dummett’s dilemma. A more sophisticated view of Quine’s
position would allow for the possibility of either fork (see Quine 1970, 96; Levin 1979,
57ff.; Priest 2003). Since on this reading Quine’s position is equivalent to Dummett’s,
we stick to the naive interpretation of the deviant logician’s predicament, which
possesses an interest independent of its provenance.

178. Promising leads include Belnap’s display logic (Anderson, Belnap, and Dunn
1992, §62, 294ff.), Feferman’s theory of finitary inductively presented logics FS0
(Feferman 1989), Gabbay’s labeled deductive systems (Gabbay 1996), Beall and
Restall’s logical pluralism (Beall and Restall 2000, 2006), and Sambin’s basic logic
(Sambin, Battilotti, and Faggian 2000; Sambin 2002). One of us has treated this
program at greater length elsewhere (Aberdein 2001b, from which the last two
paragraphs are adapted).
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Philosophy of Inductive Logic:
The Bayesian Perspective
Sandy Zabell

1. Introduction

Inductive inference dates from Aristotle, but resisted precise quantitative
formulation until the rise of mathematical probability. In the three-and-a-half
centuries since the birth of mathematical probability in 1654, mathematicians,
statisticians, and philosophers have been fascinated by its deep implications
for inductive inference. By the time of Laplace, a rich model for inductive
inference emerged that sometimes elicited, in the hands of the less capable,
excesses of approbation and aversion for more than a century. In the twentieth
century the theory underwent a radical transformation at the hands of Frank
Ramsey, Bruno de Finetti, and their followers, and the modern theory of
subjective probability emerged, complete with a detailed model of the inductive
process.

This chapter describes the logic of inductive inference as seen through the
eyes of the modern theory of personal probability, including a number of its
recent refinements and extensions. The structure of the chapter is as follows.
After a brief discussion of mathematical probability, to establish notation and
terminology, the gradual evolution of the probabilistic explication of induction
from Bayes to the present is recounted. Our interest is not in this history
per se (fascinating as it is), but in its use to highlight the key assumptions,
criticisms, refinements, and achievements of that theory. Along the way, the
structure of the modern theory is presented, and its relation to the problem of
induction discussed.

724
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1.1. Probability
Mathematical probability is a model of uncertainty, uncertainty about the
past or the future. Like all mathematical models, it consists of a structure
constrained by a set of assumptions termed axioms. The intended heuristic
interpretation of the mathematical model motivates further definitions and
permits us to formulate conjectures regarding consequences of the axioms.
There is a generally agreed mathematical formulation of this, dating from
Kolmogorov (1933). A probability space is a triple (Ω,A, P ), consisting of a
set Ω (the sample space of atomic possibilities), a collection A of subsets of Ω
(the events of interest), and a set function P assigning to each event a number
between 0 and 1 (the probability of the event).

One interprets this model as follows. The sample space Ω represents the
set of possibilities for an uncertain outcome; for example, if we are rolling a
six-sided die, one may take Ω to be the set {1, 2, 3, 4, 5, 6}. The subsets of the
sample space represent particular events of interest; for example, the event
“rolling the die resulted in an even number” corresponds to the set {2, 4, 6}.
(It is a useful, and for our purposes harmless abuse of terminology to blur
the distinction between a linguistic proposition, an empirical event such a
proposition might describe, and the subset of the sample space corresponding
to such an event. For our purposes events, or the propositions describing them,
are subsets of the sample space.) The event A is said to occur if the uncertain
outcome ω lies in A: thus ω ∈ A ⊆ Ω. The probability of an event is most
commonly interpreted as representing either an epistemic quantity (such as
a degree of belief regarding the occurrence of the event) or an aleatory one
(such as its frequency of occurrence in a population or sequence of trials).

The sample space Ω may be any set whatever, countable or uncountable.
The Kolmogorov axioms make certain assumptions regarding the collection of
events A and the probability function P . The collection of events is assumed
to be an algebra: Thus, if ∅ represents the empty set (the impossible event),
Ac the complement of an event (Ω − A, the elements of Ω not in A), and
A∪B, A∩B respectively the union and intersection of A and B (the elements
of Ω that lie in either or both A and B, respectively), then it is assumed
that (a) both ∅ and Ω are elements of A; (b) if A ∈ A, then Ac ∈ A; and
(c) if A,B ∈ A, then A ∪ B, A ∩ B ∈ A. (These assumptions as stated are
deliberately redundant: if ∅ ∈ A, then Ω = ∅c ∈ A; and if A ∪ B ∈ A, then
A ∩B = (Ac ∪Bc)c ∈ A.)

Finally, there are the axioms that the probability function P satisfies. These
are:

1. If A ∈ A, then P (A) ≥ 0.
2. If A,B ∈ A and A ∩B = ∅, then P (A ∪B) = P (A) + P (B).
3. P (Ω) = 1.

That is, the function P is assumed to be a nonnegative, additive set function
assigning a unit measure to the set Ω.
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If the algebraA satisfies the further property that it is closed under countable
unions (and therefore, by De Morgan’s laws, under countable intersections as
well), that is, if A1, A2, . . . ∈ A, then ∪∞i=1Ai ∈ A, then the algebra A is said
to be a σ-algebra. If the probability function is also assumed to satisfy the
property that

P
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai) provided Ai ∩Aj = ∅, 1 ≤ i < j <∞,

(that is, if the sets A1, A2, . . . are all pairwise disjoint), then the probability
function P is said to be countably additive, and otherwise finitely additive.
(Strictly speaking, a finitely additive probability measure is one that is only
assumed to be finitely additive, but could be countably additive; just as
in logic a finitely satisfiable set of wffs might in fact be satisfiable.) Most
mathematicians assume that the algebra A is a σ-algebra, and the probability
function P countably additive; but some subjectivists prefer to assume only
that A is an algebra, and P finitely additive. We assume the former.

1.2. The Nature of Probability
“When I use a word,” Humpty Dumpty said in rather a scornful
tone, “it means just what I choose it to mean—neither more or less.”
“The question is,” said Alice, “whether you can make words mean
different things.” “The question is,” said Humpty Dumpty, “which
is to be master—that’s all.” (Lewis Carroll, Alice in Wonderland)

The choices that are made in the interpretation of a probability model reflect the
differing views of what probability is or might be. To begin, probabilities can be
either aleatory or epistemic; that is, they are either properties of things (objects
or events, chance phenomena), or relate to our knowledge about things. Both
aleatory and epistemic probabilities come in different flavors. Aleatory probabil-
ities can be either propensities or frequencies; and if frequencies, either finite or
infinite. Such probabilities have only an indirect relation to inductive inferences:
inductive inferences can be about aleatory phenomena, but are not framed
in terms of them. Epistemic probabilities can be either qualitative (Keynes,
Koopman) or quantitative (Carnap, Ramsey, de Finetti); and in either case can
be further categorized as being either objective (Keynes, Carnap) or subjective
(Koopman, Ramsey, de Finetti); that is, they are either a measure of the rational
degree of belief a person should have given their state of knowledge (sometimes
termed credibilities); or they can vary from one person to another. In the later
case they are either personal or psychological, that is, they either satisfy certain
rationality constraints (without being uniquely determined), or do not. Per-
sonal, subjective, quantitative, epistemic probabilities are natural descriptors
of inductive inferences. We refer to them simply as subjective probabilities.
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But whether one believes in either, both, or neither epistemic or aleatory
probability, we are incomparably better off than our forebears, for today these
distinctions are clear. There is a natural reason why such distinctions were not
initially noted. In many of the initial examples considered, such as tossing a
(fair) coin, or rolling a die, or picking a card from a deck, every interpretation
gives rise to the same numerical value. For example, if one tosses a fair coin,
the probability is 50–50 that it will come up heads because this is what the
classical definition tells us, but also because (a) we think there is an equal
propensity for the coin to come up either heads or tails, (b) we find that the
coin does come up approximately half the time in a finite number of tosses,
(c) our knowledge gives us no reason to think heads any more or less likely to
occur than tails, and (d) it is even odds in a bet that one or the other occurs.
These represent important conceptual distinctions, but given that they all yield
the same numerical value of 1/2, understanding the difference between them
may seem less than pressing. It is only when one attempts to extend the ambit
of probability to situations where the different meanings have implications for
the specific numerical value attached, that the distinctions become important.

1.3. Inductive Inference

The distinction between logical and scientific inference goes back to Aristotle,
and are the subjects, respectively, of the Prior and Posterior Analytics. But
inductive, in the modern sense of uncertain, inference fell in yet another
category for Aristotle—the realm of rhetoric; the result was belief (endoxos)
rather than knowledge (episteme).

The Academic skeptics later developed a theory of rational decision based
on probable knowledge. Carneades in particular developed a scale of conviction,
ranging from the “credible,” to the “credible and consistent,” to the “credible,
consistent, and tested.” Carneades’s theory is in effect an early attempt at
developing a theory of qualitative or comparative subjective probability in the
modern sense. Witness Cicero’s statement in the Academica (2.110):

If a question be put to the wise man about duty or about a number
of other matters in which practice has made him an expert, he
would not reply in the same way as he would if questioned as to
whether the number of the stars is even or odd, and say that he
did not know; for in things uncertain there is nothing probable
[in incertis enim nihil est probabile], but in things where there is
probability the wise man will not be at a loss either what to do or
what to answer. [Quoted from the Loeb classical edition]

It is interesting to contrast Cicero’s statement with that of Nicole Oresme,
the Renaissance astronomer and mathematician (c. a.d. 1325–1382), who
wrote some 14 centuries later:
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The number of stars is even; the number of stars is odd. One of
these statements is necessary, the other impossible. However, we
have doubts as to which is necessary, so that we say of each that
it is possible. . . . The number of stars is a cube. Now indeed, we
say that it is possible, but not, however, probable or likely [non
tamen probabile aut opinabile aut verisimile], since such numbers
are much fewer than others. . . . The number of stars is not a
cube. We say that it is possible, probable, and likely. (Oresme
1966)

Some might regard the significance of this passage to be its quasi-numerical
assignments of degrees of likelihood to assertions about the number of stars;
while others might argue that the significance of the passage lies in its will-
ingness to extend the scope of the theory to propositions such as the parity
of the number of stars (we no longer say just that we do not know, but place
this on a scale).

1.4. James Bernoulli and the “Art of Conjecture”
Such examples illustrate just how purely qualitative inductive inference was
prior to the seventeenth century. This inevitably changed with the birth of
mathematical probability in 1654, the date of the famous correspondence
between Pascal and Fermat. The first great step in the explication of induc-
tion using this “new math” was due to James Bernoulli (1654–1705) in his
posthumous Ars conjectandi of 1713. In modern terms, Bernoulli proved that
in a sequence of n independent trials, if the probability of some event is p,
and the event is observed Sn times (the number of “successes”), then for any
positive number ε > 0, one has

lim
n→∞P

(∣∣∣∣Snn − p
∣∣∣∣ > ε

)
= 0.

In words, the probability that the empirically observed frequency Sn/n will
differ from the true probability p by any amount (the “for any ε > 0”), will
become negligible for sufficiently large sample sizes n.

Although Bernoulli’s proof of his theorem cannot be mathematically faulted,
its interpretation and relevance to the problem of induction could; something
Bernoulli himself was certainly aware of (since he proved his theorem around
1685, but did not publish either it or its applications in his own lifetime); see
Hacking (1971).

But while Pascal, Fermat, and their immediate successors (in particular
Leibniz and the Bernoullis) were certainly aware of the potential philosophical
significance of the mathematics of the “doctrine of chances” for the problem
of induction, it was not until an essay by an obscure English cleric that a
systematic and principled attack on the problem occurred.
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2. Bayes’s Essay
In 1764, a paper with the modest title “An essay towards solving a problem in
the doctrine of chances” appeared in the pages of the Philosophical Transactions
of the Royal Society of London (Bayes 1764). Its publication was posthumous;
for its author, an obscure English cleric, the Reverend Thomas Bayes, had,
like James Bernoulli before him, perished before he was published.

Bayes’s essay is a remarkable one. Although Bayes was a member of the
Royal Society of London, little was known about him until quite recently.
Thanks however to the efforts of modern scholars combing through the appro-
priate archives, a considerable body of information has now come to light; see
in particular Dale (2003) and Bellhouse (2004). The adjective “ingenious” was
applied to Bayes by a number of contemporaries who knew him or his work,
and indeed the essay itself is not only ingenious but even today rewards close
study. Many of the issues that later arose in discussions of inductive probability
involved issues that Bayes had already grappled with and attempted to address.
Aware of the challenging nature of the question he was considering, Bayes
revised his essay in a major way at least once, and even then appears to have
been sufficiently uncertain of some of his conclusions that he withheld it from
publication for some 12 years, until his death in 1761. It was therefore left
to Bayes’s friend, fellow dissenting clergyman and executor the Reverend Dr.
Richard Price, to see to the publication of the essay.

Price submitted Bayes’s essay to the Royal Society on November 10, 1763.
In addition to the essay proper, Price included both a cover letter describing
the origin of the essay, and an appendix discussing the applications of Bayes’s
results to the problem of induction. Both of these supplementary documents
are of considerable interest in themselves. (The cover letter is in fact our only
source of information concerning the path that Bayes took. Bayes had written
an introduction to the essay which Price repeatedly refers to in his letter,
but Price did not include the introduction when he submitted the essay for
publication, and it now appears to be lost.)

2.1. The Beginning of the Essay
The first section of Bayes’s essay begins with several definitions; the basic prop-
erties of probabilities are then deduced from these. For Bayes the probability
of an event is subjective: a ratio of expected gains. Price tells us:

He has also made an apology for the peculiar definition he has
given of the word chance or probability. His design herein was to cut
off all dispute about the meaning of the word, which in common
language is used in different senses by persons of different opinions,
and according as it is applied to past or future facts.

This is already impressive. Bayes recognizes the confusion introduced by
a failure to give a precise definition of probability, and the need to deduce
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any properties one uses from such a definition. Shafer (1982) has a very useful
discussion of this part of the essay. For our purposes, however, there is little
loss in interpreting Bayes’s probability for the moment as probability in the
modern subjective sense, and accepting that the standard properties of such
probabilities can be deduced from its definition. (We return to this question
when we come to Ramsey and de Finetti and discuss the precise modern
definition.) One of Bayes’s results, however, is worth noting here: the formula
for a conditional probability. Bayes presents this as a corollary to his third
proposition; nowadays it is usually introduced as a definition. It is discussed
further on in this chapter.

The Definition of Conditional Probability If A andB are events, and P (B) > 0,
then the conditional probability of A given B is defined to be

P (A | B) =
P (A ∩B)
P (B)

.

This definition links three quantities, and one can pass from any two to the
third. Although this has now been universally adopted, its precise justification
has been much debated (see, e.g., Hacking 1967, as will be discussed later).

Let us turn to the heart of Bayes’s essay, inductive inference. Price tells us:

In an introduction which he has writ to this Essay, [Bayes] says, that
his design at first in thinking on the subject of it was, to find out a
method by which we might judge concerning the probability that
an event has to happen, in given circumstances, upon supposition
that we know nothing concerning it but that, under the same
circumstances, it has happened a certain number of times, and
failed a certain other number of times.

Upon supposition that we know nothing concerning it. . . . This crucial phrase
was at the center of much of the subsequent debate surrounding the mathe-
matical model of inductive inference for more than a century and a half; until,
that is to say, the writing of Ramsey’s essay (itself posthumously published!)
in 1926. Precisely what does it mean to say that we are “entirely ignorant of an
event” (as Bayes later puts it) except for knowledge of its observed frequency
of occurrence? Price tells us

[Bayes] adds, that he soon perceived that it would not be very
difficult to do this, provided some rule could be found according
to which we ought to estimate the chance that the probability for
the happening of an event perfectly unknown, should lie between
two named degrees of probability, antecedently to any experiments
made about it.

Provided some rule. . . . Therein lies the rub: Can one quantify the uncertainty
regarding the initial probability of an event, at least in the circumstances
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described (of complete ignorance)? Several things are happening here. First,
there is a passage from the probability of an event, say p, to the chance that it
lies between two values. One would be tempted to take the use of the terms
“chance” and “probability” to imply a conceptual distinction (say, between a
credibility and a propensity) were it not for the fact that at the beginning of the
essay Bayes explicitly states that “by chance I mean the same as probability.”
Perhaps two different terms are being used to subtly emphasize that although
both quantities are probabilities, one is the probability of an event, the other
the probability of a probability. (In modern terms, Bayes is referring to the
prior or initial distribution of p. I. J. Good distinguishes between the two by
referring to a “type 1” probability and a “type 2” probability.)

What was Bayes’s solution to this central problem of inductive inference?
Price goes on to tell us

It appeared to him that the rule must be to suppose the chance
the same that it should lie between any two equidifferent degrees;
which, if it were allowed, all the rest might be easily calculated in
the common method of proceeding in the doctrine of chances.

This is the famous assumption of a uniform prior: The chance that p lies
in an interval is uniform throughout: If {x : a ≤ x ≤ b } is a subinterval of
the unit interval, then P (a ≤ p ≤ b) = b− a; the probability of p lying in the
subinterval is equal to the interval’s length. (For example, if one interval is
twice the length of another, it is twice as likely that p falls in the first interval
than the second.) Throughout the next century and a half (and beyond),
this postulate was debated, praised, reviled, misunderstood, misprepresented,
misstated, and misapplied. But what is often overlooked is that Bayes himself
had substantial reservations about the assumption (at least as a first principle),
and later on went to some lengths to justify it. As Price tells us:

But [Bayes] afterwards considered, that the postulate on which he
had argued might not perhaps be looked upon by all as reasonable;
and therefore he chose to lay down in another form the proposition in
which he thought the solution of the problem is contained, and in a
scholium to subjoin the reasons why he thought so, rather than take
into his mathematical reasoning any thing that might admit dispute.

Thus Bayes did not start from the simplistic assumption of a uniform prior!
Indeed, he revised his essay specifically to eliminate it. Instead, the structure
of Baye’s “ingenious” argument is much more subtle; it proceeds in three
carefully considered stages:

• A physical randomization is performed.
• The probabilities of the resulting events are described.
• One passes by analogy from the physical randomization to the actual

event of interest.

Let us consider each of these in turn.
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2.2. The “Billiards” Table
In his analysis Bayes considered first the case of a ball (W ) thrown on a
two-dimensional table and coming to rest, there being “the same probability
that it rests on any one equal part of the plane as another.” A line is then
drawn through the ball perpendicular to the lower horizontal edge of the table,
bisecting the table. Another ball (“O”) is then thrown and the event M is said
to occur or not depending on whether the ball falls to the right or left of the
line through the original ball W .

Much of Bayes’s analysis is given in terms of the resulting positions of the
balls when projected onto the lower edge of the table. There is in fact no loss
in considering the following simplification of Bayes’s original model:

• a point is chosen “at random” (uniformly) from the unit interval;
• n further points x1, . . . , xn are then selected at random from the interval;
• the event is said to occur on the ith trial if xi ≤ x.
Why did Bayes choose his two-dimensional model rather than the simpler

one-dimensional one? Presumably the concept of choosing a point at random
from the plane seemed more natural than choosing a point at random from
the line, since the former could be modeled, for example, by rolling a ball on a
table, such as one uses to play billiards. (Although Bayes’s hypothetical table
is often referred to in later literature as a billiards table, the term itself does
not occur in his essay.)

In the case of Bayes’s simple model of throwing balls onto a table, the answer
to his question regarding the probability of an event occurring is a simple
and immediate application of the calculus of probabilities (and a standard
computation today): If X denotes the value of the unknown probability, then
given that the event has occurred k times out of n in the past, the chance that
its probability p falls between the limits a and b is

P (a ≤ X ≤ b) = (n+ 1)
(
n

k

)∫ b
a

pk(1− p)n−k dp.

The integral is an example of what is termed an incomplete beta function, and is
readily computed today using either tables or any of a variety of mathematical
software packages. Bayes of course did not have the advantage of these, and
his essay concludes with a discussion of the approximate evaluation of such
integrals.

In modern terms, Bayes has determined the posterior or final distribution
of the unknown quantity X: it has the probability density

(n+ 1)
(
n

k

)
pk(1− p)n−k;

it integrates to one because of the integration formula∫ 1

0
pk(1− p)n−k dp =

1
(n+ 1)

(
n
k

) .
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Note Bayes’s argument does not depend on the billiard ball falling uniformly
on the table. Let X denote (the random) the position of the initial ball, let
FX(x) = P (X ≤ x), and let Y = FX(X); note that the range of Y is the unit
interval. If the function FX(x) is continuous, then it can be shown that the
random variable Y has a uniform distribution on the unit interval. The value
of X corresponds to the throwing of the first ball in Bayes’s argument; the
probability p that other balls fall to the left of it is FX(X); thus the distribution
of p is uniform provided only that the ball falls continuously on the table. See
Fisher (1973, chapter 5, section 6) for some discussion of this point.

2.3. Bayes’s Scholium
We now come to the crux of Bayes’s argument. He has determined the posterior
distribution of the unknown probability p in the case of a specific physical
randomization model. Under his model, what is the chance that in n trials
one will observe k “successes” (occurrences of the event) and n− k “failures”
(nonoccurrences of the event)? Let Sn denote the number of successes in n
trials. The answer is readily computed to be

P (Sn = k) =
∫ 1

0

(
n

k

)
pk(1− p)n−k dp =

1
n+ 1

.

That is, the number of successes is equally likely to be 0 or 1 or 2 . . . up to n.
Now Bayes turns from his physical randomization model to the case of

“an event concerning the probability of which we absolutely know nothing
antecedently to any trials made concerning it,” and reasons as follows. To get
anywhere, one must define exactly what one means by such ignorance, or at
least characterize it. Now one could directly take the prior or initial chance
distribution for p to be the uniform distribution on the unit interval, just as in
the case of the physical randomization model. But Bayes realizes that there are
vulnerabilities in such an approach; indeed, vulnerabilities that others would
debate for the next two centuries. So he takes a different tack. Let us regard
the prior distribution for p, say dμ(p) as yet unknown, and to be determined
by less controversial properties of it that we hope to discover.

Bayes argues that for such a generic event, to “absolutely know nothing
antecedently to any trials made concerning it” means that in n trials, one thinks
that the number of successes is equally likely to be any value between 0 and n.

Bayes’s Assumption

P (Sn = k) =
1

(n+ 1)
, 0 ≤ k ≤ n.

To quote Bayes, “concerning such an event I have no reason to think that, in
a certain number of trials, it should rather happen any one possible number of
times than another.” That is, Bayes adopts this as his definition of what it
means to be in a state of absolute ignorance. This will be true for each n ≥ 1;
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thus one must have

P (Sn = k) =
∫ 1

0

(
n

k

)
pk(1− p)n−k dμ(p) =

1
n+ 1

, n ≥ 1, 0 ≤ k ≤ n.

But this is true of the uniform prior distribution dp, and therefore, Bayes
argues, one must have dμ(p) = dp. In his words:

And that the same rule [as the one for the physical randomization
model] is the proper one to be used in the case of an event concerning
the probability of which we absolutely know nothing antecedently
to any trials made concerning it, seems to appear from the following
consideration; viz. that concerning such an event I have no reason
to think that, in a certain number of trials, it should rather happen
any one possible number of times than another. For, on this account,
I may justly reason concerning it as if its probability had been at
first unfixed, and then determined in such a manner as to give me
no reason to think that, in a certain number of trials, it should
rather happen any one possible number of times than another. But
this is exactly the case of the event M [the event involving the ball
on the table].

It is in fact possible to make Bayes’s intuition rigorous: According to the
Hausdorff moment theorem, the moments of a finite measure on a bounded
interval uniquely determine the measure. Since in this case one has that∫ 1

0
pn dμ(p) =

1
n+ 1

=
∫ 1

0
pn dp, n ≥ 1

(the first equality by assumption, the second by calculus), it follows that the
two measures have the same moments and therefore must coincide: dμ(p) = dp.

2.4. Price’s Appendix
Price correctly recognized both the importance of Bayes’s essay, and its
application to the problem of inductive inference. He states in his cover letter:

Every judicious person will be sensible that the problem now men-
tioned is by no means merely a curious speculation in the doctrine
of chances, but necessary to be solved in order to [provide] a sure
foundation for all our reasonings concerning past facts, and what is
likely hereafter. . . . It is certain that we cannot determine, at least
not to any nicety, in what degree repeated experiments confirm a
conclusion, with the particular discussion of the beforementioned
problem [addressed by Bayes]; which, therefore, is necessary to
be considered by any one who would give a clear account of the
strength of analogical or inductive reasoning.
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2.4.1. Price’s Rule of Succession

Price begins by illustrating Bayes’s results with some examples. In particular,
he considers the case when only successes are observed. In this case the chance
that the probability p is found in an interval a ≤ p ≤ b is

P (a ≤ p ≤ b) = (n+ 1)
∫ 1

0
pn dp = bn+1 − an+1.

Gillies (1987, 332) calls this Price’s rule of succession, to distinguish it from
Laplace’s rule of succession, discussed later.

In particular, the “odds that it is somewhat more than an even chance”
that the event will occur on the next trial is

P

(
1
2
≤ p ≤ 1

)
= 1−

(
1
2

)n+1

.

For example, if the event has been observed precisely once, then the odds are
3:1 that p ≥ 1/2.

2.4.2. Alea Jacta Est

Price’s next example is quite concrete: the throwing of a possibly biased die
having an unknown number of faces.

Suppose a solid or die of whose number of sides and constitution we
know nothing; and that we are to judge of these from experiments
made in throwing it.

In this case, it should be observed, that it would be in the highest
degree improbable that the solid should, in the first trial, turn any
one side which could be assigned beforehand; because it would be
known that some side it must turn, and that there was an infinity
of other sides, or sides otherwise.

Note Price’s strategy: Choose a relatively concrete example (here throwing
a die) that seems familiar and draw deductions for that. Others would later
refer to drawing from an urn containing a number of colored balls. (If one
thinks of each color for a ball as corresponding to a side of Price’s die, and
the number of balls of a given color as corresponding to the relative likelihood
that a given side will come up, the two are seen to be essentially the same
example.) Then pass by analogy to more complicated inferences.

At this point Price turns to an issue of great importance often ignored in
later discussions. What does it mean to talk about an event of which we are
entirely ignorant? Surely the knowledge that the event is even possible implies
some prior experience or encounter with it? Price’s solution to this issue is to
distinguish between the first time the event occurs, and all later occurrences.
The first occurrence informs us that the event is possible, the later occurrences
factor into our inductive inferences:
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The first throw only shews that it has the side then thrown, without
giving any reason to think that it has it any one number of times
rather than any other. It will appear, therefore, that after the first
throw and not before, we should be in the circumstances required
by the conditions of the present problem, and that the whole effect
of this throw would be to bring us into these circumstances. That
is: the turning of the side first thrown in any subsequent single trial
would be an event about the probability or improbability of which
we could form no judgment, and of which we should know no more
than that it lay somewhere between nothing and certainty. With
the second trial, then our calculations must begin.

(There is an echo here of Bayes’s use of an initial ball W to fix a probability,
but Bayes’s purpose is very different from Price’s.)

Price’s proposal, almost universally ignored, gives at least one plausible
criterion for when we have absolutely no knowledge of an event: we have seen
the event once, so that we are cognizant of it, but otherwise have no experience
of it. There is, of course, a natural objection: Even if an event is sui generis,
arguing by analogy to other, distinct but similar events, we may form some
idea of the likelihood or implausibility of seeing the event again. Nevertheless,
Price’s formulation is an advance over the reference to such events with no
explanation at all, and moreover (as will be seen at the end of this chapter)
has a surprisingly modern justification.

Thus it is with the second occurrence that Price begins, and he turns to
another example.

2.4.3. The Rising of the Sun

Price now takes his next key step, and passes from the artificial example of a
multisided die, to the observation of events in nature. He illustrates the use of
Bayes’s result by a curious hypothetical:

Let us imagine to ourselves the case of a person just brought forth
into this world, and left to collect from his observation of the order
and course of events what powers and causes take place in it. The
Sun would, probably, be the first object that would engage his
attention; but after losing it the first night he would be entirely
ignorant whether he should ever see it again. He would therefore
be in the condition of a person making a first experiment about an
event entirely unknown to him. But let him see a second appearance,
or one return of the Sun, and an expectation would be raised in
him of a second return. . . . But no finite number of returns would
be sufficient to produce absolute or physical certainty.

The image of such a “philosophical Adam” first experiencing the sights
and sounds of nature is not original to Price, but was a commonplace of the
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Enlightenment; it can be found in one form or another in the writings of Buffon,
Diderot, Condillac, and others; see Zabell (1998, n18). But Price clearly has
Hume in mind: His discussion is a direct attack on Hume. (Gillies [1987] has a
particularly good discussion of this point.)

In his Enquiry Concerning Human Understanding of 1748, the philosopher
David Hume had argued

Suppose a person, though endowed with the strongest faculties of
reason and reflection, to be brought on a sudden into this world;
he would, indeed, immediately observe a continual succession of
objects, and one event following another; but he would not be
able to discover anything further. He would not, at first, by any
reasoning, be able to reach the idea of cause and effect.

Note the counterpoint between Hume and Price: Hume denies one can “reach
the idea of cause and effect” in this setting; Price illustrates how the calculus
of probabilities enables one to “collect from his observation of the order and
course of events what powers and causes take place.”

And Price’s parting shot, that “no finite number of returns would be
sufficient to produce absolute or physical certainty,” is directed at another
assertion of Hume. In his Treatise of 1739, Hume had identified a certain
species of nonprobabilistic inductive inference:

In common discourse we readily affirm, that many arguments from
causation exceed probability, and may be receiv’d as a superior
kind of evidence. One wou’d appear ridiculous, who wou’d say, that
’tis only probable the sun will rise tomorrow, or that all men must
dye; tho’ tis plain we have no further assurance of these facts, than
what experience affords us. (Treatise, 124)

This, as will be seen later, was a common point of contention. Price flatly
rejects the claim:

Instead of proving that events will always happen agreeably to
[uniform experience], there will always be reason against this con-
clusion. In other words, where the course of nature has been the
most constant, we can have only reason to reckon upon a recurrency
of events proportioned to the degree of this constancy; but we can
have no reason for thinking that there are no causes in nature which
will ever interfere with the operations of the causes from which this
constancy is derived, or no circumstances of the world in which it
will fail.

Price then immediately adds (and it is an important caveat):

And if this is true, supposing our only data derived from experi-
ence, we shall find additional reason for thinking thus if we apply
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other principles, or have recourse to such considerations as reason,
independently of experience, can suggest.

The point is that the calculation does not purport to give the full force of
our conviction, only that portion arising from our experience of the number of
times the event has and has not occurred.

2.5. Literature
Many papers have been published on the various aspects of Bayes’s argument.
For further discussion of Bayes’s scholium, see Murray (1930), Edwards (1978),
Stigler (1982), and Good (1988). For a detailed discussion of Hume’s inductive
skepticism, see Stove (1973). There have been numerous attempts to understand
Hume in probabilistic and Bayesian terms since Price; one interesting example
is Salmon’s use of Bayes’s theorem (in its modern sense) to interpret Hume’s
arguments in his Dialogues Concerning Natural Religion (Salmon 1978). The
nature of such interpretations has, of course, been subject to considerable
debate. Gower (1991), for example, believes Hume’s probability of causes to be
essentially non-Bayesian in nature; see Mura (1998) for an interesting rebuttal.
Indeed Mura believes that “Hume developed—albeit informally—an essentially
sound system of probabilistic inductive logic that turns out to be a powerful
forerunner of Carnap’s systems” (p. 303).

3. Laplace
The curve described by a molecule of air or of vapour is following
a rule as certainly as the orbits of the planets: the only difference
between the two is due to our ignorance. Probability is related, in
part to this ignorance, in part to our knowledge. (Laplace, Essai
philosophique sur les probabilités)

Although Bayes is the eponymous founder of Bayesian statistics, Pierre-Simon,
the Marquis de Laplace transformed the subject from a single brilliant, if sui
generis, analysis, to an imposing edifice. There are several reasons for this.

First, Laplace was a mathematician of the first order, and in his hands
mathematical probability was transformed from a specialized set of tools in the
case of a finite number of outcomes (albeit a very impressive sets of tools in the
hands of de Moivre), to a much richer theory applicable in both the discrete
and continuous case. Second, Laplace was interested in the applications of
probability, and both his papers and Théorie analytique des probabilités give
numerous examples of serious applications of the calculus of probabilities to
practical questions ranging from the analysis of observational errors to that
of human populations. In the hands of Laplace, the calculus of probabilities
became an important tool of the working scientist.

Laplace’s conception of probability is subjective; probability relates in part
to our knowledge and in part to our ignorance. In the Laplacean conception,
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one’s probabilities evolve over time as our knowledge of the world changes,
and we pass from prior or initial probabilities to posterior or final probabilities
as information is received. Laplace’s very first paper on probability is in fact
devoted, in part, to the same problem considered by Bayes, but his approach is
quite different. First, he takes as an axiomatic principle what is today referred
to as “Bayes’s theorem” (but in fact does not appear in Bayes’s essay at all).

3.1. Bayes’s Theorem
The standard modern definition of conditional probability, and the one used
by Laplace, is the same as Bayes’s: If an event B has positive probability, then
the probability of an event A, given that B is known to have occurred, is

P (A | B) =
P (A ∩B)
P (B)

, P (B) > 0.

There are two immediate consequences of the definition of conditional
probability that are quite useful. Recall that a finite sequence of subsets
B1, B2, . . . , Bn is said to be a partition of the sample space if the subsets are
mutually exclusive and exhaustive. That is, they are pairwise disjoint (if i �= j,
then Bi ∩Bj = ∅) and Ω =

⋃n
i=1Bi (so that every ω ∈ Ω lies in one and only

one of the sets).

The Theorem of Total Probability If B1, B2, . . . , Bn is a partition of Ω, and
P (Bi) > 0 for 1 ≤ i ≤ n, then

P (A) =
n∑
i=1

P (A ∩Bi) =
n∑
i=1

P (A | Bi)P (Bi).

This is an immediate consequence of the additivity of probability, and the
definition of conditional probability.

Bayes’s Theorem If B1, B2, . . . , Bn is a partition, and P (Bi) > 0 for 1 ≤ i ≤ n,
then

P (Bj | A) =
P (A ∩Bj)
P (A)

=
P (A | Bj)P (Bj)
n∑
i=1
P (A | Bi)P (Bi)

.

This is an immediate consequence of the theorem of total probability
and the definition of conditional probability. It states that one can pass
from probabilities of the form P (A | Bi) to probabilities of the form P (Bi |
A) provided one knows the initial or prior probabilities P (Bi). There is
an alternative version of Bayes’s theorem that is of particular interest. If
0 < P (A) < 1, then the odds in favor of A are

O(A : Ac) =
P (A)
P (Ac)

=
P (A)

1− P (A)
.

Given this definition we can now state the following.
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Odds Version of Bayes’s Theorem

P (Bi | A)
P (Bj | A)

=
P (A | Bi)
P (A | Bj) ·

P (Bi)
P (Bj)

;

that is, the posterior odds equals the likelihood ratio times the prior odds. Put
another way, the likelihood ratio is precisely the factor that transforms the
initial odds into the final odds.

In his 1774 paper (Laplace 1774), Laplace states Bayes’s theorem in both
forms in the case that the hypotheses Bi are equally likely.

3.2. The Rule of Succession
Although he went far beyond the simple binomial situation, Laplace did
consider it, proposing what is sometimes termed the rule of succession. Bayes
had considered, given an unknown value of a probability p, what our degree of
belief regarding it should be given k successes and n − k failures have been
observed in n trials. Laplace considered instead the predictive probability that
the event itself would recur on the next trial. This is

P (Xn+1 = 1 | Sn = k) =
∫ 1

0
p · (n+ 1)

(
n

k

)
pk(1− p)n−k dp =

k + 1
n+ 2

.

Thus, if in n trials one observes k successes, then the probability of a success
on the next trial is (k + 1)/(n+ 2).

From the outset, Laplace’s rule of succession has been widely criticized. A
lightning rod for much of this is his use of the rule in the example of the rising
of the sun:

Thus we find that an event having occurred successively any number
of times, the probability that it will happen again the next time
is equal to this number increased by unity divided by the same
number, increased by two units. Placing the most ancient epoch
of history at five thousand years ago, or at 1826213 days, and the
sun having risen constantly in the interval at each revolution of
twenty-four hours, it is a bet of 1826214 to one that it will rise
again tomorrow.

Few statements have been more often quoted or more often misinterpreted!
First, as we have seen, this example does not originate with Laplace, but
already appeared in Price’s appendix to Bayes’s essay, being in turn a response
to Hume and an Enlightenment fascination with a human tabula rasa. Nor
did Laplace seriously think this calculation gave the force of persuasion. As
quoted as the foregoing passage is, few go on to Laplace’s caveat:

But this number is incomparably greater for him who, recognizing
in the totality of phenomena the regulatory principle of days and
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seasons (“connaissant par l’ensemble des phénomenès le principe
régulateur des jours et des saisons”) sees that nothing at the present
moment can arrest it.

(Note the similarity to Price’s comment quoted earlier.)

3.2.1. The Finite Rule of Succession

One of the weaknesses of Laplace’s rule in the form originally stated is its
appeal to the infinite. Laplace initially talks in terms of drawing from an urn
having a finite number of balls, but in his discussion of Bayes’s problem, he
refers to an urn having an infinite number of balls (or tickets) that are black
and white. Strictly speaking this makes no sense, and Laplace must regard
this a shorthand for something else (for example, the limiting case of an urn
with a very large number of balls).

There is a natural move to make. Consider an urn having n balls, some
black and some white. If a sample of size m is drawn from the urn and all m
balls are black, what is the probability that the next ball is also black? To
apply the Bayesian approach, one must make some assumption regarding the
probabilities of the different possible constitutions. Let X denote the unknown
number of black balls in the urn. The natural assumption to make, parallel
to Bayes’s postulate, is that P (X = j) = 1/(n+ 1), because then all possible
ratios j/n are equally likely. One can then compute, using Bayes’s theorem,
that

P (Xm+1 = 1 | Sm) =
1
n−m

∑n
j=m+1 j(j − 1)(j − 2) · · · (j −m)∑n
j=m j(j − 1)(j − 2) · · · (j −m+ 1)

.

If the sum in the denominator is denoted Sm,n, then one can prove in a
number of ways (see Zabell 1989b) that

Sm,n =
(n+ 1)!

(m+ 1)(n−m)!

and therefore

P (Xm+1 = 1 | Sm) =
1
n−m

Sm+1,n

Sm,n
=
m+ 1
m+ 2

;

exactly the same answer as in the infinite version of the law of succession!
This concordance, properly understood, turns out to be less surprising than

it might seem at first sight. The reason will be revealed in a later section, but
for now let us briefly summarize how this version of the rule of succession
substantially improves on the infinite version.

• It eliminates all reference to the infinite in the analysis.
• It eliminates references to an objective chance p.
• It introduces another form of enumerative induction (based on sampling

from a finite population).
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3.3. Hume on Miracles
In his Essai philosophique of 1814, Laplace discussed a wide range of appli-
cations of the calculus of probabilities to science and society. One of these
was of particular interest, illustrating the utility of the theory in cutting
through the confusions attending Hume’s celebrated attack against the belief
in miracles. In his Essay on Miracles, Hume had argued that the credibility of
testimony depended both on the reliability of the witness and the inherent
plausibility or implausibility of the fact attested to. This is easily understood
using Bayes’s theorem. Let E represent the event in question, T the testimony
under consideration. Let p be the prior probability regarding the event (P (E)),
a = P (T | E) the the conditional probability that if the event occurred, the
witness would so testify, and b = P (T | Ec) the corresponding conditional
probability given E did not occur. Then by Bayes’s theorem:

P (E | T ) =
pa

pa+ (1− p)b .

As usual, this is more transparent in terms of odds: The posterior odds in
favor of the event are:

P (T | E)
P (T | Ec)

(
p

1− p
)
.

The first factor, the likelihood ratio, is a function of the reliability of the witness
(but depends on two facets of that reliability, the competing likelihoods of
how likely he is to tell the truth under the two scenarios that the event did or
did not occur); the second, the prior odds, reflects the initial plausibility or
implausibility of the event in question.

Although Bayes’s theorem makes clear the appositeness of Hume’s ob-
servation, the latter was questioned almost from the start. One of Hume’s
contemporaries, George Campbell, for example, noted we often hear reports
about events that are inherently unlikely, yet we never question them on this
ground. (One of Campbell’s examples: If we know that a ferry has crossed
the river successfully 1000 times, we usually do not question the veracity of
someone we previously thought trustworthy, but who now tells us that the
ferry has just sunk.) In his Essai philosophique, Laplace deftly illustrates the
confusion underlying this objection.

Consider two simple cases. In the first, a ball is drawn from an urn containing
1000 balls numbered from 1 to 1000; in the second, a ball is drawn from an
urn containing 999 black balls and 1 white ball. Suppose the witness correctly
reports the result 9 out of 10 times. Now consider two questions: in the first
case, if the witness announces that the ball drawn is numbered 79, what is the
probability that it actually is 79; in the second, if the witness announces that
the ball is white, what is the probability that it actually is white?

Laplace’s point is that in both cases, there is a 1 in 1000 chance of the event,
but the two posterior probabilities are very different—there is an important
difference that the purely verbal discussion has glossed over. In the first case,
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if the ball drawn is not 79, but some other number, then for the witness to
announce the ball is a 79, two things must happen: (a) The witness must not
announce the correct number (which happens 1 in 10 times) and (b) choose 79
from among the remaining 999 possibles. Assuming this choice is equally likely
to be any of the 999 candidates, the posterior odds the ball is 79 become:

9/10
(1/10)(1/999)

1
999

=
9
1
.

In contrast, in the second case, if the ball is black, then no choice is involved
and the color white necessarily announced. Thus the posterior odds in this
case are

9/10
1/10

1
999

=
9

999
=

1
111
.

That is, it is still odds against the ball being white, but the odds have decreased
from 999 to 1 against, to only 111 to 1 against. The key distinction is that the
first case is a simplified version of Campbell’s ferry crossing, but the second
corresponds to the case of a miracle. (It is much easier to think of reasons why
one might lie about seeing a miracle than about a more mundane event.)

The example illustrates the utility of the subjective theory in giving a frame-
work to reason about belief, even if one only thinks of subjective probabilities
as being approximate or qualitative. (Anyone who doubts this last statement
is invited to trudge through the vast literature written after Hume—on either
side!—that did not have the benefit of the Bayesian framework.)

3.4. Literature
The literature on Laplace—interpretations of his work, the background of his
day, his continuing influence up to the present—is vast. One classic paper on
the interaction between the Laplacean program and its uses in the political
and social realms is Gillispie (1972); Baker (1975) explores this theme in great
depth. For the transmission of Hume’s inductive skepticism to our time via
Laplace and his school, see Stove (1973, Chapter 8), Zabell (1989b).

There is an extensive literature discussing the Bayesian interpretation of
Hume’s argument against the belief in miracles; see for example Owen (1987),
Sobel (1987, 1991), Dawid and Gillies (1989), Gower (1990), Langtry (1990),
Earman (1993), Holder (1998), Levine (1998). John Earman’s Hume’s Abject
Failure: The Argument against Miracles (Earman 2000) is of particular interest.

4. The Frequency Theory
The Laplacean edifice was a formidable one, but after Laplace passed from
the scene some spirited critics emerged. One central point of attack was the
assertion that probability is a measure of frequency of occurrence, not a
degree of belief. This position was championed by Robert Leslie Ellis, Antoine
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Augustin Cournot, and Jacob Friedrich Fries in the 1840s, and later, by John
Venn, Charles Sanders Peirce, and others.

There is a puzzling dichotomy here, one that is advanced often without
apparent recognition of the important implicit underlying assumption. It is
to be found in much of the literature from this period. And that is the facile
assumption that probability must be one or the other. Once recognized, this
type of attack is easily defanged. It is instructive, for example, to see how
easily Frank Ramsey (in 1926) brushes aside nearly a century of frequentism:
He concedes it to be a common linguistic usage, that it provides a natural
application of the mathematical theory, he is even willing (even though he
makes it clear he does not actually believe this) to concede that it may be the
most important application of the theory:

Suppose we start with the mathematical calculus and ask, not as
before what interpretation of it is most convenient to the pure
mathematician, but what interpretation gives results of the greatest
value to science in general, then it may be that the answer is again
an interpretation in terms of frequency; that probability as it is
used in statistical theories, especially in statistical mechanics—the
kind of probability whose logarithm is the entropy—is really the
ratio of two numbers, of two classes, or the limit of a ratio. I do
not myself believe this, but I am willing for the present to concede
to the frequency theory that probability as used in modern science
is really the same as frequency.

This passage is quoted at length because it makes an important point.
It is one thing to argue or believe or establish that the frequency theory of
probability is a valid or important one, it is quite another to conclude that
a logic of partial belief is thereby somehow ruled out. Richard Leslie Ellis, for
example, argued that whenever a person judges one event to be more likely to
happen than another, introspection (“an appeal to consciousness”) will reveal
the concomitant “belief that on the long run it will occur more frequently” (Ellis
1844); see Zabell (1991, 212–215). This ignores the fact that in many instances
we have intuitions about the likelihood of events that can only occur once.

Nevertheless, it must at the same time be conceded that the proponents of
the subjective theory also had their own house in serious disorder as well. If
probability is a numerical measure of partial belief, exactly what does such a
number mean? And what is the justification for the axioms of probability?

Consider for example the analysis of Augustus De Morgan, one of the
subjective theory’s more thoughtful nineteenth-century proponents. After
discussing the use of probability as a degree of belief, and the choice of a scale
from 0 to 1 for convenience, De Morgan is faced with the justification of the
assumption of additivity. He begins by stating it as a postulate:

When any number of events are disjunctively possible, so that one
of them may happen, but not more than one, the measure of our
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belief that one out of any some of them will happen, ought to be
the amount of the measures of our separate beliefs in each one of
those some. (De Morgan 1847, 179)

After three pages of discussion, De Morgan candidly admits that he cannot
derive this postulate from any more basic assumption:

And I cannot conceive any answer except that it is by an assumption
of the postulate. That such an assumption will finally be knowingly
made, on the fullest conviction, by every one who studies the theory,
I have no doubt whatever: nor that it has been made, no matter in
what words, nor with what clearness of avowal, by everyone who
has studied that theory. (De Morgan 1847, 182)

Thus such questions had to wait until the twentieth century for a satisfactory
answer.

5. The Rule of Succession
A word of apology may be offered here for the introduction of a new
name. The only other alternative would have been to entitle the rule
one of Induction. But such a title I cannot admit, for reasons which
will be almost immediately explained. (Venn 1866, 190, 3rd ed.)

Absent a cogent explication of the meaning of numerical epistemic probability,
the opponents of the subjective theory had two obvious strategies. One, which
we have seen, was to deny that belief could be numerically measured. The
other was to examine the applications of the theory and ridicule them. One
of the prime objects of this was the rule of succession. There were two prime
targets here, each reflecting a weakness in the subjective position. One was
the principle of indifference, the other the analogy to the urn of nature.

5.1. The Principle of Indifference
As we have seen earlier, Bayes was certainly aware of the vulnerability of the
assumption that, absent any knowledge concerning it, our degree of belief
regarding the probability of an event should be uniformly distributed; Bayes
went to considerable lengths to avoid directly invoking it. During the nineteenth-
century debate Bayes’s own rather cautious position was ignored. Given the
dominance of the Laplacean position, it was natural to start from Laplace
rather than Bayes, and Laplace did not employ Bayes’s reasoning. Laplace,
moreover, freely used uniform priors in many other situations, ones in which
Bayes’s reasoning could not be invoked.

The example of the rising of the sun served as a touchstone for attack,
although, as we have seen, Laplace’s qualified use of the example was based
on its historical interest, as well as his desire to correct an error in the
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French literature. In England, De Morgan’s adoption of the rule of succession
provoked a sustained attack by his compatriot, the logician John Venn. But
Venn’s criticism, verging on ridicule, employed examples that clearly violated
the obvious assumptions underlying the rule of succession, and even R. A.
Fisher, who was largely sympathetic to Venn’s position, felt compelled to take
exception to Venn’s criticisms. (See Zabell 1989a.)

The problem with the defense by proponents of the rule that its application
requires no prior knowledge of the event in question is that it is difficult
to in fact advance appropriate and realistic examples. Jevons, for example,
whose enthusiasm outran his judgment, suggested the proposition that “a
platythliptic coefficient is positive.” Keynes (1921, 42–43) points out that the
force of the example depends on our total ignorance regarding the meaning of
the word “platythliptic,” but that the example is flawed because we do possess
information regarding the words “coefficient” and “positive.” Furthermore, if
someone knows no Arabic, is it equally likely that every statement in Arabic
has an equal probability of being either true or false? Such examples avoid the
previous difficulty but appear either absurd or useless.

Logical theories of probability hope to circumvent such difficulties by taking
the logical syntax of language as a starting point, the atoms of language
representing equipossible alternatives. If Wittgenstein’s program of logical
atomism had succeeded, then logical probability might be possible, but the
failure of the former underlies the futility of the later. Logical probability
reached its high point under Carnap, but Carnap’s program necessarily retains
an ultimate element of subjectivism, both in its choice of language and its
assumption that the alternatives under consideration are equiprobable.

Ultimately it came to be realized, even in the benighted nineteenth century,
that the determination that a certain set of alternatives is equally likely in
fact represents a positive state of knowledge. Von Kries referred to a judgment
of equiprobability under such circumstances as the principle of cogent reason.
Take, for example, a six-sided die and let X represent the number that comes
up when one tosses the die. If one has no reason to believe that one side is
more likely to come up than another, then P (X = i) must have the same value
for 1 ≤ i ≤ 6. Because these probabilities must add to one, P (X = i) = 1/6 for
every i. This is not an argument concerning an event “about which we absolutely
know nothing”; it represents instead one in which a considerable amount of
information is available, but information that distributes itself equally among
the alternatives. (Laplace would not have been impressed. He considered the
multinomial as well as the binomial case, and famously stated that “probability
is relative, in part to our knowledge and in part to our ignorance.”)

The weakness of this approach is that it is only applicable when we are
in a situation where the alternatives are judged to be equally likely, that is,
what is sometimes termed a “fundamental probability set.” This represents a
considerable restriction on the applicability of the theory, and initial attempts
to finesse this point did not inspire confidence.
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5.2. The Urn of Nature

Indeed, such attempts to skirt the issue go back to the earliest attempts at
realistic application of the mathematical theory. James Bernoulli, in his Ars
conjectandi (published posthumously in 1713), implicitly assumed one can
always reduce to the case of equally likely outcomes by breaking down unequal
possibilities into other, more basic equipossible cases. But even the simplest
realistic examples raise intractable difficulties. Take the case of the sex ratio
(considered by Arbuthnot 1710): If a child is born, what are the odds the child
is male? The natural partition is Ω = {H,T}, but it is known empirically that
a male child is slightly more likely than a female (typically on the order of 53
percent).

Price, in his appendix to Bayes’s essay, passed from the case of the sides of
a die to events of nature with no attempt at justification, and others took a
similar tack. Jevons (1874, 150, 1877 edition), for example, states:

Nature is to us like an infinite ballot box, the contents of which
are being continually drawn, ball after ball, and exhibited to us.
Science is but the careful observation of the succession in which
balls of various character present themselves. . . .

Note that a subtle shift from Price’s argument has taken place here. Price
likened the event to a side on a die having an unknown number of sides.
In effect each of the possible outcomes has (or is judged to have) an equal
propensity of occurrence, and this is the justification for giving each equal
probability. But for Jevons (and others), one is sampling from a population
each of whose members is equally likely to be chosen; this is the urn of nature
(see, e.g., Strong 1976). But how does one analyze such a situation? One is
back to the flat prior of Bayes and Laplace! (Some assumption about the
contents of the urn has to be made.)

Venn’s criticisms of the classical theory were ultimately toned down in the
third edition of his Logic of Chance, due in part to the influence of Edgeworth.
(Venn’s Logic of Chance went through three editions. The second and third
editions both saw major shifts in Venn’s position; it is unfortunate that no
systematic study of these exists at present.) Edgeworth, who also wrote a
review of the third edition of Venn’s book, may be regarded as the informed
Laplacean response to Venn’s attack.

In the end, Edgeworth’s approach is pragmatic; the flat prior is appropriate
because it is found to hold, at least approximately, in nature. This assertion
seems both too facile and totally unsupported, but it reflects nevertheless an
important advance: The prior represents our knowledge, not our ignorance.
It is only one step from Edgeworth’s defense to an acknowledgment that in
general our knowledge may not be appropriately described by a flat prior. But
then what do we do?
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5.3. The Family of Beta Priors
One alternative that was subsequently advanced is the use of the beta family
of probability distributions. The beta family has the attractive and mathemat-
ically convenient feature that if one observes k successes in n trials, and the
probability of success p has a prior distribution that is beta with parameters
α, β, denoted fα,β(p), then the posterior distribution of p is

fα+k,β+n−k(p) =
Γ(α+ β + n)

Γ(α+ k) Γ(β + n− k)p
α+k−1(1− p)β+n−k−1, 0 ≤ p ≤ 1.

In other words, the posterior distribution lies in the same family as the prior;
the beta distribution is the conjugate prior for the binomial.

Note that if α = β = 1, then this reduces (as it must) to Bayes’s posterior
distribution:

fk+1,n−k+1(p) =
(n+ 1)!
k! (n− k)!p

k(1− p)n−k, 0 ≤ p ≤ 1.

Just as in the case of the uniform prior, it is a simple matter to derive the
predictive probabilities for the general beta prior. If the prior distribution of p
is fα,β(p), then

P (Sn = k) =
∫ 1

0

(
n

k

)
pk(1− p)n−k Γ(α+ β)

Γ(α) Γ(β)
pα−1(1− p)β−1 dp.

Thus in particular

P (S1 = 1) = P (X1 = 1) =
α

α+ β
;

the prior probability of a success is the ratio α/(α+ β).
Given these “cylinder set” probabilities, it is simple matter to compute the

rules of succession (or predictive probabilities):

P (Xn+1 = 1 | Sn = k) =
P (Xn+1 = 1, Sn = k)

P (Sn = k)

=

1∫
0
pα+k(1− p)β+n−k−1 dp

1∫
0
pα+k−1(1− p)β+n−k−1 dp

=
Γ(α+ k + 1) Γ(β + n− k − 1)

Γ(α+ β + n+ 1)
Γ(α+ β + n)

Γ(α+ k) Γ(β + n− k − 1)

=
α+ k
α+ β + n

.
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Note that the predictive probability can be instructively expressed as a weighted
average

P (Xn+1 | Sn = k) =
(

n

n+ α+ β

)
k

n
+

(
α+ β
n+ α+ β

)
α

α+ β

of the sample frequency k/n and the prior probability α/(α+ β).
The impact on the posterior odds of choosing different values of α and β

is now apparent: The ratio α/β determines the prior odds; the sum α + β
determines the relative weight (in conjunction with the sample size n) assigned
to the prior odds versus the sample frequency.

The Expectation and Variance of the Beta How does one assign values to α
and β? There is a useful trick, but first one must compute the moments of the
prior. By definition, if X is a random quantity, then E[Xn] is the nth moment
of X. For the beta distribution one has

E[pn] =
∫ 1

0
pn

Γ(α+ β)
Γ(α) Γ(β)

pα−1(1− p)β−1 dp =
Γ(n+ α) Γ(β)
Γ(n+ α+ β)

Γ(α+ β)
Γ(α) Γ(β)

.

In particular,

E[X] =
α

α+ β
,

Var [X] = E[X2]− E2[X]

=
α(α+ 1)

(α+ β)(α+ β + 1)
−

(
α

α+ β

)2

=
αβ

(α+ β)2(α+ β + 1)
.

This gives two equations in two unknowns; if one summarizes one’s prior
knowledge by estimating the expectation and variance of p (in terms of the
center and spread of one’s initial distribution of belief), then one has two
equations and two unknowns, and one can solve for α and β.

The Device of Imaginary Results James Bernoulli titled his book the Ars
conjectandi, the “art of conjecture”; there is certainly an element of art in
the actual practical use of subjectivist methods. One tool among many, for
purposes of illustration, is I. J. Good’s device of imaginary results.

As will be stressed later, the subjective theory of probability is a theory of
consistency; it tells us that various quantities must satisfy certain constraints.
Although it is usual to think in terms of Bayes’s theorem as passing from prior
to posterior as new information is received, one could just as well think of it
as linking prior and posterior, without prejudging which is given and which
derived. In Good’s approach, one elicits information about the prior by varying
the values of α and β, seeing which give posterior probabilities consistent with
our beliefs.
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For example, suppose a friend claimed to have ESP (extrasensory percep-
tion), and attempted to demonstrate it by having you toss a coin and he guesses
the outcome. How many successes in a row would your friend have to achieve
before you thought it odds of 9:1 that he would correctly guess the outcome
of the next toss of the coin? If your prior distribution was symmetric (so that
α = β), then the answer to this single question would uniquely determine the
value of α.

An Urn Model Interpretation for the Beta To be useful, one needs some guides
for using the beta distribution as a family of priors. Here is one that is both
attractive and simple: the Polya urn model. Suppose one has an urn containing
α red and β black balls, α and β being some pair of positive integers. Each
time a ball is chosen, it is replaced together with a ball of the same color.
Thus if in n trials, one chooses k reds and n− k blacks, the urn has a total
of α + β + n balls, α + k red and β + n − k black. Thus the probability of
choosing a red ball on the next trial is

P (Xn+1 = 1 | Sn = k) =
α+ k
α+ β + n

,

that is, exactly the same probability as the predictive probability arising from
a beta prior with parameters α, β.

In general the probability of a sequence of events can be built up from a
succession of conditional probabilities. For example,

P (X1 = e1, X2 = e2, X3 = e3)

is the same as

P (X1 = e1) · P (X2 = e2 | X1 = e1) · P (X3 = e3 | X1 = e1, X2 = e2).

(The probabilities P (X1 = e1) can be regarded either as trivial instances
of conditional probabilities based on null information.) This is one reason
rules of succession are of such importance: They can be used to compute the
probability of any possible sequence of outcomes. It is an immediate corollary
that whenever two (apparently different) descriptions of two processes give
rise to the same rules of succession, the two processes are in fact identical.

The application to the case at hand is an exceedingly interesting one. For
concreteness, consider the case α = β = 1 (the uniform prior, giving rise to the
Bayes-Laplace process). At first blush the Polya urn process and the Bayes-
Laplace process are two very different entities. In one case one is choosing n
balls (say) at random from an urn according to a rule; in the other, one chooses
a probability p at random from the unit interval and then tosses a p-coin n
times in succession. But because the Polya process and the Bayes-Laplace
process have the same rules of succession, the two are in fact stochastically
indistinguishable. Thus the use of a beta prior having integer parameters α
and β is tantamount to acting as if the entire impact of one’s prior knowledge
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is that one judges it to be as likely to observe a success as to choose a red
from an urn containing α red and β black balls.

5.4. The Confirmation of Universal Generalizations
It can be shown that the beta priors have the following apparently paradoxical
property: No matter how long an unbroken string of n1 successes one has
observed in the past, the posterior probability of a subsequent string of n2
unbroken successes in the future goes to zero as n2 becomes arbitrarily large.
It is particularly easy to see this in the case α = β = 1, because in this case

P (Xn1+1 = Xn1+2 = · · · = Xn1+n2 | Sn1 = n1)

=
n1 + 1
n1 + 2

· n1 + 2
n1 + 3

· · · n1 + n2

n1 + n2 + 1

=
n1 + 1

n1 + n2 + 1
,

and clearly this tends to zero as n2 →∞ (n1 remaining fixed). The resolution
of this apparent paradox had to wait until the modern subjective theory.

6. W. E. Johnson
The ingenious Bayes had avoided many of the later objections to the principle of
indifference by focusing on the predictive probabilities of discrete and observable
events (the number of successes in a fixed number of future trials), rather than
about an unknown (and unobservable) continuous parameter p. In the 1920s,
the English philosopher and logician William Ernest Johnson formulated a
generalization of this approach applicable to the multinomial setting.

Johnson accomplished this in two stages. First, in an appendix to volume 3
of his treatise on logic (Johnson 1924), Johnson presented a derivation of the
uniform multinomial prior by introducing two assumptions, the permutation
and combination postulates. In a later paper, published posthumously, John-
son (1932) replaced the combination postulate by another, the sufficientness
postulate (to use the later terminology of I. J. Good), thereby deriving the
family of symmetric Dirichlet priors. Each of these three assumptions involved
major advances in understanding.

6.1. The Permutation Postulate
First, some terminology. Suppose there are t types or categories representing
the possible outcomes in a sequence of observations or trials, say c1, c2, . . . , ct
(t ≥ 2). These might be, for example, the letters in an alphabet or the species
in a region. Let X1, . . . , Xn denote a sequence of n observations, and e1, . . . , en
the resulting sequence of outcomes. The notation Xi = ej means that on the
ith trial one observes ej . (Thus Xi denotes the random quantity prior to its
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being determined, ej the specific outcome observed, and Xi = ej means that
on the ith trial the outcome ej is observed.)

Associated with any sequence of observations, say X1 = e1, . . . , Xn = en,
is a vector of frequency counts n1, . . . , nt, so that nj is the number of times
outcomes of type j occur in the sequence (that is, nj records the number of
times in the sequence that the jth type has occurred). Formally,

nj = |{ i : ei = cj , 1 ≤ i ≤ n }|.
Johnson’s permutation postulate states that any two sequences having

the same frequency counts are equally likely to occur; that is, in modern
terminology, that they are exchangeable. This is one of the earliest instances
of the use of this assumption, and it has great philosophical importance. Let
us try to understand it.

First, there is a simple alternative characterization of (finite) exchangeability:
The probability distribution of a sequence of random variables is finitely
exchangeable if it is invariant under permutation of the time index; that is, if
for every possible sequence of outcomes e1, . . . , en, and every permutation σ
of {1, . . . , n}, one has

P (X1 = e1, . . . , Xn = en) = P (X1 = eσ(1), . . . , Xn = eσ(n)).

(To see this equivalence, just note that the original and permuted sequences
obviously have the same frequency counts n1, . . . , nt; and—only slightly less
obviously—two sequences having the same frequency counts are merely per-
muted versions of each other.)

Thus, if a sequence is exchangeable, then any two sequences having the
same frequency counts have the same probability. Suppose X1, . . . , Xn is a
random sequence having frequency counts n1, . . . , nt. There are(

n

n1n2 · · ·nt

)
=

n!∏t
i=1 ni!

such possible sequences (given n1, . . . , nt), and each of these has equal
probability. Thus

P
(
X1 = e1, . . . , Xn = en | (n1, . . . , nt)

)
=

∏t
i=1 ni!
n!

.

This observation has two important consequences.
First, the fact that the conditional probability distribution is uniform means

that the frequency counts are sufficient statistics for the sequence X1, . . . , Xn.
(In statistical inference, sufficient statistics summarize the relevant information
contained in a set of data for purposes of estimation.)

Second, there is a simple urn model for these conditional probabilities.
Consider an urn, containing nj balls of color cj , for j = 1, . . . , t, Now pick
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successive balls at random until the urn is empty. The resulting probability
distribution coincides with the one above. Thus this probability distribution
corresponds to the one arising from sampling without replacement from a finite
population. This is sometimes termed a hypergeometric distribution.

The different possible frequency vectors n = (n1, . . . , nt) partition the
possible sequences into disjoint subsets. Thus, by the so-called theorem of total
probability, one has

P (X1 = e1, . . . , Xn = en) =
∑

n∈Sn
P (X1 = e1, . . . , Xn = en | n) · P (n),

where Sn denotes the possible different partitions of n into a sum of the form
n1 + · · ·+nt. Thus the probability function P has been decomposed into a sum,
each term being the product of a distribution arising from sampling without
replacement from an urn, weighted by P (n). The overall probability can be
realized or simulated by picking an urn at random, according to the weights
P (n), and then sampling without replacing from the urn until its contents are
exhausted. Such a process will generate a finitely exchangeable sequence, and
every finitely exchangeable sequence arises in this way.

The importance of this observation is that the assumption of exchangeability
permits us to dispense with the urn of nature. As we have seen, starting with
Price’s argument and continuing throughout the nineteenth century, a key
element in the probabilistic analysis of induction was the analogy between a
natural process and some concrete chance set-up such as a many-sided die (as
in Price’s appendix), or an urn, finite or otherwise, of unknown composition.
The concept of exchangeability permits us to dispense with such questionable
analogies. Instead one asks: Is my information such that I judge that any
two sequences having the same frequency counts are equally likely to occur?
If the answer is “yes,” then the probability distribution summarizing my
beliefs is necessarily exchangeable, and therefore mathematically equivalent to
a weighted average of hypergeometric distributions.

6.2. Multinomial Sampling
Laplace also considered the above case of multinomial sampling, that is, the
situation where there are a discrete number of outcomes, not necessarily limited
to just two. Let us consider multinomial setting from Laplace’s perspective.

As before, let X1, X2, . . . , Xn denote a random sample drawn from a pop-
ulation the members of which fall into one of t possible categories types
(t ≥ 2). Each type has a probability pi of occurring, so that pi ≥ 0 and
p1 + · · · + pt = 1. The vector of probabilities lies in the t − 1 dimensional
probability simplex

Δt :=
{

(p1, . . . , pt) : pj ≥ 0,
t∑
j=1

pj = 1
}
.
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Given the random sample X1, . . . , Xn, the associated frequency counts
n1, . . . , nt have a multinomial distribution

n!
n1!n2! · · ·nt!p

n1
1 p
n2
2 · · · pntt .

Now suppose that the true probability vector is unknown. Let dμ denote a
prior distribution on Δt, representing either an objective, aleatory mechanism
giving rise to the vector (p1, . . . , pt), or a subjective, epistemic degree of belief
regarding the possible values of the vector (p1, . . . , pt). Suppose e1, . . . , en is
a possible sequence with frequency counts n1, . . . , nt. Then, just as in the
binomial case, one can invoke the theorem of total probability to see that

P (n1, n2, . . . , nt) =
∫

Δt

n!
n1!n2! · · ·nt! p

n1
1 p
n2
2 · · · pntt dμ(p1, . . . , pt).

In principle dμ can be any probability measure on the simplex, but it is
mathematically attractive to take a member of the Dirichlet family. To proceed
we need the following basic fact: If α1, . . . , αt > 0 and α := α1 + · · ·+αt, then∏t

j=1 Γ(αj)
Γ(α)

=
∫

Δt

t∏
j=1

p
αj−1
j dp1dp2 · · · dpt−1.

Every integration formula involving a nonnegative integrand gives rise to a
probability density by normalization. Here one has∫

Δt

Γ(
∑t
j=1 αj)∏t

j=1 Γ(αj)

t∏
j=1

p
αj−1
j dp1dp2 · · · dpt−1 = 1.

The integrand is a probability distribution on Δt, a Dirichlet distribution with
parameters α1, . . . , αt.

Suppose as before one observes frequencies n1, . . . , nt in a sequence of n
trials. Then it is not difficult to see (see the appendix) that

P (Xn+1 = cj | n1, . . . , nt) =
nj + αj
n+ α

,

a rule of succession that is a natural generalization of the one discussed in the
binomial setting. In this case,

P (X1 = e1, . . . , Xn = en) =
∫

Δt

Γ(
∑t
j=1 αj)∏t

j=1 Γ(αj)

t∏
j=1

p
nj+αj−1
j dp1dp2 · · · dpt−1.

In the special case that α1 = α2 = · · · = αt = 1, the rule of succession
reduces to

P (Xn+1 = cj | n1, . . . , nt) =
nj + 1
n+ t

.
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6.3. Johnson’s Combination Postulate
The Laplacean analysis employs in an essential way probabilities about proba-
bilities, and raises questions about the differences between the two. Johnson
was able to avoid this, noting

I substitute for the mathematician’s use of Gamma Functions and
the α-multiple integrals, a comparatively simple piece of algebra,
and thus deduce a formula similar to the mathematician’s, except
that, instead of for two, my theorem holds for α alternatives, pri-
marily postulated as equiprobable. (Johnson 1932, 418) [Johnson’s
α corresponds to our t.]

Johnson’s initial approach was to assume that all possible frequency counts
are equipossible.

Johnson’s Combination Postulate Every ordered t-partition of n is equally
likely. (Note that if t = 2, then Johnson’s combination postulate reduces to
Bayes’s; for in this case the ordered partitions are of the form (k, n− k), and
the equiprobability assumption reduces to the assumption that all values of k
are equally likely.)

There are some rather attractive combinatorics at play here. There are a
total of

An,t =:
(
n+ t− 1
t

)
=

(n+ t− 1)!
t! (n− 1)!

ordered t-partitions of n (Feller 1968, 38), and each such partition is assigned a
probability of 1/An,t under the combination postulate. (In statistical mechanics
the frequency counts are sometimes termed occupancy numbers, and this
particular probability distribution on them Bose-Einstein statistics.) It is
not difficult to show (as Johnson noted) that the combination postulate in
conjunction with the permutation postulate uniquely characterizes the rules
of succession: one obtains the Laplacean result

P (Xn+1 = cj | n1, . . . , nt) =
nj + 1
n+ t

.

(Note that this again represents a generalization of Bayes’s approach: If t = 2,
then one obtains the classical rule of succession (k + 1)/(n+ 2).)

6.4. Johnson’s Sufficientness Postulate
Although its mathematics is attractive, Johnson’s combination postulate is
by no means compelling (and for this reason was soon after criticized by
C. D. Broad). Later on Johnson arrived at a more general postulate, published
posthumously in 1932. His sufficientness postulate assumes that

P (Xn+1 = ci | n1, . . . , nt) = fi(ni, n);
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that is, conditional on the observed frequency counts n1, . . . , nt in a sample of
size n, the predictive probability of observing an outcome in the ith category
is a function of the number of elements ni in the sample previously observed
in that category, and the total sample size n, but is independent of how the
other counts distribute themselves. (Strictly speaking, Johnson assumed that
the function fi(ni, n) = f(ni, n), that is, that the rule of succession does not
depend on the particular category under consideration, but his analysis in fact
easily extends to the more general case where such dependence is permitted.)
Johnson’s postulate is certainly true for the predictive probabilities arising
from the Dirichlet prior. However, Johnson discovered a surprising fact: This
qualitative assumption actually determines the quantitative values of the
predictive probabilities (up to a finite set of parameters)!

Theorem 1 Let X1, X2 . . . , be a t-multinomial sequence such that X1, . . . , Xn
is exchangeable for every n ≥ 1. If

1. P (X1 = e1, . . . , Xn = en) > 0 for every possible sequence e1, . . . , en;

2. t > 2;

3. P (Xn+1 = ci | n1, . . . , nt) = fi(ni, n);

then either (1) the outcomes of the sequence are independent of one another, or
(2) there exist positive constants α1, . . . , αt such that (setting α = α1 + · · ·+αt)

P (Xn+1 = ci | n1, . . . , nt) =
ni + αi
n+ α

for every n ≥ 0, and set of frequency counts n1, . . . , nt.

In the special case n = 0 the theorem tells us that the initial, unconditional
probabilities are

P (X1 = ci) =
αi
α
.

Thus the αi encode the relative initial likelihood of the outcomes, and α
quantifies the relative weight given to past experience versus the information
provided in the sample. Note that the initial probabilities and the one-step
predictive probabilities determine the probabilities of every cylinder set. For
example, the cylinder set probability

P (X1 = e1, X2 = e2, X3 = e3)

is equal to

P (X1 = e1)P (X2 = e2 | X1 = e1)P (X3 = e3 | X1 = e1, X2 = e2).

Because the initial probabilities and rules of succession are the same as those
arising from a Dirichlet prior, it follows that the “cylinder set” probabilities of
the sequence (that is, the probabilities of finite sequences, such as e1, e2, e3)
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are the same as those arising from a mixture of multinomial probabilities using
a Dirichlet prior. That is, not only do the predictive probabilities arising from
such a mixture satisfy Johnson’s sufficientness postulate, but the postulate
characterizes such mixtures (in the sense that all relevant probabilities are
determined).

Of course the justification for the sufficientness postulate can itself be
questioned, but nevertheless this remarkable result has several important con-
sequences. First, it replaces an essentially mathematical device (the assumption
of a Dirichlet prior) by a purely qualitative assumption on the predictive prob-
abilities. It is an assumption that could summarize a state of knowledge, and
is therefore in the spirit of an epistemic approach to probability (as opposed
to a quantitative assumption made purely for mathematical convenience.)
Second, by characterizing the Dirichlet mixtures of multinomial probabilities,
Johnson’s theorem tells us precisely when their use is appropriate: when the
sufficientness postulate accurately describes our state of knowledge. Finally,
when the sufficientness postulate is deemed to be an appropriate description
of our state of knowledge, the determination of probabilities is reduced from
an infinite dimensional problem to one of determining a finite number of
parameters α1, . . . , αt.

7. Ramsey and de Finetti
Thus, in 1924 (when the initial portion of Johnson’s work appeared), despite
much progress, serious gaps in the subjective theory of probability remained.
All this was to change with the work of Frank Plumpton Ramsey and Bruno
de Finetti.

7.1. Ramsey

Frank Plumpton Ramsey (1903–1930) was a remarkable figure by any stan-
dard. Despite his early death at the age of 27, the slim volume of his
posthumously collected papers (Braithwaite 1931) contains groundbreaking
work in a number of areas: mathematical logic, probability, economics, and
pure mathematics. One example of this is Ramsey’s 1926 essay Truth and
Probability.

This remarkable paper remains worthwhile reading even today. Lucid and
profound, Ramsey disposes in rapid succession of competing theories, gives
in what seems almost an obvious manner the first complete discussion of
the foundations of quantitative subjective probability, seriously considers
the problem of the “dynamic assumption of Bayesianism,” and discusses the
foundations of inductive inference. Here we give only a brief discussion of
the paper, focusing on its relevance to the problem of induction. For a more
detailed discussion of the paper as a whole, see Zabell (1991).
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7.1.1. The Meaning of Probability

Ramsey began with a brief description of some of his predecessors and their
competing theories, in particular the frequency theory. He dismisses the latter
very simply, noting that even if it provides a reasonable interpretation of
the mathematical structure, and even if its plays a useful role in scientific
application, this does not preclude the additional possibility of an epistemic
interpretation. Turning instead to the possibility of such an epistemic interpre-
tation, Ramsey argued for an operational definition: “The degree of a belief
is just like a time interval; it has no precise meaning unless we specify more
exactly how it is to be measured.”

Ramsey’s greatest advance is in fact to present an operational definition
of epistemic probability, and to demonstrate that the standard properties of
probability can be deduced from such a definition.

Ramsey discusses two ways in which this can be done. One is the time-
honored method of betting odds. If we are unsure about an outcome, the
amount we are willing to bet on it occurring is a numerical measure of the
strength of our belief. In some form this can already be found in Bayes, is
clearly stated by some of Ramsey’s predecessors, and Ramsey makes no claim
of originality (indeed, his wording suggests the exact opposite). But such an
approach does have some drawbacks (such as accounting for the diminishing
utility of money), and Ramsey almost immediately passes to another system,
his celebrated simultaneous axiomatization of probability and utility.

In this approach, it is assumed that one can consistently order preferences
for different outcomes. Given outcomes α and β, to pass from a qualitative
statement that one is more likely than the other to a quantitative statement
regarding their respective probabilities, it is necessary to interpolate between
a continuum of possibilities. Ramsey achieves by introducing the ethically
neutral proposition, the philosophical equivalent of tossing a coin. (These are
propositions regarding whose truth values we are entirely indifferent.) But of
course there are many propositions concerning whose truth values we are indif-
ferent, and it is necessary to introduce a criterion for when such propositions
correspond to the outcome of tossing a fair coin. Ramsey’s solution is simple:

The subject is said to have belief of degree 1
2 in such a proposition p

if he has no preference between the options (1) α if p is true, β if p
is false, and (2) α if p is false, β if p is true, but has a preference
between α and β simply.

The introduction of this device, together with appropriate axioms of con-
sistency, enables us—up to affine transformation—to assign both numerical
utilities to the options, as well as numerical probabilities. Ramsey then shows
that the probabilities so derived must satisfy the usual axioms of the proba-
bility calculus, and that one option is preferred to another if and only if its
expected utility is greater. The argument is only sketched, but its outline is
clear, and many of the subsequent axiomatization schemes follow the same
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general approach. One generalization of particular interest is due to Richard
Jeffrey; in Jeffrey’s system the utility function is determined only up to a
fractional linear transformation (see Jeffrey 1983).

Providing a detailed operational definition for epistemic probability was in
itself already a major advance, but Ramsey went on in his next section to list
several important additional advantages.

• “It gives us a clear justification for the axioms of the calculus.”

• “The principle of indifference can now be altogether dispensed with.”

• The existence of probable knowledge: “I think I perceive or remember
something but am not sure.”

All three of these were substantial contributions to the theory. The first
two are by now familiar, but the third raises new issues that deserve separate
discussion.

7.2. The Dynamic Assumption of Bayesianism
The consistency or coherence assumptions resulting in a numerical measure
of belief satisfyings the axioms of probability are essentially static in nature.
That is, they constrain our beliefs at a fixed instant in time. Key to Ramsey’s
program was the recognition that it is fruitless to attempt to derive our
current degrees of belief by a process of starting out in a state of primeval
ignorance, and then tracking how these evolve over time with the receipt of
new information.

But at the same time, it is certainly true that our degrees of belief do
change over time as new information is acquired. The traditional method
of incorporating such changes into the theory is via the use of conditional
probabilities. The operational definition of these in the subjective approach is
via the appeal to conditional bets. Thus de Finetti describes the conditional
probability P (A | E) as “the probability that we would regard as fair for a bet
on A to be made immediately, but to become operative only if E occurs” (de
Finetti 1972, 193); similar language is used by Ramsey (1931, 180). It is then
a consequence of the Dutch book argument that P (A | E) = P (A ∩E)/P (E).

Suppose now that we actually learn that the event E has occurred (or that
the corresponding proposition is true). It common to assume that the new
probability, call it P ∗(A), should be the same as the conditional probability
P (A | E) = P (A∩E)/P (E). Ian Hacking calls this the dynamic assumption of
Bayesianism. Ramsey himself recognized that such an identification is subject
to question:

[The degree of belief in p given q] is not the same as the degree to
which [a subject] would believe p, if he believed q for certain; for
knowledge of q might for psychological reasons profoundly alter his
whole system of beliefs. (Ramsey 1931, 180)
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There is an extensive literature discussing the possible justifications for the
identification; one classic reference is Freedman and Purves (1969).

7.2.1. Probable Knowledge

It is impressive that Ramsey recognized not only the limitations in the dynamic
assumption but also the problem of probable knowledge. Here is an example
of this phenomenon:

Suppose we are about to hear one of two recordings of Shakespeare
on the radio, to be read by either Olivier or Gielgud, but are unsure
of which, and have a prior with mass 1

2 on Olivier, 1
2 on Gielgud.

After the recording, one might judge it fairly likely, but by no means
certain, to be by Olivier. The change in belief takes place by direct
recognition of the voice; all the integration of sensory stimuli has
already taken place at a subconscious level. To demand a list of
objective features that we condition on to affect the change would
be a logician’s parody of a complex psychological process. (Diaconis
and Zabell 1982, 823)

7.2.2. Jeffrey’s Rule of Conditioning

In the 1960s, Richard Jeffrey put forward a framework for understanding
certain types of belief changes in response to probable knowledge. Suppose
that P represents initial beliefs, and P ∗ final beliefs. Jeffrey posits that there
exists a partition {E1, E2, . . . , En} of the sample space that captures the
totality of our belief change, in the sense that

P (Ei) → P ∗(Ei), 1 ≤ i ≤ n;
P (A | Ei) = P ∗(A | Ei), all A, i.

Thus, any change is possible on the elements Ei of the partition, but
conditional probabilities relative to members of the partition do not change. (A
simple example would involve a finitely exchangeable sequence X1, X2, . . . , Xn,
with Sn = X1 + · · ·+Xn. Receipt of new information might cause the change
P (Sn = i) → P ∗(Sn = i), 1 ≤ k ≤ n, but if one continued to adhere to an
exchangeable assignment, then

P (X1 = e1, . . . , Xn = en | Sn = i) =
1(
n
i

)
= P ∗(X1 = e1, . . . , Xn = en | Sn = i),

provided e1 + · · ·+ en = i (and zero otherwise).
The rejection of the principle of indifference (and the development of a

theory that made it unnecessary) freed the theory from defending a principle
that, although reasonable in some settings, was unreasonable to assert as a
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universal truth. But the abandonment of the principle of indifference also
raised a difficulty for the theory: How does one justify the inductive process?
The answer to this question had to await the contributions of another pioneer,
Bruno de Finetti.

7.3. de Finetti
de Finetti’s writings on probability span his lifetime and cover a wide variety
of topics. His 1937 essay, La prevision: ses lois logiques, ses source subjectifs
(de Finetti 1937), summarizes his prewar work; his two books on probability
in English (de Finetti 1972) summarize much of his later work. His interest in
subjective probability reflects his more general subjectivist view of science; see
de Finetti (1931). We focus here on his 1937 essay.

Like Ramsey, de Finetti considered more than one way of defining epistemic
probability and justifying its axioms. In La prevision his definition is that
of betting odds, and his tactic for deriving the axioms is the appeal to the
Dutch book argument: Whatever one’s odds, they should satisfy the minimal
consistency requirement that a clever bettor not be able to place a bet against
you ensuring your loss of money in all circumstances; see Armendt (1993)
for a lucid discussion. But for the analysis of the problem of induction, the
centerpiece of de Finetti’s theory was his concept of exchangeability and the
representation theorem.

7.3.1. The de Finetti Representation Theorem

As we have already seen, exchangeability per se was already known to Johnson,
termed by him the permutation postulate. But whereas Johnson’s analysis was
purely finite and predictive, de Finetti was able to go further and derive an
extremely important result basic to the subsequent development of the theory.

Theorem 2 Let X1, X2, . . . be an infinitely exchangeable sequence of 0s and
1s, and let Sn := X1 + · · ·+Xn. Then

1. The limit Z := limn→∞
Sn
n

exists almost surely;

2. If μ(A) = P (Z ∈ A) denotes the distribution of Z, then for every n ≥ 1
and 0 ≤ k ≤ n,

P (Sn = k) =
(
n

k

)∫ 1

0
pk(1− p)n−k dμ(p).

This remarkable result has several major philosophical consequences for the
theory of induction. First, contrary to popular belief, subjectivists need not
reject the existence of infinite limiting frequencies (at least to the extent that
they are willing to discuss infinite sequences of outcomes). To the contrary, if a
subjectivist believes a sequence X1, X2, . . . to be infinitely exchangeable, then
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they necessarily believe that limiting frequencies exist “almost surely” (that is,
with probability one). (Although they might deny that such limiting frequencies
have any “objective” meaning.) Thus one has a subjective explanation for
chance (objective probabilities). Second, the representation theorem tells us
that the probability of seeing k successes in n trials can be expressed as a
mixture of binomial probabilities(

n

k

)
pk(1− p)n−k,

where the mixing measure dμ represents our degree of belief regarding the
value of the limiting frequency of 1s in the sequence.

Note the way the theorem has been stated. In some cases, just the second part
is cited: There exists a probability measure dμ on the unit interval such that
the representation holds. The problem with this more limited statement is that,
put this way, the mixture measure dμ appears to be merely a mathematical
object or device, whereas in reality it represents a degree of belief: our judgment
regarding the different possible values the limiting frequency p may assume,
and the relative likelihood of each. The reader should be warned that de Finetti
himself had a much more nuanced view; see (Cifarelli and Regazzini 1996).

The importance of the result cannot be understated. First, it gives a
subjective explanation of chance. Second, it reduces the determination of the
distribution of an infinite exchangeable sequence to that of a single probability
measure on the unit interval. Finally, it gives a “principled” derivation of the
standard Bayesian procedure of mixing binomials with respect to p. (It is easy
to show that conditional on the value of Z = p, the distribution of X1, X2, . . .
is that of a sequence of independent coin-tosses of a “p-coin.”)

But the key importance of the representation theorem is its implications
for inductive inference. Like Ramsey, de Finetti had abandoned the program
of determining a unique descriptor of degree of belief, of finding a unique prior
to describe a fanciful state of total ignorance. But given his knowledge of the
representation theorem, de Finetti was also able to go further and describe
induction as something other than a “useful habit.” In principle, any prior
on the unit interval is possible. But except for certain extreme, pathological
priors, one can easily prove that the posterior distribution of p will tend to
peak around the observed sample frequency p̂ for large values of the sample
size n.

Why should the future resemble the past? If the outcomes are judged
exchangeable, then this is a simple consequence of the representation theorem.
And if the outcomes are not exchangeable, then it is far from clear that it
should. Now the inappositeness of the example of the rising of the sun is
apparent: Successive risings of the sun are not exchangeable; the probability
that the sun will rise today, but not rise tomorrow is not, for most people,
the same as the probability that the sun will not rise today, but will rise
tomorrow. (For this author the probability of the first is small, but not zero,
the probability of the second is zero.)
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Intersubjective Agreement The representation theorem also has consequences
for intersubjective agreement. Two people may disagree initially about the
likelihood of an event, but as each receives more information their posterior
distributions will converge to a delta function about the sample frequency, and
therefore converge to each other. The speed at which such convergence takes
place will depend on the nature of the separate individual distributions, but
not the fact of the convergence itself.

Finite Forms of de Finetti’s Theorem It is possible to dispense with the appeal
to infinite sequences in the above. First, as has been seen earlier, there is a
finite representation theorem, but of course this does not, by itself, give the
applications to induction just discussed. However, Diaconis and Freedman
(1980b) have shown that if an exchangeable sequence of length m can be
extended to an exchangeable sequence of length n, then the greater the value
of n, the more closely probability statements regarding the initial segment of
length m can be approximated by an integral representation of the de Finetti
type. In this sense the infinite representation theorem can be regarded by a
finitist as a purely mathematical device to give a simpler approximate form
for the probabilities.

Multinomial Versions of de Finetti’s Theorem More general versions of de
Finetti’s theorem also exist. For example, if X1, X2, . . . is a sequence taking t
values instead of just two, and N1, . . . , Nt represent the frequency counts for
the different categories in a sample of size n, then there exists a probability
measure dμ on the t-simplex Δt such that for every n ≥ 1 and partition
n1 + · · ·+ nt = n, one has

P (N1 = n1, . . . , Nt = nt) =
(
n

n1 · · ·nt

)∫
Δt
pn1

1 · · · pntt dμ(p).

7.3.2. Partial Exchangeability

If a sequence is not exchangeable, then we do not just throw in our hat.
Perhaps there are other forms of symmetry present, in which case these
may be exploited to derived corresponding representation theorems and rules
of succession. One example is called Markov exchangeability; the sufficient
statistics are (assumed to be) the initial state and for each pair of states
i and j, the number of transitions from i to j. There is a de Finetti type
representation theorem in these cases stating that such sequences (subject to a
recurrence condition) are mixtures of Markov chains (Diaconis and Freedman
1980b), and a Johnson type characterization for their rules of succession (Zabell
1995). The study of this and other generalized forms of exchangeability goes
back to de Finetti himself; see Diaconis and Freedman (1980a). Although
de Finetti considered a few special cases, a very general theoretical framework
has now been developed; see Diaconis and Freedman (1985) for the basic
mathematical theory, and Jeffrey (1988) for a very readable discussion of it.
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The work of Diaconis and Freedman can be thought of as a general program.
As we have seen, the de Finetti representation theorem provides a subjective
means of interpreting the coin-tossing parameter p in binomial sampling: Coin
tossing is described in terms of an infinite exchangeable sequence of 0s and
1s; and infinite exchangeability ensures that the fraction of heads p̂ observed
in the sample converges almost surely to some (random) value p. This is a
subjective interpretation of the parametric binomial sampling model. Diaconis
and Freedman have identified a number of other classical parametric statistical
models that have a corresponding subjectivist interpretation, using the tools
of partial exchangeability and de Finetti type representations.

8. Carnap and His Successors
No discussion of the relation between probability and induction would be
complete without some reference to the work of Rudolph Carnap. That our
discussion here is as brief as it is reflects our focus on the technical mathematics
of Ramsey and de Finetti; for a detailed appreciation of Carnap’s work the
reader is referred to another chapter of the author (Zabell, 2009).

It is ironic that in the decades after Johnson’s death, Carnap and some
of his followers would, unknowingly, reproduce much of Johnson’s work. In
1945 Carnap, working in the multinomial setting, introduced the function c∗
(= P (Xn+1 = ci | n)) and proved that it had to have the (by now familiar)
form (ni + 1)/(n+ t) under the assumption that all “structure-descriptions”
(our partitions (n1, n2, . . . , nt)) were equally likely; see Carnap (1945), Carnap
(1950, appendix).

But just as Johnson grew uneasy with his combination postulate, so too
Carnap would later introduce the “continuum of inductive methods” { cλ : 0 ≤
λ ≤ ∞} = (ni + α/t)/(n+ α). But while Johnson derived such expressions
from his sufficientness postulate, Carnap initially assumed both, although
his collaborator John G. Kemeny was soon after able to demonstrate their
equivalence for t > 2. Subsequently Carnap was able to generalize these results,
showing that Johnson’s rule of succession follows in the case t = 2 from a
simple linearity condition (Carnap and Stegmüller 1959), and later, in his last
and posthumously published work on the subject, dropping the condition that
the rules of succession be independent of the category i, and replacing it by
the more general assumption that

P (Xn+1 = ci | n1, . . . , nt) = fi(ni, n);

see Carnap (1980, section 19); see generally Kuipers (1978). For the historical
evolution of this work, see Schilpp (1963, 74–75, 979–980), Carnap and Jeffrey
(1971, 1–4, 223), Jeffrey (1980, 1–5, 103–104).

In the decades after Carnap’s magisterial book Foundations of Logical
Probability (1950) and his technical monograph The Continuum of Inductive
Methods (1952) appeared, a school sprang up that systematically exploited his
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approach. Among the most important members of this are Hintikka, Niiniluoto,
and Kuipers; see Hintikka (1966), Kuipers (1973), Hintikka and Niiniluoto
(1980). Kuiper’s beautiful monograph (Kuipers 1978) summarizes much of this
work up to the date of its publication.

9. The Sampling of Species Problem
There is an important generalization of exchangeability that has been developed
in recent decades having immediate and fascinating implications for inductive
inference. This deals with the so-called sampling of species problem, in which,
contrary to the classical models considered thus far, it is not assumed that the
possible species are known ahead of time. A number of definitions are needed,
but the reader should be reassured to learn that the final result is a theory
exactly parallel to the classical one of de Finetti. The following discussion
is necessarliy brief; for a more leisurely treatment, see Zabell (1992, 1998).
Aldous (1985) gives a careful and systematic development of the mathematics.

9.1. Exchangeable Random Partitions
Let n ≥ 1 be a positive integer and let In = {1, . . . , n}. An ordered partition π
of In is a sequence of disjoint subsets 〈A1, . . . , At〉 of In such that In =

⋃
iAi.

If ni := n(Ai) is the number of elements in Ai, then the frequency vector
corresponding to the partition is the vector

n = n(π) := 〈n1, . . . , nt〉.
Let aj denote the number of times the frequency j appears in the vector n;

the partition vector (or “allelic partition”) is the vector

a = a(π) := 〈a1, . . . , an〉.
A random partition is a random quantity whose values are partitions of In

for some fixed n ≥ 1. A random partition Πn of In is an exchangeable random
partition if all partitions 〈A1, . . . , At〉 having the same partition vector have
the same probability of occurrence; that is, if π1 and π2 are ordered partitions
of In, then

a(π1) = a(π2) ⇒ P (Πn = π1) = P (Πn = π2).

The partition vector consists of the sufficient statistics of the partition in the
case of an exchangeable random partition, just as the frequency vector consists
of the sufficient statistics in the case of an exchangeable random sequence.
This will be the first of many parallels between the two theories.

9.1.1. Consistent Sequences of Random Partitions

Let Πn be a random partition of In. For each 1 ≤ m < n, Πn induces in
a natural way a random partition of Im (consider the ordered partition of
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Im arising from Ai ∩ Im, 1 ≤ i ≤ t); call this induced partition Πm,n. Let
Π1,Π2, . . . be a sequence of exchangeable random partitions such that Πn is
a random partition of In. The sequence is said to be consistent if for every
m ≥ 1,

Πm = Πm,n
for every n ≥ m.

If {Πn : n ≥ 1 } is an infinite consistent sequence of exchangeable random
partitions, then the resulting induced random partition Π of the integers is
said to be exchangeable.

9.1.2. Paintbox Processes

The simplest such exchangeable partitions are Kingman’s paintbox processes.
Let Z1, Z2, . . . be an infinite sequence of real-valued independent, identically
distributed random variables. For each element ω ∈ Ω of the sample space,
given the sequence Z1(ω), Z2(ω), . . . , one can group those times k when Zk(ω)
share a common value. For example, if one observes

Z1(ω) = 3, Z2(ω) = 1, Z3(ω) = 4, Z4(ω) = 1, Z5(ω) = 5,
Z6(ω) = 9, Z7(ω) = 2, Z8(ω) = 6, Z9(ω) = 5, Z10(ω) = 4,

then the first number observed is 3, and because this only occurs once in the
sequence, at time 1, one has A1 = {1}. Similarly, the second number observed
is 1, and since this is observed at times 2 and 4, one has A2 = {2, 4}. Thus,
continuing in this way, one obtains the partition

A1 = {1}, A2 = {2, 4}, A3 = {3, 10},
A4 = {5, 9}, A5 = {6}, A6 = {7}, A7 = {8}.

9.1.3. The Kingman Representation Theorem

During the 1970s and 1980s the English mathematician J. F. C. Kingman
developed a theory of exchangeable random partitions entirely parallel to the
one crafted by de Finetti (see Kingman 1975, 1978a,b, 1980). It turns out
that the general infinite exchangeable random partition can be expressed as a
mixture of paintbox processes, just as the general infinite exchangeable sequence
can be expressed as a mixture of independent and identically distributed
sequences of random variables. This is the Kingman representation theorem.

This representation theorem provides an amusing insight. Every probability
measure on the real line can be uniquely decomposed into a discrete and
continuous part. Suppose, for example, that P1 denotes the random variable
corresponding to choosing 0 or 1 with equal probability, and P2 the probability
measure that corresponds to choosing a number uniformly from the interval
(2, 3); and let

P =
1
2
P1 +

1
2
P2.
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This probability measure describes a random sampling situation where
the number 0 occurs 25 percent of the time, the number 1 occurs 25 percent
of the time, and distinct numbers between 2 and 3 occur 50 percent of the
time. (There is a zero probability that any two independent observations of
a continuous random variable have the same value.) If each of the numbers
arising as a result of the sampling are interpreted as corresponding to different
species, then one species occurs 25 percent of the time, another occurs 25
percent of the time, and 50 percent of the time one sees a species that occurs
once and only once. How can one determine whether a species corresponds
to the discrete or the continuous component? (That is, whether the number
representing it lies in the support of the discrete or the continuous component.)
The answer is simple: As soon as one observes a member of the species a
second time, it corresponds to the discrete component. (There is an analogy
with recursive enumerability here: If the species corresponds to the discrete
component, then this is ultimately discovered, because if an outcome has a
positive probability of occurring, then with probability one it occurs more
than once.) But if the species belongs to the continuous component, then one
can never determine this for certain: If a species has been observed only one
time so far in a very large sample, then this might be due to the fact that it
belongs to the discrete component but has a very small probability of occurring
(and therefore, with probability one, will ultimately be seen again), or that
it belongs to the continuous component (and therefore, with probability one,
will never be seen again).

Now we can appreciate Richard Price’s insight in his appendix to Bayes’s
essay! Inductive inference only becomes possible on the second observation
because it is only then that we know that it corresponds to an element of the
discrete component.

But it is not in fact necessary to develop Kingman’s entire theory of
exchangeable random partitions to obtain counterparts of the Johnson–Carnap
continua. It turns out that there is a natural analog to Johnson’s axiomatic
approach that gives simple and easily interpreted rules of succession.

9.2. The Pitman Continuum

Consider the following three axioms, that parallel (in two cases) or extend (in
one case) those of Johnson. The first axiom is:

1. P (Πn = πn) > 0 for all ordered partitions πn of In;

that is, all possible partitions are assumed possible.
Let Zn+1 ∈ Si denote the event that the (n+ 1)st observation turns out to

a member of the ith species already observed. Then the second axiom is:

2. P (Zn+1 ∈ Si |< n1, . . . , nt >) = f(ni, n), 1 ≤ i ≤ t.
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This states that the predictive probability of observing the ith species on the
next trial is function only of the number of times that species has already been
observed, and the total sample size n.

The third and final assumption is of an entirely new type, and addresses
the fact that new species are always possible:

3. P (Zn+1 ∈ St+1 |< n1, . . . , nt >) = g(t, n).

That is, the probability of observing a new species (one other than the t to
date already observed) is a function only of the number of species already
observed and the sample size.

It is a remarkable fact that if the infinite consistent exchangeable ran-
dom partition Π1,Π2, . . . satisfies the above three hypotheses, then one can
prove that the functions f(ni, n), g(t, n) are members of a three-dimensional
continuum described by three parameters α, θ, γ.

The Continuum of Inductive Methods for the Sampling of Species

Case 1: If ni < n for some i, then

f(ni, n) =
ni − α
n+ θ

, g(t, n) =
tα+ θ
n+ θ

.

Note that if ni < n, then t > 1, there are at least two species, and the
universal generalization is disconfirmed.

Case 2: If ni = n for some i, then

f(ni, n) =
ni − α
n+ θ

+ cn(γ), g(t, n) =
tα+ θ
n+ θ

− cn(γ);

here
cn(γ) =

γ(α+ θ)

(n+ θ)
[
γ + (α+ θ − γ)∏n−1

j=1

(
j−α
j+θ

)]
represents the increase in the probability of seeing the ith species again due to
the confirmation of the universal generalization. Not all parameter values are
possible: One must have

0 ≤ α < 1; θ > −α; 0 ≤ γ < α+ θ.

There is a simple interpretation of the three parameters θ, α, γ. The first,
θ, is related to the likelihood of new species being observed; the larger the
value of θ, the more likely it is that the next observation is that of a new
species. Observation of a new species has a double inductive import: It is a
new species, and it is a particular species. Observing it contributes (via α)
both to the likelihood that a new species will again be observed and, if a new
species is not observed, that the species just observed will again be observed
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(as opposed to another of the species already observed). Finally, the parameter
γ is related to the likelihood that only one species will be observed. If ε is the
initial probability that there will only be one species, then γ = (α+ θ)ε. The
special case α = γ = 0 is of particular interest. In this case the probability of
an allelic partition has a particularly simple form: Given a sample of size n,

P (a1, a2, . . . , an) =
n!

θ(θ + 1) · · · (θ + n− 1)

n∏
r=1

θar

rarar!
;

this is the Ewens sampling formula. There is a simple urn model for such a
process in this case, analogous to the Polya urn model (Hoppe 1984). Suppose
we start out with an urn containing a single black ball: the mutator. The first
time we select a ball, it is necessarily the black one. We replace it, together
with a ball of some color. As time progresses, the urn contains the mutator and
a number of colored balls. Each colored ball has a weight of one, the mutator
has weight θ. The likelihood of selecting a ball is proportional to its weight. If
a colored ball is selected, it is replaced together with a ball of the same color;
this corresponds to observing a species that has already been observed before
(hence balls of its color are already present). If the mutator is selected, it is
replaced, together with a ball of a new color ; this corresponds to observing a
new species. It is not difficult to verify that the rules of succession for this
process are

f(ni, n) =
ni
n+ θ

; g(n) =
θ

n+ θ
.

Note that in this case the probability of a new species does not depend on the
number observed. Such predictive probabilities arguably go back to De Morgan;
see Zabell (1992).

10. Conclusion
The quantitative theory of inductive inference only became possible after
the rise of mathematical probability. Initially the technical developments in
probability ran ahead of its careful philosophical analysis (with the exception
of Bayes’s essay), but in the twentieth century, thanks to luminaries such as
William Ernest Johnson, Frank Plumpton Ramsey, and Bruno de Finetti, a
coherent theory and analysis of the inductive process became possible. Eight
decades of discussion, analysis, and criticism of that theory has led to a rich
structure in which a solution to Hume’s problem is finally possible.

This is not to say that the theory has not had its critics, most notably Karl
Popper and his school. But the theory has had a resilience surpassing each of
its frequentist, propensity, and credibilist competitors. Although every theory
must introduce assumptions, simplifications, and idealizations, the modern
theory, properly understood, is a useful and impressive contribution to the
philosophical clarification of the justification of one of our most basic forms of
reasoning.
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Appendix: Gamma and Beta
The mathematics underlying the evaluation of certain integrals needs to be
briefly recalled.

The Gamma Function
First, one has the gamma function

Γ(x) =
∫ ∞

0
tx−1e−t dt, x > 0.

The gamma function satisfies the duplication formula

Γ(x+ 1) = xΓ(x), x > 0,

and is therefore completely determined by its values in the interval 0 < x ≤ 1.
In particular, because Γ(1) = 1, one has

Γ(n+ 1) = n!

for all integers n ≥ 0. It is therefore an extension of the integer factorial
function to all positive reals.

The Beta Function
A close relative and friend of the gamma function is the (two-parameter) beta
function:

B(α, β) =
∫ 1

0
tα−1(1− t)β−1 dt, α, β > 0.

The key to its computation is the formula

B(α, β) =
Γ(α) Γ(β)
Γ(α+ β)

.

The Beta Distribution
Because every integration formula for a nonnegative function enables one to
define a probability density, we can now define the important two-parameter
beta family of densities:

fα,β(p) :=
Γ(α+ β)
Γ(α) Γ(β)

pα−1(1− p)β−1, 0 ≤ p ≤ 1 (α, β > 0).

Note that if α = β = 1, this reduces to the uniform distribution on the unit
interval.
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Logic and Linguistics
in the Twentieth Century
Alessandro Lenci and Gabriel Sandu

1. Introduction
A crucial aspect of the revolution that affected logic at the beginning of the
twentieth century concerns the severance of its traditional dependence on the
form and structure of natural language. Such a breakdown has had enormous
consequences not only for the development of formal logic but also for the
opening of new perspectives in the study of language. This peculiar relationship
between mathematical logic and language inquiry is best illustrated by Willard
V. O. Quine (1961, 1):

Mathematicians expedite their special business by deviating from
ordinary language. Each such departure is prompted by specific
considerations of utility for the mathematical venture afoot. Such
reforms may be expected to reflect light on the ordinary language
from which they depart.

As a major consequence of its “reforms,” the new mathematical logic has been
able to revivify and boost the notion of philosophical and logical grammar,
typical of the seventeenth- and eighteenth-century rationalist tradition. New life
has therefore been given to the idea that there exists a common grammatical
core shared by every language and determinable a priori, with respect to which
diversity and variation are just prima facie features of natural language, hiding
its universal logical structure.

The dominant and almost exclusive role of logic in the quest for the universal
principles of human language has however been radically challenged in the
course of the century by the arising and fast growth of generative linguistics,
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which has claimed the investigation of universal grammar as the major goal of
linguistic science. In contrast with the descriptive and empiricist approach of
structural linguistics—mostly focused on the taxonomic study of particular
languages—Noam Chomsky has reaffirmed the need for a rationalist perspective
on language analysis. The focus on the formal properties of language structure,
the central role occupied by the study of syntax and of language creativity,
the attention to the relation between syntactic composition and meaning, the
inquiry into the universal principles that form the conditions of the possibility
of human language have thus become the core areas of research in generative
theoretical linguistics, thereby granting an important convergence with the
research and the aims pursued in the field of logical grammar.

The Chomskian revolution has therefore deeply affected the relationship
between logic and linguistics, the latter being intended as a naturalistic sci-
entific enterprise subject to the same methodological requirements of other
Naturwissenschaften like physics or chemistry. On one hand, the rationalist
turn in linguistics has actually allowed for an unprecedented convergence of
linguistics with important areas of mathematical logic. On the other hand, the
generative paradigm has also set constraints on the study of natural language
and formulated hypotheses on its architecture that have often dramatically
conflicted with the logicomathematical approach. Thus, the history of the
relationship between logic and theoretical linguistics in the past decades is
rather a deeply dialectic one. It is a history of profound and synergic efforts
toward the common aim of understanding the nature and universal principles
of human language and its formal structure, but it is also an history of harsh
conflicts and divergences on the nature of universal grammar itself. At the core
of this confrontation lies the issue of the relationship between grammatical
form and logical form, that is to say, the possibility itself of carving out the
natural language syntactic and semantic space as a logical space. This is also
primarily related to the role of meaning in the architecture of language, that
is, its methodological function in guiding the discovery of language universals,
the proper nature of a semantic theory, and the relationship between syntactic
descriptions and semantic interpretation. Such questions have reached their
peak with the debate on the principle of the autonomy of syntax, which was
proposed by Chomsky since the very outset of the generative enterprise, and
has largely dominated and oriented the discussion throughout this period.

Logic and generative linguistics have partly been divided by the inherently
cognitive and psychological orientation of the rationalist approach boosted by
Chomsky. While mathematical logic has mostly focused on a mind-independent,
speaker-independent notion of language, generative linguistics is, in fact, ulti-
mately interested in the principles of language intended as the description of
a particular cognitive faculty of speakers. Moreover, the tradition of logical
grammar—with the major landmark of Richard Montague’s contribution—is
largely dominated by the hypothesis that actually no substantial difference
exists between natural language and formal languages (Montague 1974). Differ-
ently, the major constraint imposed by Chomsky on the principles of universal
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grammar is rather an empirical one, that is, whether they provide a real
explanation of speakers’ knowledge of language and of men’s innate capabil-
ity to acquire language. Therefore, the history of the interactions between
these disciplines is also deeply related to a fully theoretical issue, namely,
how much is language amenable to a treatment as a formal language. In this
way, reconstructing the difficult and contrasted history of the interactions
between logic and contemporary linguistics leads us to set and investigate
crucial philosophical questions concerning the nature of language and the way
to face its complexity.

The interaction between logic and linguistics on the nature of universal
grammar can be roughly divided into three phases, which will be analyzed
in details in the next sections. The first phase (beginning of the century up
to the 1960s) was characterized by an extremely intense work in the field of
logical grammar (section 2), with the rising of categorial grammar within the
Polish School in the first decades of the century and its extensive application to
ordinary language by Yehoshua Bar-Hillel in the early 1950s. Besides, the work
on truth-conditional semantics by Tarski, Quine, and Davidson (section 3)
provided the necessary background to the model-theoretic analyses of natural
language and to Montague grammar in the 1970s. On the linguistics side, in 1957
the transformational generative paradigm made its first steps out of the banks
of American post-Bloomfieldian structuralism and behaviorism (section 4).
Chomsky’s critique of the inadequacies of phrase structure grammars had a
strong impact on the tradition of logical grammar, by revealing the limits
and problems of categorial models. Moreover, in these years the generative
architecture of the universal grammar received its first shaping, accompanied
by the initial steps of the debate on the role and nature of semantic theory.

The second phase (the late 1960s, throughout the 1970s) began with the crisis
of the semantic models developed in the early period of generative grammar
and the rise and fall of the generative semantics enterprise (section 5). One of
the major events of this period was the explosion of Montague grammar and the
subsequent breakthrough made in the linguistic community by the development
of model-theoretic semantics (section 6). More generally, these years were
characterized by a great debate on the proper position of semantics within the
theory of grammar, and by the first attempts to carry out extensive comparisons
and integrations between generative linguistics and logical grammar.

The third phase (starting from the beginning of the 1980s) is best illustrated
by referring to the central role acquired in the Government and Binding version
of Chomsky’s theory by the notion of logical form (LF) (section 7), resulting
in an intense work in linguistics on topics like quantification, coreference, and
so on, with the consequent constant readjustment of the border between logic
and formal linguistics.

Before starting, let us make a final general remark. Talking about logic and
linguistics in the twentieth century unavoidably entails presenting theories and
models which often not only belong to the history of these disciplines but also
form the daily working tools for militant researchers and scholars. This is exactly
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what happens with Montague grammar and generative linguistics. Therefore,
the following sections are not intended to represent general introductions or
descriptions of any of these frameworks, for which very good manuals and
summarizations exist at various degrees of difficulty and for various audiences.
The discussion will rather be focused on trying to reconstruct the dynamics
and interactions between these approaches in logic and in linguistic theory,
which represent the major landmarks in the quest for the individuation of the
universal structure of language.

2. Logical Grammar
2.1. Frege and Russell
For Frege, the most important concept of logic is truth. It is the analysis of this
notion that forced him to create a theoretical framework in which sentences
are broken into parts which in turn are related to entities in the universe in a
systematic way. By taking truth as the focal point of his considerations, Frege
was the initiator of a semantic project that was to dominate the logical study
of language up to the present day. Even if semantics proper was established
as a discipline much later by Tarski (who also introduced the Polish analog
of the name in 1936), Frege saw probably more clearly than any other how
an analysis of the truth of a sentence compels one to introduce meaning
(referential) relations between expressions of the sentence and extralinguistic
entities. Frege’s views about the logical analysis of language constituted a
complete break with the tradition. Before him it was customary to write things
like this:

Every categorial proposition has a subject, a predicate, a copula, a
quality and a quantity. Subject and predicate are called “terms.” For
example, in “the pious man is happy,” “the pious man” and “happy”
are terms of which “the pious man” is the subject, “happy” is the
predicate, and “is” is the copula. The “quality” of the proposition
is affirmation or negation . . . the “quantity” of a proposition is
its universality or particularity. (Leibniz, Opuscules et fragments
inedits de Leibniz, 77–78)

Nothing could be further from Frege. He rejected explicitly the distinction
between subject and predicate (something that will find an echo later on in
Chomsky’s redefinition of grammatical subject; see section 4.2):

A distinction between subject and predicate finds no place in my
representation of a judgment. Now all those features of language
that results only from the interaction of the speaker and listener
. . . have no counterpart in my formula language, since here the
only thing that is relevant in a judgement is that which influences
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its possible consequences. [In this I closely follow the formula lan-
guage of mathematics, in which subject and predicate can also be
distinguished only by violating it]. (Frege 1879, §3)

Instead, he introduced (Frege 1891) the distinction much more familiar to him
from his training as a mathematician between object and function. According
to it, the sentence “John is tall” is to be analyzed into a concept word “tall”
and the proper name “John.” The latter designates an object, the bearer of
the proper name. The former designates a concept, that is, a function that for
Frege is an unsaturated entity whose arguments are objects and whose values
are the truth values True or False. Thus in our example, the concept-word
“tall” designates the concept which, for every object as its argument yields the
truth value True if and only if that object is tall; the whole sentence designates
True if and only if the individual designated by “John” is tall.

The rejection of the subject-predicate distinction can be seen even more
clearly in the case of relational expressions. The statement “3 is greater than
2” (“3 > 2”) is not to be analyzed into the subject “3” and the predicate “is
greater than 2” but into the relation symbol “is greater than” and the proper
names “2” and “3” (Frege 1891, 154).

Frege’s analysis of quantifiers (“signs of generality”) constituted another
break with the tradition. His predecessors regarded the sentences

(∗) “Socrates is mortal”

and

(∗∗) “Everyone is mortal”

as having the same logical complexity, that is to say, (∗) was regarded as
equivalent to “Every Socrates is mortal,” where “Socrates” is a term denoting
one single object. Frege saw things in a completely different way. (∗) is for him
an atomic sentence built up from the proper name “Socrates” and the concept-
word “mortal,” while (∗∗) is a statement of generality in which the (first-level)
concept designated by “mortal” is the argument of the (second-level) concept
designated by the sign of generality “everyone.”

It must be here remarked that the words “all,” “any,” “no,” “some,”
are prefixed to concept-words. In universal and particular affirma-
tive and negative sentences, we are expressing relations between
concepts; we use these words to indicate the special kind of relations.
They are thus, logically speaking, not to be more closely associated
with the concept-words that follow them, but are to be related to
the sentence as a whole. (Frege 1892, 187)

In Frege’s perspicuous notation, introduced in his Begriffsschrift, the position
and role of every expression as well as their level are clearly specified. Thus
the general form of statements of generality like (∗∗) is

a︸ ︷︷ ︸ f(a),
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where “f” indicates the place of the first-level function which is its argument
(Frege 1891, 153). The second-level concept designated by “every” is defined as
the function that takes the value True for a first-level concept as its argument
(to be inserted in the position indicated by “f”) if and only if the first-level
concept takes the value True for every object in the universe; otherwise it has
the value False.

It is worth emphasizing that Frege’s views on logic together with the
conceptual notation that went along with it opened the door for possibilities
undreamt of by his predecessors, which found their place into both logic and
linguistics once and for all. Let us focus on those which are relevant for the
present study.

First, we have in Frege for the first time the idea of the derivational history
of a sentence with the engendered possibility of determining its truth or falsity
in stages, beginning with the atomic stage. Frege’s procedure is not entirely
compositional with respect to truth, that is, the truth of a compound sentence
cannot be obtained from the truth of the compounds, and this for the simple
reason that the compounds are not always sentences. Since for Frege variables
are empty places which indicate the positions where arguments must be filled
in, and not terms receiving meaning through an assignment, he could not and
did not have the notion of satisfaction available, which had to wait for Tarski’s
work. But he still could define, and in fact he did, as Dummett has observed,
the truth of a compound sentence in stages. Thus the sentence “everyone is
mortal” is True if and only if “George is mortal” and “John is mortal,” and so
on, that is, if and only if the first-level concept word “mortal” yields the value
True when we run through all the (names of) objects in the universe which
are persons.

Second, Frege’s categorical distinction between objects and concepts, and
the syntactical distinction between complete and incomplete expressions that
goes along with it gave rise to a hierarchy of levels which, in turn, yields
a theory of signification for natural language sentences. In other words, he
was able to explain why certain sentences in natural language, although
grammatical, are completely meaningless or paradoxical. As Dummett pointed
out, the failure of significance of such sentences is accounted for by the
impossibility of constructing a corresponding sentence in the symbolic language.
We find essentially the same idea later on in Russell’s theory of types as
well as in the categorical languages of the Polish school (Ajdukiewicz and
Lesniewski) which grew out of Husserl’s work. The explanation goes shortly
like this.

At the basis (level 0) of Frege’s hierarchy of levels, we have complete
names, that is, proper names and sentences, while all the expressions situated
at higher levels are incomplete. Thus at the first level we have one-place
predicate expressions of first-level which are incomplete expressions obtained
from sentences by removing one or more occurrences of a proper name. Frege
used the notation

. . . ξ . . .
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to denote a first-level one-place predicate which has been formed from a
sentence

. . . a . . .

by removing one or more occurrence of some proper name “a” and leaving a
gap indicated by the Greek letter ξ to mark the argument place of the predicate.
On the same level we also have two-place, three-place, and so on relational
expressions of first-level and also one-place, two-place, and so on functional
expressions of first-level, that is, incomplete expressions obtained from proper
names by removing one or more occurrences of other proper names.

At the next level we find second-level predicates, that is, incomplete ex-
pressions obtained from sentences by removing one or more occurrences of
first-level predicates. Typical examples are quantifiers, like our earlier example
“ a︸ ︷︷ ︸ f(a),” where “f” shows the gap left by the removal of the first-level
predicate, and the expressions “a” in brackets shows the initial argument of
the removed first-level predicate.

Suppose now that we want to insert a new first-level predicate in the
argument place of the second-level relation. We will have to put that predicate
in the place of f and then insert a as its argument. This mechanism shows
why we cannot insert a proper name in the argument place of a second-level
predicate: There is no place for the argument left by the removal of the first-
level predicate to go to. For similar reasons, we do not obtain a sentence when
we insert a first-level predicate into the argument place of another first-level
predicate, for the resulting expression still contains a gap ξ to be filled in.

We are now able to understand what is paradoxical about natural language
sentences like “The concept horse is not a concept” if interpreted as saying
something about a concept or, to borrow an example from Dummett, why
certain natural language sentences like “Chairman Mao is rare” are perfectly
grammatical, yet meaningless. The reason is that “is not a concept” denotes
a second-level concept although it appears in the grammar of English as a
first-level one. And the same goes for “is rare” in the second example. In
other words, what in the grammar of natural language appears like a first-level
predicate, is not so in logic:

The concept of a function must be a second-level concept, whereas
in language it always appears as a first-level concept. While I am
writing this, I am well aware of having again expressed myself
imprecisely. Sometimes this is just unavoidable. All that matters is
that we know we are doing it, and how it happens. In a conceptual
notation, we can introduce a precise expression for what we mean
when we call something a function (of the first level with one
argument). (Frege, letter to Russell, 1902)

Dummett has drawn attention to the fact that Frege’s hierarchy of levels is
essentially the same as Russell’s theory of simple types formulated in terms of
Frege’s notion of incomplete expressions. Although Russell does not explicitly
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make the distinction between complete and incomplete expressions, we find in
his notion of “ambiguity” essentially the same notion of incomplete expression
and the same criteria of significance as in Frege:

Thus “(x).ϕx,” which we have already considered, is a function of
ϕx; as soon as ϕx is assigned, we have a definite proposition, wholly
free from ambiguity. But it is obvious that we cannot substitute
for the function something which is not a function: “(x).ϕx” means
“ϕx in all cases,” and depends for its significance upon the fact
that there are “cases” of ϕx, i.e., upon the ambiguity, which is
characteristic of a function. This instance illustrates the fact that,
when a function can occur significantly as argument, something
which is not a function cannot occur significantly as argument.
But conversely, when something which is not a function can occur
significantly as argument, a function cannot occur significantly.
(Whitehead and Russell, Principia Mathematica, 48).

Later on we shall regain Frege’s hierarchy of levels in the Lesniewski–Ajdu-
kiewicz grammar of semantic categories. As we said at the beginning of this
section, truth was for Frege the main concept of logic, and truth is a property
of sentences and thoughts. Thoughts and sentences were thus primary for Frege,
but this did not prevent him to realize the combinatorial and compositional
power of language, a methodological credo that was to remain constantly
transparent in his writings and after him was going to mark, if not even
demarcate (see section 4.1), the project of logical grammar of the Polish school,
Carnap, Davidson, and Montague from other developments in the study of
language. Indeed, Frege wrote:

It is astonishing what language can do. With a few syllables it
can express am incalculable number of thoughts, so that even if a
thought has been grasped by an inhabitant of the Earth for the
very first time, a form of words can be found in which it will be
understood by someone else to whom it is entirely new. (Frege
1923–1926, 390)

2.2. Husserl’s Theory of Meaning Categories
Husserl was directly concerned with the question of what makes natural lan-
guage expressions significant. The answer he gave to this question is essentially
the same as that given by Frege before him: in virtue of these expressions
obeying the principles of combination and substitution governing the meaning
categories they belong to. Thus like Frege, Husserl makes categorical distinc-
tions and states explicitly the connections between expressions belonging to
different categories. These connections are codified in the so-called meaning
connection rules, which state the mode of combination and substitution of
different expressions into more complex ones. These rules allow Husserl to
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explain why combinations of certain strings in language are nonsensical. The
purely logical grammar is the set of a priori laws common to all languages.

To understand Husserl’s meaning connection rules, we have first to under-
stand his distinction between form and matter, that is, between expressions
signifying forms and expressions signifying matters. In the sentence

(1) This house is green.

the words this and is do not have an independent meaning: They are syncate-
gorematic expressions, that is, expressions that become meaningful only after
completion with other expressions. For Husserl, syncategorematic expressions
signify forms, in contradistinction to nominal expressions, like house and adjec-
tival expressions like green which signify matters, that is, things and entities in
the world, and so on. He perspicuously observed that in (1) we can substitute
nominal matters for house and adjectival matters for green and the result is an
expression which is still “well formed,” or, in Husserl’s words, it has a unitary
meaning. So in (1) we can discern an underlying propositional form

(2) This S is p

which yields unitary meaning only if substitute for the variables S and p
expressions belonging to the same Bedeutungskategorien (meaning category, as
distinguished from the term semantic category used later by the Polish school).
(See also Casadio 1988.)

Each such form has associated with it a meaning connection rule which states
to which meaning categories the expressions substitutable for the variables of
the form must belong. In Husserl’s words:

each primitive form adheres to a certain a priori . . . law stating that
every meaning connection obeying that form effectively gives rise to
a unitary meaning, provided that the terms (the underdetermined
elements, the variables of the form) belong to certain meaning
categories. (Husserl 1913, 330)

In the case of (2), the meaning connection law states that any nominal matter
may be substituted for S and any adjectival matter may be substituted for p.

If in a form we violate the meaning connection rule by substituting for the
variables in the form words belonging to inappropriate categories, the resulting
expression turns out to be nonsignificant or nonsense (Unsinn). This happens,
for instance, if in (2) we substitute for S an adjective like careless and for p
an adjective like green (which is appropriate). However, even if we obey the
meaning connection rules, we may get an absurd expression like

(3) This quadrilateral has 5 vertices.

which does not denote a possible state of affairs (Husserl 1913, 327). This is
a case of countersense (Widersinn). The distinction between nonsense and



784 The Development of Modern Logic

countersense justifies Husserl to introduce two kinds of laws: laws of avoiding
nonsense and laws of avoiding formal countersense (Husserl 1913, 334–335). We
see that for Husserl, nonsense is prevented by the meaning-connection rules.

Bar-Hillel has made the interesting observation that Husserl’s distinction
between nonsense and countersense is an anticipation of Carnap’s distinction
between formation rules and transformation rules (Bar-Hillel 1970, 93; Casadio
1988, 116). In Carnap’s Logical Syntax of Language (1937), the former define
the well-formed expressions (sentences) of a language, and the latter define the
set of sentences that are consequences of a system of axioms. In this setting,
the sentence (3) cannot be true, whereas the sentence This careless is green is
not a sentence at all. According to Bar-Hillel, Husserl’s insight that the rules
of avoiding nonsense are logically prior to the rules of avoiding countersense is
nothing else that the Carnapian requirement that the statement of the rules of
formation has to precede its rules of transformation (Bar-Hillel 1970, 93–94).

The Husserlian distinction between form and matter reminds one of the
Fregean distinction between complete and incomplete expressions and the
ontological distinction between objects and concepts which goes along with
it. Some of the incomplete expressions became later in the Polish school the
functorial (operator) categories.

2.3. The Polish School
The Polish school gathered philosophers and logicians who worked in Lwow,
Warsaw, and Krakow between the two wars. However, the history of the
group starts much earlier with Twardowski, who attended Brentano’s lectures.
Twardowski taught in Lwow and so did his pupil, Lukasiewicz. Among the
students of the latter one could find Lesńiewski, Ajdukiewicz, and Kotarbinski.
Lesńiewski and Kotarbinski moved later to Warsaw where a new generation of
logicians was raised, including Lindebaum, Sobocinski, and Tarski.

One of the main problems considered by many of the logicians in this group
was to give an adequate answer to the question raised by Husserl, namely,
“the specification of the condition under which a word pattern, constituted of
meaningful words, forms an expression which itself has a unified meaning. . . .
A word pattern of this kind is syntactically connected” (Ajdukiewicz 1935, 1).
We pointed out earlier that Frege’s categorical distinctions and Russell’s theory
of types were intended as an answer to the same question. However, for reasons
we cannot go into here, Russell’s theory of types was found dissatisfactory, and
many logicians in the group adopted instead the theory of semantic categories
expounded by Lesńiewski in Grundzüge eines neuen Systems der Grundlagen
der Matematik (1929). Lesńiewski made a distinction between language and
metalanguage, which was later explored by Tarski. He was also the first to
point out that every language which contains its own semantics cannot obey
the laws of classical logic, and if those laws are to be preserved, one has
to reconstruct the language through hierarchical levels, where each level is
interpreted in the next one.
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2.4. Lesńiewski and Ajdukiewicz:
The Grammar of Semantic Categories

Lesńiewski’s theory of semantic categories, which he formulated around 1922,
was deeply influenced by Husserl’s theory of meaning categories and by Russell
and Whitehead’s theory of types. For Lesńiewski, too, any expression, un-
derstood as a finite sequence of inscriptions, belongs exactly to one semantic
category. Lesńiewski himself did not have an explicit classification of categories
into kinds, like Russell before him, but such a classification was built up inside
his system later by Ajdukiewicz (Ajdukiewicz 1935). According to it, there
are basic categories and functor categories, which reminds one of the Fregean
distinction between saturated and unsaturated expressions. Moreover, like in
Frege’s hierarchy of levels, and in Russell’s simplified type theory, one finds
only two basic categories in Lesńiewski’s system: sentences and names. All the
other categories are functor categories.

Lesńiewski’s system forms a ramified ascending hierarchy of functor cate-
gories which are characterized in two ways: by the number and the semantic
categories of the arguments and by the semantic category of the whole ex-
pression formed by the functor together with its arguments. Lesńiewski’s
theory remained largely unknown outside Poland until 1935, when Ajdukiewicz
gave it a more elegant formulation. It was intended to be applied to formal
(constructed) rather than natural languages. Although Ajdukiewicz was more
sensitive, at least in principle, to the latter, when he constructed his logical
system, like Lesńiewski, he limited his attention only to languages having two
basic semantic categories: singular names (names of individuals) and general
names (names of universals).

Ajdukiewicz added to Lesńiewski’s system an indexicalization of the semantic
categories. To the basic categories of names and sentences he assigned the
indices “n” and “s,” respectively. To the functor categories he assigned a
fractionary index consisting of a numerator and a denumerator. The former is
the index of the semantic category of the value of the functor for its arguments.
The latter is a sequence consisting of the indices of the semantic categories of
the arguments.

Ajdukiewicz’s categories are few in number and selected so that they fit the
language of mathematics. He notices that the number of categories in ordinary
language is much bigger, and there one has a fluctuation in meaning that
renders the design of the system much more difficult. However, he points out
that “In simple and favorable cases, however, the index apparatus cited above
will be quite suitable for linguistic usage” (1935, 211).

We are now in a position to return to the initial question: What are the
necessary and sufficient conditions for an expression to have unitary meaning?
The necessary condition is for the expression to be articulated throughout
(1935, 213). This means, first, that the expression may be divided into a
main functor and its arguments. Ajdukiewicz is well aware that in ordinary
language the order of the arguments in the main functor is not the same
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as its sequential ordering. Second, one has to check that each argument is
also analyzable into a main functor and its arguments, and so on. Again,
he points out that “ordinary language often admits elliptical expressions so
that sometimes a significant composite expression cannot be well articulated
throughout on the sole basis of the words explicitly contained in it. But a
good overall articulation can be easily established by introducing the words
omitted but implicit” (ibid., 213). The sufficient condition is that, after the
division into functors and arguments, there must be a perfect fit between
the number of arguments required by each functor and its actual arguments,
which in addition must belong to the appropriate categories. An expression
that fulfills both the necessary and sufficient condition has a unitary meaning,
or, as Ajdukiewicz calls it, is syntactically connected. The matching of the
functors’ arguments with the semantic categories of the functors is checked
mechanically by an algorithm that we now describe by way of an example. The
sufficient condition is met if the result of this procedure is a simple index.

Ajdukiewicz gives the following simple sentence of mathematics (using
parentheses instead of dots), where we write below each of its symbols the
index of its category:

(p ∨ p) → p.
s s
ss s

s
ss s

We then arrange the parts of the expression into a main functor and its
arguments:

→, p ∨ p, p.
s
ss s

s
ss s s

We apply the same procedure to any subexpression that can still be decomposed
into a main functor and its arguments:

→, ∨ , p p, p.
s
ss

s
ss s s s

We next detach the sequence of indices of the expression:

s
ss

s
ss s s s.

In the sequence thus obtained, we try, starting from left to right, to find a
combination of indices so that we have a fractional index followed immediately
by a sequence of indices that occur in the denominator of the fractional index.
We cancel the sequence (if there are several, we cancel the first one), and
replace it by the numerator of the fractional index. In our particular example,
the combination we are looking for consists of the second, third, and fourth
members of the sequence. The result is:

s
ss s.

We apply the same operation once more, and we get s.
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This last index is the exponent of the expression. Because it is simple (and
not fractionary), and all the others conditions have been fulfilled, our initial
sentence is syntactically connected.

2.5. The Categorial Grammar of Bar-Hillel

Ajdukiewicz’s theory was considerably developed by Bar-Hillel in a series of
papers in the 1950’s and 1960’s (Bar-Hillel 1964, 1970). He shaped the concept
of categorial grammar and popularized it to the English speaking world. As his
predecessors, Bar-Hillel was interested in the question of the “unitary meaning”
of a string of words. This problem was perceived even more acute in the 1950s,
a period that sees the rise of computers and addresses the question of the
feasibility of translation. As contrasted to his predecessors, Bar-Hillel was much
more interested in the application of the tools of logic to ordinary language.
He very much deplored the attitude of his teacher Rudolf Carnap, who, on
one hand, developed very sophisticated mathematical tools to be applied to
the study of language in general in The Logical Syntax of Language (Carnap
1937), but on the other hand found natural language too complicated to be
studied with these tools. Carnap’s attitude resumed in his Introduction,

In consequence of the unsystematic and logically imperfect structure
of the natural word-languages (such as German or Latin), the
statement of their formal rules of formation and transformation
would be so complicated that it would hardly be feasible in practise,

was, as we saw, symptomatic for most of the logicians working on the founda-
tions of language (including Frege and the Polish school) and was regrettable
for at least one reason. Carnap’s work was what many linguists (including
Zellig Harris and Noam Chomsky) read when they wanted to get acquainted
with what logicians said about language. Comments like the ones just quoted
would have and did eventually discourage them from seeing the relevance of
some of the tools developed by logicians for solving problems in their own
field. The Carnapian distinction anticipated by Husserl between formation
and transformation rules would have been, as Bar-Hillel pointed out, highly
relevant for studying the relation between, say, active and passive constructions
in natural language undertaken much later by the generativists, especially if
we recall that in Carnap’s system both of them were formulated in syntactic
terms.

One of Bar-Hillel’s most important insights was that the theory of semantic
categories as developed by Lesńiewski and Ajdukiewicz was too rudimentary to
be applied to the syntax of an ordinary language. For that purpose he improved
Ajdukiewicz’s theory in several directions. He noticed that Ajdukiewicz’s
notation α/β (this is the way he rewrote Ajdukiewicz’s fractional index) for
the functor categories makes it explicit that the functor is intended to apply
only to an argument which occurs to its right. This was very clearly seen in



788 The Development of Modern Logic

the preceding section where Ajdukiewicz had only a right cancellation rule,
which can be explicitly formulated as the following.

C1: Replace a string of two category symbols α/β, β by α. In symbols:
α/β, β → α.

Bar-Hillel pointed out that this kind of rule makes the Lesńiewski–Ajdukiewicz
theory applicable only to formal languages that have explicitly that sort of
structure, like the formal languages expressed in the parentheses-free Polish
notation. In these languages, one has expressions like “·+abc” (i.e., “(a+ b) · c”
in the notation which uses parentheses) and “+a · bc” (i.e., “a+ (b · c)”). But
that system does not apply to natural language like English. For instance, in a
very simple English sentence like John died the natural order is that in which
the nominal John precedes the functor expression died: n, s/n.

But then the cancellation rule C1 is not applicable to it. The system
would work only if we rewrite the above sentence as Died John. So one of the
shortcomings of the Lesńiewski–Ajdukiewicz grammar was the unidirectionality
of its semantic categories, that is, the functor had to appear only on the left
of the argument.

Bar-Hillel overcame this limitation by adding a new kind of functor category
of the form α\β where the functor operates now on arguments to its left. The
new categories will now be more sensitive to the natural language syntax.
These are the main categories used by Bar-Hillel (1964, 76):

Basic categories
Nominals: n
Sentences: s

Functor categories
Intransitive verbals: n\s
Adjectivals: n/n
Intransitive verbal adverbials: (n\s)\(n\s)
Binary operators: s\s/s
And so on.

Corresponding to this, he also introduced a left-cancellation rule.

C2: Replace a string of two category symbols α, α/β by β. In symbols:
α, α/β → β.

Another limitation in the Lesńiewski–Ajdukiewicz grammar was the fact
that to each expression there was assigned only one category. Consequently,
each sentence had only one structural derivation. Such a limitation may be
justified for artificial languages. But as pointed out by Carnap in his Logical
Syntax of Language, in more complex languages one expression may belong to
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more categories (homonymy), and an expression may be ambiguous, that is, it
may have more than one derivation. Accordingly, another improvement made
by Bar-Hillel was to have expressions belonging to more than one category.

Applying these rules to a natural language sentence yields a derivation
of that sentence. However, given that each expression may belong to several
categories, its set of derivations may be rather large. An expression is well
formed if it has at least one correct derivation. For example, consider the
sentence:

(4) Little John slept soundly.

The dictionary will give us first the categories to which every word be-
longs. Thus we shall have Little (n/n), John (n), slept (n\s), and soundly
((n\s)\(n\s)). The next stage is to resolve the constituent structure of the
sentence by the same mechanical procedure that Ajdukiewicz had used. The
only difference is that now there are two cancellation rules that may be applied
to a string of indices (Bar-Hillel 1964, 77). Let us illustrate how this procedure
works in the case of (4).

We start with the sequence of indices of the subexpressions of (4):

(5) n/n, n, n\s, (n\s)\(n\s).
We notice that there are three different ways to perform a cancellation, each
of them resulting in one of the following sequences:

(6) a. n, n\s, (n\s)\(n\s).
b. n/n, s, (n\s)\(n\s).
c. n/n, n, n\s.

The sequence (6b) cannot be continued. The sequence (6a) can be continued
by applying a cancellation rule to the first two members, after which we are in
a blind alley, or by applying a cancellation rule to the second and the third
member, the result being

(7) n, n\s.
By applying a cancellation rule to this sequence, we reach the exponent s.
The sequence (6c) can be continued, by applying a cancellation rule to its
second and third members, after which we are in a blind alley, or by applying
a cancellation rule to its first and second members, the result being

(8) n, n\s.
Finally, applying a cancellation rule once more, we reach the exponent s. Let
us write down the two “successful” derivations.

1. n/n, n, n\s, (n\s)\(n\s)
2. n, n\s, (n\s)\(n\s)
3. n, n\s
4. s

1. n/n, n, n\s, (n\s)\(n\s)
2. n/n, n, n\s
3. n, n\s
4. s
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These two derivations differ from each other just in the fact that the cancellation
step that occurs on the left side at stage two occurs on the right side at stage
one. They are therefore equivalent, as can be seen from the fact that they give
rise to the same tree expansion:

s
�����

�
���

n

�
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�
�	

n/n



Little

n



John

n/s

�
��

�
�	

n\s



slept

(n\s)\(n\s)



soundly

Things do not work so well, however, for more complex sentences like

(9) Paul thought that John slept soundly.

In this case, we get two derivations that are not equivalent. We are not going
to exhibit the rather detailed analysis here (for the details, see Bar-Hillel 1964,
78–79). The important thing is that there are reasons to regard one of the
two resulting derivation trees as unacceptable. So either the categorization is
ill-chosen or the whole model is inadequate.

Problems are increased when we remember that for Bar-Hillel an expression
may belong to several categories. For instance, that is sometimes a nominal (n)
and sometimes an adjectival (n/n). Thought belongs to the categories n, n\s,
and (n\s)/(s/s) (Paul thought John was asleep). Thus the list of the category
entries that the dictionary provides for some words may be rather long. In this
case, the grammaticalness of some of the resulting derivations is highly dubious.
In addition, the computational complexity of the process of constructing all
the possible derivations is very high. The feasibility of the model decreases
even more if we remember that the number of fundamental categories was very
small. If we go on and add singular and plural, animate and inanimate, and so
on, then the complexity becomes much bigger. Considerations of this sort made
Chomsky (Syntactic Structures) very skeptical about the Bar-Hillel model.
Actually Bar-Hillel himself came to the same conclusion (see section 4.1). A
better linguistic model, according to him, is the transformational model of
Harris (1957), and Chomsky (1957).

3. Truth-Conditional Semantics
The development of truth-conditional semantics starting in the works of Frege,
Russell, Wittgenstein, and reaching the founding fathers of the field, Carnap
and Tarski, is detailed in chapter 13. Here we only resume its main conclusions.
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For the Polish logician Alfred Tarski, a semantic theory took the form of a
theory of truth for a given language. The essential features of such a theory are
laid down in his seminal paper, The Concept of Truth in Formalized Languages
(1956). In designing a theory of truth for a given language, Tarski wanted
to apply the methodology of semantic categories developed by his teacher,
Lesńiewski (see previous discussion). This methodology is nothing else than
the compositional method that requires that the syntax (grammar) of the
language be specified in terms of explicit rules that dictate how expressions of
appropriate categories combine themselves to form more complex expressions
and finally sentences. The semantics, in this case the truth of a sentence, is
then given by a set of semantical rules that mirror the appropriate rules of
the syntax. But Tarski did not see any hope in his time to have a precise
formulation of natural language (“colloquial language,” as he called it) syntax,
which had still to wait for the generative turn. In addition, he was fully
aware that being semantically closed, natural language is beset by semantic
paradoxes, and so he explicitly gave up the task of formulating a theory of
truth for a natural language fragment. He believed that only a theory of truth
for formalized languages is scientifically attainable. For Tarski, a formalized
language is an interpreted one, like the language of arithmetic, and it can be
given a precise syntactic representation.

For a formal language L, Tarski defined in the metalanguage ML (set
theory) the predicate truth-in-L. For such a definition to be possible, for each
expression of the object-language L there has to be an expression in ML which
has the same meaning or translates it. The definition of truth-in-L is defined
via the notion of satisfaction by induction on the complexity of formulas of the
object-language L, as shown in chapter 9. The important thing to emphasize
is that Tarski’s theory presupposes the notion of translation or meaning.

In the late 1960s, Donald Davidson phrased Tarski’s definition of the truth-
predicate for a language L as an empirical theory, that is, a theory like any
other in empirical sciences, with theoretical terms and axiomatic laws, from
which logical consequences are to be derived which are then empirically tested.
The purpose of such a theory is to give an answer to the question “What do
we know that enables us to interpret the words of others?” (Davidson, Radical
Interpretation, 125). Frege gave an analysis of the meaning of sentences, and
Tarski a semantic analysis of the concept of truth for a formalized language.
None of them was much interested in relating this semantic analysis to the
actual behavior of the language users. Davidson is looking for much more: a
theory that shows what one knows when one understands a language. The
switch is clearer toward the active use of language and its interpretation. The
details of Davidson’s theory are described in chapter 13. Here is enough to
point out that Davidson merged, in an ingenious way, an empirical setting that
he had inherited from his teacher Quine with the Tarskian theory of truth:
The language to be investigated is identified with Tarski’s object language,
the language of the investigating linguist with Tarski’s metalanguage, and the
correlation of the sentences of the former with those of the latter plays the
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role of the T -sentences. The major difference with Tarski is that the truth-
predicate is now a primitive notion, not one to be defined. Tarski’s requirement
that for each expression in the object-language there be an expression in the
metalanguage which is its translation, or has the same meaning, is not any
longer the starting point of the inquiry but its outcome. The result of Davidson’s
undertaking under his reinterpretation of Tarski’s theory of truth is broader
than Quine’s: not only a translation of the sentences of the target language
into the sentences of the home language but also a systematic procedure that
shows how the translation (meanings) of the former depends on their structure.
This extra payoff was possible to achieve thanks to the Tarskian compositional
definition of the notion of satisfaction.

Davidson wants his theory of truth to be a theory of meaning for a natural
language, or a fragment of it. In laying the bases of his program for semantics,
Davidson criticizes linguists and philosophers for having “exaggerated the
difficulties in the way of giving a formal theory of natural language” (Davidson
1984, 55). In particular, what Davidson mostly refuses is the common conclusion
that “there are two kinds of language, natural and artificial.” This alleged
difference would, in fact, correspond to the existence of some inherent features
in natural language, which would act as insurmountable barriers forbidding a
formal definition of truth in the same rigorous terms as the one provided by
Tarski (1936) for logical languages. Not only is the existence of such barriers
totally unwarranted, but the effort of pursuing a formal semantics theory of
language is worthwhile because “in so far as we succeed in giving such a theory
. . . , we see natural language as a formal system; and . . . we can think of
linguists and analytic philosophers as co- workers” (ibid.).

The Davidsonian connection between truth and meaning of the kind Tarski
has shown us how to construct, and which, as we have seen, finds its roots in
Frege’s work, has left a long-standing legacy in the interplay between logic and
language inquiry in the last century. It is based on the compositional method
of defining semantics on a rule-by-rule basis in tandem with a recursively
defined syntax. It is, as we are going to see, the legacy embraced by Montague
when he embarked on his project on “English as a formal language.” It is,
according to Montague, precisely this concern with truth-functional semantics
that radically separates his project from the language paradigm emerging from
the generative school, to which we now turn. However, at the end of our study,
we are going to signal some interesting endeavors of combining the two (e.g.,
Higginbotham 1985, 1986).

4. Chomsky’s Revolution in Linguistics
Prima facie the claim that logic and linguistics in the twentieth century would
not have met without the development of generative grammar might easily
be taken as an overstatement. Nonetheless, a closer analysis of what went on
in the study of language in the late 1950s reveals that Chomsky’s generative
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enterprise has actually been the precondition for any real and effective dialogue
between new twentieth-century linguistics on the one hand and logic and
philosophy on the other. This emerges with particular evidence if we take
into account the character and methodological assumptions of pregenerative
linguistics. Therefore, if among linguists it is still a matter of debate whether it
is appropriate to regard generative grammar as a real revolution with respect to
the past, from the point of view of logic and philosophy, using this term is not
an overestimation. The breakthrough of Syntactic Structures (Chomsky 1957)
goes far beyond the contribution to formal grammar provided by the theory
of transformations. The rise of generative grammar actually represents the
first appearance of contemporary linguistics into the debate on the universal
structure of language. Actually, the Chomskian turn has ultimately resulted in
an altogether new way of looking at language, different with respect to both
traditional linguistics and logicophilosophical grammar.

4.1. The Birth of Transformational Generative Grammar
Linguistics experienced the first major change from the nineteenth-century
tradition with the development of structuralism. Although this approach to the
study of language stemmed more or less directly from the Cours de linguistique
générale of Ferdinand de Saussure (1916), what is usually termed as structural
linguistics should actually better be described as a family of linguistics schools,
which, notwithstanding a common methodological overlapping, greatly differed
in their conception of linguistic inquiry. What is mostly typical of structural
linguistics is (i) the Saussurian distinction between langue and parole; (ii) the
clear separation of the diachronic approach to language from the synchronic
one, and the legitimation of the latter as an autonomous field of inquiry;
and finally (iii) a conception of language as a structural system of signs—
intended as arbitrary relations between a form (significant) and a content
(signifié)—whose elements receive a value from their position in the system
and from the reciprocal interrelations with the other parts of the system.
Thus, structural linguistics essentially established itself as a taxonomic and
paradigmatic inquiry, mostly consisting in the analysis of elements and the
structure of the system of a specific language. Besides, a crucial feature of the
structural approach to language in the first half of the century was the central
role occupied by phonology and morphology with respect to syntax.1

Structural linguistics developed into various schools on the two sides of
the Atlantic, but no real and significant relationship with logic blossomed in
either cases. On the one hand, the Prague school of Troubetzkoy and Jacobson,
and the Copenhagen circle of Hjelmslev, the leading representatives of Euro-
pean structuralism, mainly focused on developing respectively the Saussurrian
notion of phoneme and its theory of linguistic signs. Moreover, they firmly
regarded the study of language as part of human sciences, totally beyond
the domain of any naturalistic, scientific, or formal inquiry. On the other
hand, American structuralism with Edward Sapir and Leonard Bloomfield



794 The Development of Modern Logic

as its main representatives, was deeply oriented toward an anthropological
study of language. Besides, Bloomfield’s Language (1933) firmly established
linguistics as an irreducibly empiricist scientific enterprise (thus differing from
the mentalist approach of Sapir). By 1950s, the so-called post-Bloomfieldian
school outnumbered the followers of Sapir’s structuralism, so that the pre-
Chomskian American linguistic environment was totally dominated by the
empiricist paradigm. In contrast to European linguistics, Bloomfieldian struc-
turalism tried to provide linguistics with the same scientific status as natural
sciences. It was the particular conception of natural science that characterized
the post-Bloomfieldian school that divorced the goals of empirical linguistics
from the goals and the tradition of logical and philosophical grammar.

In fact, being deeply influenced by the empiricist philosophy of science of the
Vienna circle,2 Bloomfield himself and his followers regarded linguistics as an
empirical science, to be studied with a strictly inductive and physicalist method.
The purpose of linguistic inquiry was to “discover” the grammar of a particular
language that emerges out of the stream of physical sounds produced by its
speakers. Every abstract construct or generalization that could not be traced
back to an empirical observation was to be ignored. Linguistics was thus merely
descriptive and taxonomical, and linguistic investigation was strictly intended
as the description of a given language and not of language qua language.
Therefore, metatheory was limited to the formulation of a series of prescriptive
rules that had to guide the discovery procedure of the grammarian. Linguistic
inquiry was to be based on a merely external corpus of data, consisting mainly
of physical records of the flow of speech. As a consequence, the judgments of
the speakers were completely disregarded because of their alleged scientific
unreliability. The analysis of a given language consisted in the discovery of four
ordered levels of grammatical descriptions: phonemics, morphemics, syntax,
and discourse. Similarly to European structural linguists, post-Bloomfieldian
analyses almost exclusively concentrated on the first two levels. The inductive
method of American structuralism, as well as its focusing on phonological and
morphological descriptions of particular languages, also reveal the complete
lack of any interest in the combinatorial nature of language and its syntactic
creativity. The acknowledgment of the fundamental fact that language allows
speakers to express an indefinite number of thoughts by combining finite
resources—an issue already regarded as crucial by von Humboldt and Frege in
the third of his Logische Untersuchungen3 and which plays such a central role
in logical grammar—was completely lacking in Bloomfieldian linguistics, as was
the awareness of the recursive mechanisms of natural language. Consequently,
there was no real interest in addressing the question of the general laws of
syntactic combination of linguistic expressions.

This empiricist orientation also affected the way American structuralism ap-
proached the question of meaning. Semantics was excluded from the domain of
scientific explanation in linguistics, and analyses grounded on semantic consid-
erations were firmly denied. This represents another major difference between
pregenerative linguistics and the work in the logical grammar tradition: From
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the point of view of Bloomfieldian methodology, any role assigned to semantic
categories in deriving language composition would represent a dangerous and
misleading confusion between formal and semantic considerations.

To summarize, by the middle of the 1950s, logic and the new science of
linguistics lived in a “splendid mutual isolation” (Bar-Hillel 1969, 182). Harris
deplored this attitude in a representative passage: “Whereas the logicians have
avoided the analysis of existing languages, linguists study them” (Harris, 1951,
16 n17).

This situation dramatically changed with the publication of Syntactic Struc-
tures in 1957, which put the issue of the combinatorial nature of language
and linguistic creativity at the core of linguistic inquiry, thereby laying the
preconditions for the relevance of the work done in mathematical logic for
linguistic theorizing. With a revolutionary move, Chomsky rejected the taxo-
nomic and descriptive approach of post-Bloomfieldian linguistics and claimed
“the linguist’s task to be that of producing a device of some sort (called a
grammar) for generating all and only the sentences of a language” (Chomsky
1957, 85). As a direct consequence of this methodological innovation, the
domain of linguistics was enlarged from the description of a specific language
to the theory of language structure itself. In Chomsky (1957, 50) a condition
of generality is stated, according to which,

we require that the grammar of a given language be constructed in
accord with a specific theory of linguistic structure in which such
terms as “phoneme” and “phrase” are defined independently of any
particular language.

The overall goal of linguistics is thus the quest for the universal principles
that make up the possibility of human language. This also led to a radical
modification of the adequacy conditions for linguistic descriptions. In the
Bloomfieldian tradition, a language description was adequate only in so far
as it respected the methodological prescriptions that guaranteed its empirical
and totally inductive nature. This view is, instead, firmly rejected by Chomsky
(1957, 106): “The theory of linguistic structure must be distinguished clearly
from a manual of helpful procedures for the discovery of grammars.” In the
Chomskian framework, a language description has to pass different levels
of adequacy, the observational one being just the first. The top level of the
adequacy conditions of a grammar, is what Chomsky calls its explanatory
adequacy:4

A linguistic theory that aims for explanatory adequacy is concerned
with the internal structure of the device [the generative grammar ];
that is, it aims to provide a principled basis, independent of any
particular language, for the selection of the descriptively adequate
grammar of each language. (Chomsky 1964, 63)

Linguistic description does not have to face only the tribunal of data, but
also and more crucially the higher tribunal of the explanation of the general
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principles which lay at the basis of human creativity. Some of the direct
consequences of this shift of perspective are the acceptance of speakers’ gram-
maticality judgments as the fundamental empirical evidence, the introduction
of abstract levels of representation of linguistic information, and the centrality
of the investigation of the formal structure of grammars and linguistic rules.

The introduction—or rather the reintroduction—of the theme of linguistic
creativity led to a direct connection between generative grammar and the
rationalist, Cartesian tradition.5 The rationalist turn not only switched the
attention of linguists to the combinatorial nature of language, it also gave
meaning a new and important role in linguistics. Linguistic creativity is, in fact,
defined as the ability of understanding and generating an indefinite number
of linguistic expressions, and the combinatorial power of language, identified
with the generative nature of the syntactic component, is subservient to the
goal of pairing a potentially infinite sound and meaning patterns.

Besides the breakthrough in linguistics, Syntactic Structures significantly
contributed to the debate on the form of natural language grammar by showing
the inadequacy of phrase structure grammars, and by introducing the first ver-
sion of the transformational generative model. Chomsky’s argument is focused
on the claim that a theory of language structure based on phrase structure
grammars “will be extremely complex, ad hoc, and ‘unrevealing’ ” (Chomsky
1957, 34). Some of the most interesting examples brought by Chomsky to
illustrate these faults concern the analysis of the auxiliary system in English
and of the relations between active and passive sentences. The generation of
all the possible combinations of auxiliaries verbs (e.g., has taken, is taking,
has been taking, is being taken, etc.)—and the exclusion of all the impossible
ones, represented an incredibly hard task for the phrase structure grammars
available at the time. Much of the difficulty is due to the co-occurrence relation
between the auxiliary and the morphological affix:

(10) a. have -en (perfect tenses)6

b. be -en (passive)
d. be -ing (progressive form)

Chomsky claims that while phrase structure grammars pay a very high price
to capture such relations, the auxiliary distribution can easily be accounted for
by assuming phrase rules that generate the discontinuous elements—auxiliary
plus affix—as unit constituents, and then by positing a transformation rule
that permute affix and verb to their surface position. This argument based
on the simplification of the theory obtained by augmenting phrase structures
with transformations is also applied to the analysis of passive sentences. In
fact, formulating a proper rule that generates passive sentences requires taking
into account a whole series of restrictions, such as the type of the auxiliary,
the (in)transitivity of the verb, the type of the subject and of the object,
and so on, which were extremely complex to express in terms of the existing
context-free phrase structure formalisms. More generally, phrase structure
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grammars are judged to be inadequate to account for the context-sensitivity
aspects of natural language, and last but not least, they are incapable to
capture the fact that the application of a particular rule may require to look
back to past stages of the derivation. For instance, to correctly describe the
phenomenon of subject-verb agreement and thus generate the grammatically
correct The man runs, while excluding the ungrammatical *The man run, the
rule that decides which affix to add to the verb must necessary look back to
the stage of the derivation that had generated the subject noun phrase, and
check whether it is singular or not.

The theory of grammatical description proposed by Chomsky to overcome
the difficulties of phrase structure grammars is an abstract system of repre-
sentations, made of three different layers: the phrase structure component, the
transformational component, and the morphophonemic component. The phrase
structure component is composed of phrase structure rules7 that generate
abstract sequences of constituents. The transformational rules, then, apply
to some of these strings and convert them into other abstract strings with a
different analysis of constituents. For instance, the following is the definition
of passive transformation (Chomsky 1957, 43):

(11) If S1 is a grammatical sentence of the form

NP1 −Aux− V −NP2,

then the corresponding string of the form

NP2 −Aux + be + en− V − by + NP1

is also a grammatical sentence.

The derivation of a sentence like The book was taken by John goes as follows:

(12) a. John− past− take− the book.
b. The book− past + be + en− take− by + John.
c. The book− be + past− take + en− by + John.
d. The book was taken by John.

The phrase structure rules generate the first level of representation formed
by the sequence of phrase markers in (12a); then the passive transformation
applies, yielding (12b), where the passive auxiliary + affix complex is inserted.
The application of the auxiliary transformation distributes the participle affix
to the main verb (12c). Finally, the morphophonemic rules apply to (12c),
producing the sentence in (12d).

The introduction of derivations containing abstract terms, whose form and
order can be quite far from the final output, and the important innovation of
transformations that permute the elements during the derivation represented
a radical departure from phrase structure grammars. Bar-Hillel et al. (1960)
proved the equivalency with respect to their generative capacity between
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categorial grammars and context-free phrase structure grammars. In this way,
the attack brought by Chomsky against the latter automatically extends to
categorial grammars, whose inadequacy as a formal theory for natural language
was ultimately recognized by Bar-Hillel himself:

As a matter of fact, I had already noticed six years ago that the
model did not work too well for complex sentences, but had rather
hoped that this was due only to lack of refinement that could
be partially remedied by increasing the number of fundamental
categories, partly by additional rules. I have now come to realize
that its failure in the more complex cases has a much deeper cause:
the linguistic model on which this model was based is just not good
enough. (Bar-Hillel 1964, 83)

It is important to remark that a large part of the innovative power of the
arguments for transformations in Syntactic Structures also lies in the relevance
assigned to certain types of syntactic phenomena for the evaluation of formal
theories of grammar. Syntactic dependencies between discontinuous elements
and constructions involving displaced or “moved” elements (e.g., passive and
interrogative sentences) became core facts of natural language, and their
characterization and proper treatment began to be regarded as necessary
conditions for any theory aiming to provide an adequate description and
explanation of the universal principles of language structure.

In the years that followed the publication of Syntactic Structures, the new
generative paradigm rapidly conquered many spaces once dominated by Bloom-
fieldian linguistics. At the same time, the first transformation model underwent
important modifications, especially thanks to an intense work directed to make
explicit the exact nature of transformations and their classification. Finally, a
more stabilized version of the transformational generative syntax—the so-called
standard theory—emerged in 1965 with Chomsky’s Aspects of a Theory of Syn-
tax. The standard theory includes a syntactic component made of two abstract
layers of representation: deep structure and surface structure. The level of deep
structure is generated by the application of three sets of rules (base rules):
phrase structure rules, subcategorization rules, and lexical insertion rules, the
latter taking lexical items from the lexicon and inserting them into the phrase
structure tree. In contrast to the 1957 model, where the recursive capacity
of language was provided by generalized transformations—a particular type
of transformations that take representations generated by phrase structure
rules and embed one into the other (e.g., to form relative clauses or complex
sentences)—in the Standard Theory the recursive power lies in the base rules,
so that each derivation produces a single formal object that then enters the
transformational component. Transformations produce the surface structure,
which is then given as input to the phonological rules to derive the phonetic
representation. We will see in section 5 how in the late 1960s, the standard
theory became the starting point of an intense debate involving linguists,
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logicians, and philosophers on the relation between syntax and semantics, as
well as concerning the nature of the deep structure representations.

4.2. The Autonomy of Syntax
With his critique of phrase structure grammars, Chomsky showed how linguistic
theory in the form of a transformational generative theory can make its
contribution to the analysis of the conditions of the possibility of human
language. In that, he went much beyond the generative and explanatory
resources reached by categorial grammars. In the same time, Chomsky’s
proposal represented a radical departure from the main tenets underlying the
study of language universals in the logical grammar tradition by severing the
link that related the analysis of syntactic structure to the semantic categories
of grammatical terms. Almost at the end of Syntactic Structures, summing up
the general view presented and defended throughout his book, Chomsky claims
that: “Grammar is best formulated as a self-contained study independent of
semantics. In particular, the notion of grammaticalness cannot be identified
with meaningfulness” (Chomsky 1957, 106). Chomsky states here the well-
known principle of the autonomy of syntax, which stands in deep contrast
both to Husserl’s idea that the principles of syntactic connection can be
explained in terms of meaning connection rules (see section 2.2), and to
Ajdukiewicz’s principle according to which the well-formedness conditions of
linguistic expressions depend on the “specification of the conditions under which
a word-pattern, constituted of meaningful words, forms an expression that itself
has a unitary meaning” (Ajdukiewicz, see section 2.3). Chomsky attacks these
views by criticizing the equivalence of meaningfulness with grammaticalness.
The notorious example (3) is intended to show that sentences without a unitary
meaning can well be judged to be grammatical:

(13) Colorless green ideas sleep furiously.

And here are examples of ungrammatical sentences having a unitary meaning:8

(14) a. Have you a book on modern music?
b. *Read you a book on semantic music?
c. The book seems interesting.
d. *The child seems sleeping.

Chomsky argues that there is no semantic reason to prefer (14a) to (14b)
and (14c) to (14d), besides the fact that there is surely a sense in which
even the ungrammatical sentences have a unitary meaning exactly as their
grammatical equivalents. The consequence was that only the independence
from semantic considerations was seen to grant a reliable foundation for the
search for the formal structure of language. It is, however, of crucial importance
that independence neither means nor entails irrelevance. In other words, the
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autonomy of syntax is not a way to declare the structure and nature of the
semantic component irrelevant with respect to the tasks of linguistic theory
or to the architecture of the grammar of a language. On the contrary, the
principle is regarded by Chomsky as the precondition of any attempt to tackle
this issue seriously. There is no doubt that syntactic descriptions feed the
semantic component and guide the composition of the interpretation of complex
expressions:

much of our discussion can be understood as suggesting a reformu-
lation of parts of the theory of meaning that deals with so-called
“structural meaning” in terms of the completely nonsemantic theory
of grammatical structure. (Chomsky 1957, 103 n10)

Nonetheless, it is essential that structural descriptions must be defined in-
dependently of meaning and of general semantic considerations, that is, in
purely formal terms, to be the formal, effective machinery for the derivation
of semantic compositions.

The main aim of Chomsky’s principle is therefore to provide a definition
of syntax which is nondependent on semantics. Chomsky is actually always
ready to accept the fact that semantics is one of the main guides for linguists’
analysis. However, once a given analysis is suggested and enlightened by some
semantic insight, it must ultimately be shaped in purely syntactic terms, that
is, in terms of nonsemantic elements and rules. The revolutionary strength of
the autonomy of syntax can hardly be questioned when we look at some of the
examples in Syntactic Structure. For instance, Chomsky attacks the traditional
idea that notions like grammatical subject or grammatical object have to be
defined respectively in terms of the semantic notions of agent of an action and
patient of an action. To this purpose, he brings striking counterexamples, like
John received a letter, or The fighting stopped, where the grammatical subjects
do not satisfy such semantic requirements. Chomsky’s alternative proposal is
to define subject and object in purely syntactic and formal terms, that is, by
means of particular configurations of syntactic descriptions. Later on, notions
like agent or patient also entered the theory as thematic roles,9 and played a
crucial part at the Government and Binding stage of Chomsky’s theory.

As we pointed out in the section on Frege, there is a striking similarity
between Chomsky’s redefinition of grammatical subject, and what Frege says
in his Begriffsschrift about the same notion. In the same way as Frege wanted
to set logic free of its old grammatical connotations, thereby dismissing the
logical relevance of problematic and jeopardized concepts like that of subject,
in 1957 Chomsky wants to define the crucial grammatical notion of subject
independently of any semantic considerations, for that would prevent one,
according to him, from reaching a rigorous definition.

Syntactic rules drive semantic compositionality, but the critical point is
whether this can be explained by a priori positing the uniformity between
syntactic and semantic processes, and especially by defining the former in
terms of the latter. Chomsky’s view is rather that syntactic and semantic
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features match to the point of allowing language to do its job—that is, carrying
complex thoughts by means of finite combinatorial resources—but this match
is not complete. The truly empirical issue is therefore to evaluate the extension
of the correspondence between syntax and semantics, or better the extension
of the mismatch that still makes language possible. Chomsky’s claim that the
relation between form and meaning in language must be tackled by assuming
syntactic representations whose form and conditions feed meanings but do
not depend on them was actually repeatedly challenged in the late 1960s and
1970s. Stemming directly from within the generative enterprise, the generative
semantics movement brought a strong attack on the thesis of the autonomy of
syntax, by defining “deep syntax” as actually a logico-semantic level. Not very
differently, Montague presented a new model of logical grammar according
to which—thanks to a proper pairing of semantic and syntactic operations—
sentences are analyzed in such a way as to exhibit the logical form directly on
their syntactic sleeves.

4.3. Semantic Theory in Early Generative Grammar
The problem of the relations between grammatical description and their
interpretation had a central role in generative linguistics since its very beginning.
Linguistic creativity is, in fact, defined as the ability of understanding sentences,
and the combinatorial power of language is subservient to the goal of pairing
sound and meaning patterns:

The grammar as a whole can thus be regarded, ultimately, as a
device for pairing phonetically represented signals with semantic
representations, this pairing being mediated through a system of ab-
stract structures generated by the syntactic component. (Chomsky
1964, 52)

The standard theory is actually a model for the cognitive architecture of
the language faculty, as composed of three independent modules, that is, the
syntactic component, the phonological component, and the semantic component.
Generative linguistics, thus, reestablished the centrality of language as a
system of sound-meaning pairs, and thereby recovered De Saussure’s main
insight, which was lost in the empiricist version of American structuralism
due to its incapability to integrate the role of meaning in a scientific theory of
language in other than behaviorist stances. Chomsky’s negative remarks on
current theories of meaning that he blamed for using the term meaning as a
“catch-all term to include every aspect of language that we know very little
about” (Chomsky 1957, 104), was certainly directed against the behaviorist
approaches to meaning framed in terms of stimulus-reaction patterns, as well
as against any approach making use of intensions, sentential truth conditions,
conditions for nondeviant utterances, distribution, and rules of use (Katz and
Fodor 1963, 480). Thus from the very beginning, the approach to the study
of meaning in generative grammar is characterized by a strenuous opposition



802 The Development of Modern Logic

against every externalist characterization of the semantic component, be it
formulated in terms of behaviorist Skinnerian models,10 or truth-conditional
semantics so typical of the logical grammar tradition. In fact, according to
Chomsky (1964, 77), “explanatory adequacy for descriptive semantics requires
. . . the development of an independent semantic theory . . . that deals . . . with
the question: what are the substantive and formal constraints on systems of
concepts that are constructed by humans on the basis of presented data?”

The burden of giving a shape to the semantic component within the standard
theory was taken by J. J. Katz and J. Fodor with The Structure of a Semantic
Theory (1963), which represents the first attempt to develop a semantic theory
consistent with the generative approach to language:

A semantic theory describes and explains the interpretative ability
of speakers: by accounting for their performance in detecting the
number and content of the readings of a sentence; by detecting
semantic anomalies; by deciding upon paraphrase relations between
sentences; and by marking every other semantic property or relation
that plays a role in this ability. (Katz and Fodor 1963, 486)

Describing the interpretive ability of speakers requires tackling what Katz
and Fodor call the projection problem, that is, determining the compositional
procedure by which speakers are able to interpret an infinite number of lin-
guistic expressions by combining a finite repository of meaningful expressions
through an equally finite set of rules. The projection problem is now supposed
to be solved by the descriptions associated with the syntactic component of
the transformational generative grammar which is specified independently
and is autonomous of the semantic module. Thus, according to Katz and
Fodor (1963, 484), “linguistic description minus grammar equals semantics,”
and, as a consequence, the role of semantics is purely interpretive, that is, it
merely provides an interpretation of the syntactic descriptions. This approach,
a direct corollary to the principle of the autonomy of syntax, stands in deep
contrast to the approach of categorial grammars, where the semantic cate-
gories of lexical items, with their basic distinction between basic and functor
categories, are supposed to drive the “syntactic connexity” of the complex
linguistic expression. In the architecture of the standard theory, the syntactic
composition is guaranteed by the syntactic component, while the semantic
module assigns meanings to the lexical items and then projects from them, up
along the syntactic tree, the unitary meaning to be assigned to the complex
expression.

The semantic theory (KF) proposed in Katz and Fodor (1963), further
developed in Katz (1972), has two components, the dictionary and the pro-
jection rules. The former assigns to every lexical item an entry consisting of
its grammatical category and a semantic part describing its possible senses.
Each sense is in turn described by means of a list of semantic markers (e.g.,
[Human], [Male], etc.) and a distinguisher. Together these elements “decompose
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the meaning of a lexical item (or one sense) into its atomic concepts, thus
enabling us to exhibit the semantic structure in a dictionary entry and the
semantic relations among the various senses of a lexical item” (Katz and Fodor
1963, 496). Semantic markers are intended to express those aspects of a sense
that are systematic with respect to the language and give rise to basic semantic
oppositions among senses. In this way, their role becomes similar to that of
features in phonology, from which they are actually inspired. On the other
side, distinguishers represent the idiosyncratic and unsystematic aspects of
the sense of a lexical item. Once the lexical items that appear as leaves in a
syntactic tree are assigned a dictionary entry, the projection rules compose
these entries along the paths of the syntactic tree. This projection does not
take place according to the function-argument schema typical of the Fregean
tradition, but through a process of unification of the corresponding clusters of
semantic markers and distinguishers, thus producing all the possible readings
to be associated to the complete sentence.11

The notion of projection rules actually represents a common element of
both KF and of the semantic analysis of meaning to be proposed in Montague
grammar : In both cases, semantic rules pair syntactic formation rules. On
the other side, the conception of the lexicon in KF is completely different
from the corresponding notion in logical semantics and logical grammar, and
is surely one of the weakest and most attacked part of the theory. Where in
categorical grammars the lexical organization takes place according to the
function-argument distinction, the dictionary has a fairly standard lexico-
graphic organization, as also remarked by Bar-Hillel (1970, 185), who criticizes
the theory for its “identification of semantics with lexicology.” As Katz (1972)
claims, KF is actually intended to be a theory of sense and not a theory
of reference, and truth and truth-conditions have thus no role to play in
it. Semantic interpretation and meaning representation are rather achieved
through a process of semantic decomposition, by assuming a fairly traditional
“chemical view on concepts”12—typical of the rationalist analyses in the eigh-
teenth century—according to which the sense of a lexical item is analyzed in
terms of its basic conceptual bricks. However, the introduction of semantic
markers as the technical device that performs the task of lexical decomposition
and deals with concept combination does not help overcome the difficulties of
the lexicographic definitions of senses pursued in KF. Besides, the usage of
semantic markers was heavily criticized for its complete lack of real explanatory
power as far as meaning is concerned, since, as Lewis (1972, 169–170) claims,
“translation into Latin might serve as well.”

Besides its own specific problems, KF has provoked one of the strongest
disagreements between the new theory of grammar in generative linguistics and
the logicophilosophical approach. For instance, Katz attacks the idea of logical
form based on the distinction between form and content (Katz 1972, xvii),
and claims that formal logic cannot provide a proper semantics for natural
language because of its being exclusively concerned with the logical form of
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sentences, which in turn heavily depends on the contribution of logical words
like connectives, quantifiers, and so on.13 According to Katz, the truly semantic
facts to be explained are those that philosophers called analytic, that is, truths
and inferences based not on the structural properties of syncategorematic
words (e.g., quantifiers and connectives) but rather on the lexical content of
words, like (15), which should equally well deserve the status of logical truth:

(15) If x is a bachelor, then x is an unmarried adult man.

The importance and centrality assigned to the characterization of lexical
meaning and lexical inference represents a genuine and positive contribution
that KF brought to the semantic debate, independently of the problems of the
formal representation of the semantic level offered by the theory. According to
it, one of the main tasks of a semantic theory is to capture the contrast between,
for instance, The dog chases the cat and The cat chases the dog, which differ
semantically, despite having the same structural description. Thus KF shifts
the focus from issues of purely compositional semantics—which on its view
are basically solved by the proper formulation of a syntactic component paired
with projection rules—to the issue of how to characterize lexical meaning. This
stands in deep contrast to the conception of the logical grammar tradition,
where semantic categories are carved out mainly to drive semantic composition,
but fails to provide satisfactory insights into lexical content. The interest in the
lexical aspects of meaning will constantly grow in the later stages of semantic
inquiry in theoretical linguistics, and will largely influence the research in
model-theoretic semantics, which will, in some cases, also incorporate and
develop the formal treatment of lexical decomposition.14

Katz (1972) considers the failure of logical theory to deal with the core
semantic aspects of language as another consequence of “the rise and eventual
dominance of empiricism” (xxi) with its behavioristic perspective on meaning.
Actually, KF should properly be regarded as another episode in the Chomskian
program with its systematic opposition against empiricist approaches to lan-
guage. KF attempts to develop a fully internalist, rationalist, and intensionalist
analysis of meaning and semantic inference:

Empiricists claim that concepts of the theory of meaning are unsci-
entific, occult and useless, and should be banished from a scientific
theory of language. . . . Thus, the constructive task for the rational-
ist approach to the study of language is to reply to these claims in
the only way that can ultimately discredit them, that is by building
a linguistic theory which demonstrates the scientific soundness of
concepts such as sense, meaning, synonymy, analyticity, and so on.
(Katz 1972, xxiii)

The heart of the polemics is the analytic-synthetic distinction and the notion
of synonymy criticized by Quine, both related to his argument against any
mentalist conception of meaning not reducible to purely behaviorist assump-
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tions. When applied to nonlogical words, Quine finds the notion of analyticity
based on that of synonymy as totally unreliable and inherently circular:

But there is a second class of statements, typified by (2):

(2) No bachelor is married

The characteristic of such a statement is that it can be turned
into a logical truth by putting synonyms for synonyms; thus (2)
can be turned into [No unmarried man is married] by putting
“unmarried man” for its synonym “bachelor.” We still lack a proper
characterization of this second class of analytic statements, and
therewith of analyticity generally, inasmuch as we have had in the
above description to lean on a notion of “synonymy” which is no
less in need of clarification than analyticity itself. (Quine 1953a, 23)

In addition, Quine attacks the notion of synonymy as a pure relation between
the senses of the words. Synonymy should instead be approached only “from
the point of view of long segments of discourse” (Quine 1953b, 57; see also
Quine 1960). Again, Quine’s purpose is to substitute the notion of synonymy
as meaning-sharing with the behavioristic notion of approximate likeness of
the effects provoked by linguistic expressions on a hearer. With respect to
these empiricist arguments, the theory of sense pursued in KF is, therefore, an
attempt to develop an internalist theory of meaning, based on the conceptual
analysis of word senses. The theoretical device of semantic markers is intended
to provide a new foundation for the notion of word meaning and for the
semantic relations of analyticity and synonymy qua relations between word
meanings.

5. Deep Syntax and Generative Semantics
One of the most interesting aspects of the period from the late 1960s up
to the mid-1970s is that philosophers and linguists found an unprecedented
ground of agreement in carrying a strong attack against the model of grammar
proposed by Chomsky in Aspects in 1965. This atmosphere is best illustrated
by the volume Semantics of Natural Language, edited by D. Davidson and
G. Harman in 1972, which contains contributions by generative linguists,
logicians and philosophers, whose unifying leitmotif is the refusal of the purely
syntactic nature assigned to deep structure representations in Chomsky’s
standard theory. The common claim is that deep structure is to be identified
with logical form, that is to say, deep structure must be equated with the
place in which the hidden logical structure of natural language is explicitly
encoded. On the linguistic side, the convergence with logic was mainly carried
out by J. McCawley, G. Lakoff, and other representatives of the generative
semantics movement, the harsh opposition movement to the Chomskian theory
of grammar, which quickly developed in 1968 to then rapidly decline around
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1973–1974. The relevance of this heterodox movement stemming out of the
body of Chomskian linguistics actually goes far beyond its short life and the
particular linguistic solutions and analyses proposed by its representatives, most
of which were soon to be dismissed. Crucially, starting from the assumption
that “the linguists’ and the logician’s concerns are consistent with each other”
(McCawley 1972, 540), generative semantics was able to raise a whole wealth
of issues concerning the relation between grammatical structure and logical
form, thus showing the inadequacies of the first transformational models to
tackle these aspects of the theory of language. Many problems that attracted
the attention of generative semanticists, like quantification, bound anaphora,
and so on, continued then to occupy a key position in the later developments
of the Chomskian framework, leading toward more elaborated hypotheses on
the syntax-semantic interface.

As we saw in section 4, Chomsky’s main claim is that syntactic represen-
tations must be designed strictly independently of semantics, which instead
forms a separate module within the architecture of grammar. In the standard
theory, deep structure occupies a particularly prominent role: It is, in fact,
the level at which subcategorization and selectional restrictions are defined,
grammatical relations are established, and lexical items are inserted from the
lexicon. Moreover, deep structure also represents the main, actually the only
interface with semantics. In fact, the relation between the syntactic component
and the semantic module is regulated by the so-called Katz–Postal hypothe-
sis (Katz and Postal 1964), according to which all the syntactic information
necessary for the semantic interpretation is provided by deep structure. In
other words, transformations are all meaning-preserving, since they do not
affect the interpretation of syntactic structures. This hypothesis perfectly fits
with the interpretive role assigned to the semantic component in KF, where
the projection problem is intended to be solved at the syntactic level by the
representations provided as input to the semantic rules, which have a strictly
interpretive role. In fact, projection rules in KF are actually quite trivial, since
they simply have to compose the semantic markers of the lexical items all up
the syntactic tree.

One of the most crucial consequences of assuming the Katz–Postal hy-
pothesis as the basis for the syntax-semantics pairing is that every nonlexical
semantic ambiguity must be explained in terms of a difference at the level of
deep structure. This is simply a corollary to the fact that all the structural
information which determines semantic composition is already encoded in the
deep structure, together with the fact that transformations cannot affect mean-
ing. However, crucial problems arise with the analysis of sentences containing
logical operators and quantifiers. For instance, (16a) is semantically ambiguous
between a reading in which the negation has wide scope over the adverbial
clause, and one in which it has narrow scope. Similarly, (16b) is ambiguous
between a reading in which the universal quantifier has wide scope over the
existential one, and a reading in which the universal quantifier has narrow
scope:
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(16) a. I don’t steal from John because I like him.
b. Everyone loves someone.

The problem is that, given that deep structure is assumed to represent the
only interface with semantics, such ambiguities can be accounted for only in
terms of structural differences at this level of representation. To tackle this
issue, Lakoff (1970) proposes to represent the ambiguity in (16a) at the level
of deep structure by associating two readings with it:

(17) a. [S Neg [S I steal from John] [because I like John]].
b. [S [S Neg I steal from John] [because I like John]].

Similarly, Lakoff (1972) explains the scope ambiguity in (16b) by claiming that
the reading in which the universal quantifier has wide scope derives from the
deep structure (18a), while the reading in which the universal quantifier has
narrow scope derives from the deep structure (18b):

(18) a. [S [Every x] [S [Some y] [S love x y]]].
b. [S [Some y] [S [Every x] [S love x y]]].

The scope of a quantifier, thus, includes whatever it commands, that is, every
constituent dominated by the constituent dominating the quantifier.15

The crucial novelty in this line of analysis is that deep structure is now
regarded as an abstract level with the same format as first-order logic rep-
resentations. In other words, first-order quantificational representations are
syntactically “wired” in deep structure syntactic representations. Accordingly,
the latter contain not only lexical items but also abstract elements, such as
variables, quantifiers, and other logical operators, like negation, modalities,
and so on. These abstract constructs are then converted into surface phrase
structures by the application of various types of transformations—such as,
for instance, quantifier lowering—which replaces and inserts lexical items or
deletes some of the abstract elements. To summarize, pushing to the extreme
the assumption that deep structure provides all the compositionally relevant
semantic information, generativist semantics was led to abandon the idea that
deep structure is purely syntactic, thus breaking radically with the principle
of the autonomy of syntax and the overall architecture of Chomsky’s stan-
dard theory. Instead of postulating syntactic representations that serve as
input to the interpretive semantic component, semantics is now conceived
as a generative device that produces the deep layer—directly encoding the
logical form of sentences—which is then converted by various transformations
into surface structures. Therefore, generative semantics came to defend the
view that in grammar “there is no dividing line between syntax and semantics”
(McCawley 1972, 498), given that many logicosemantical phenomena—ranging
from quantifier scope, to presuppositions, implicatures, and speech acts16—are
represented directly as the level of deep structures. According to Lakoff (1972,
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647), linguistics merges in this way with natural logic conceived as “the em-
pirical study of human language and human reasoning.” However, the price
generative semanticists had to pay to achieve this progressive “logicization” of
deep structures is the enormous complication of the transformation apparatus
necessary to fill the wider and wider gap between deep and surface structure,
due to the more and more abstract nature of the former.

Given the trend of regarding deep structures as abstract representations, they
actually ceased to contain lexical items altogether, and progressively turned
into predicate-argument structures familiar from first-order logic. Again, this
shift stemmed from the need to solve important issues arising in the standard
theory, like the representation of the so-called selectional restrictions. For
instance, in (19), the verb sink has similar selectional restrictions with respect
to its transitive and intransitive versions: The NP in the object position in
(19a) has the same relation with the predicate as the NP in the subject position
in (19b). There is, however, a difference between the two which consists in the
presence of an extra NP in (19a) with the role of the agent causing the event
described by the predicate:

(19) a. John sank the boat.
b. The boat sank.

On the hypothesis that selectional restrictions between a predicate and its
arguments are determined at the level of deep structure (as claimed by the
standard theory), one has now to analyze (19a) as derived from a deep structure
representation containing as its proper part the structure associated with (19b).
Lakoff analyzes (19a) as derived from the deep structure representation (20):

(20) [S John caused [S the boat sink]].

The predicate cause in small caps marks the fact that it is actually an abstract
item, which is then incorporated into the main predicate by a transformation
which produces the transitive, agentive version of sink. This type of analysis
has been extended to other causative verbs, such as kill that Lakoff took it to
be equivalent to cause-die, and so on.

The radical departure from the autonomy of syntax and the progressive
logicization of deep structure pursued by generative semanticists found an
incredibly high resonance among philosophers and logicians. For instance,
Harman (1972) argues for the complete identification of deep structure with
logical form regarded as the result of the paraphrase of a sentence into quan-
tificational notation of the kind exemplified by (18). Moreover, following again
generative semanticists, the subject-predicate asymmetry is considered as a
surface feature of sentences, whose deep syntactic description is instead totally
isomorphic with the standard predicate-arguments structure familiar from
logic. Harman (1972, 30) arrives at the conclusion that “it is interesting to
observe that what holds for logic holds for deep structure as well.”
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The idea that the deep structure of generative linguistics should be identified
with logical form is also argued for by D. Davidson in Semantics for Natural
Languages (1970). Adopting this stance allows for the possibility to view
language inquiry as a common enterprise between linguists, logicians and
philosophers:

It is a question how much of a realignment we are talking about
for linguistics. This depends largely on the extent to which the
structure revealed by a theory of truth can be identified with the
deep structure transformational grammarians seek. In one respect,
logical structure (as we may call the structure developed by a
theory of truth) and deep structure could be the same, for both are
intended to be the foundation of semantics. (Davidson 1984, 63)

We find here two important points that make a difference with respect to the
conception of language embodied in the standard theory, and which anticipate
some of the crucial features of Montague grammar. First of all, logical form
is to be identified with one of the levels of grammatical description, which
in the case of transformational grammars is the deep structure level. Second,
a proper semantics for natural language should take the form of a theory of
truth, which assigns to sentences their truth-conditions in a recursive way. In
particular, the claim that “a semantic theory for natural language cannot be
considered adequate unless it provides an account for the concept of truth
for that language along the general lines proposed by Tarski for formalized
language” (Davidson 1984, 55) represents a major departure from Chomsky’s
radically internalist perspective on the study of language, which, as we saw
with Katz and Fodor, rejected logical and truth-based approaches to the
study of meaning. Although Davidson agrees with Chomsky that semantic
differences in sentences sharing the same surface structure (e.g., I persuaded
John to leave versus I expected John to leave) have to be accounted for in
terms of differences at the level of deep structure, he claims, nevertheless, that
these “intimations of structures” have to be derived ultimately from a suitable
theory of truth which yields, for each sentence, its truth-conditions. The reader
is referred to chapter 13 for the detailed description of Davidson’s theory of
truth. For him, it is such a theory that must serve as a ground for the notion
of grammaticalness itself and must reveal the structure of sentences, which
therefore is to be seen “through, the eyes of a theory of truth” (Davidson 1984,
61). One could not be further away from the principle of the autonomy of
syntax. In a similar vein, Lewis (1972) argues for a referential, truth-conditional
semantics for natural language, and at the same time claims that the ultimate
criterion of adequacy for the grammar of a given language is its suitability to
yield the truth-conditions of sentences in a recursive way.17 To sum up, there
is something common to both generative semanticists and certain logically
minded philosophers of language: Both saw the convergence between logic
and linguistics to be achievable only to the extent one abandons Chomsky’s
idea that the syntactic description of natural language is to be carried out
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independently of semantic constraints: “if we regard the structure revealed by
a theory of truth as deep grammar, then grammar and logic must go hand in
hand” (Davidson 1984, 59).

The idea that the logical form of sentences differs from their surface struc-
ture is a leitmotif in twentieth-century logic and analytic philosophy. It is
therefore understandable that one of the crucial tenets of Chomskian lin-
guistics, that of the surface structure being derived from a deep structure
representation through various transformations, raised a huge amount of ex-
pectations concerning the possibility of finally identifying the level of linguistic
description at which logical form is explicitly encoded. However, as we saw,
these expectations could be really met only to the extent deep structures were
conceived in a completely different way from that in which Chomsky himself
conceived them. The deep structure in the Aspects was designed to be the
interface with semantics and not encode logical form and other structural
semantic properties. The move in this direction occurred with the reinter-
pretation of deep syntactic structures in generative semantics, a move that
come to have an important influence in the first stages of the development
of model-theoretic semantics. The reason of this influence is that it makes
possible for the first time to see the relation between grammar and logic as
internal, nonaccidental:

Not all theories of linguistic structure guarantee that such a cor-
respondence (between grammatical structure and logical structure)
is not accidental. For example, the theory given in Chomsky’s
Syntactic Structures leaves open the question as to whether such
correspondences are accidental. . . . Any rules relating English sen-
tences to their logical forms would be independent of the rules
assigning those sentences grammatical structures, though the rules
assigning logical form might or might not depend on the grammati-
cal structures assigned by rules of grammar. To the extent to which
a theory of grammar assigns grammatical form independently of
meaning, to that extent that theory will be making the claim that
any correspondence between grammatical form and logical form is
accidental. (Lakoff 1972, 546–547)

Chomsky has always claimed that such a correspondence exists, although its
extension and form have to be established on empirical grounds. Apart from
being a non sequitur, Lakoff’s statement is a clear substantiation of the claim
that to capture the evident correlation between syntax and semantics, syntactic
rules should be couched in semantic terms. This idea is extremely close to
the approach pursued by Montague in designing the formal architecture of
language. According to it, grammatical forms are not determined independently
of meaning, and the rules assigning grammatical structures to sentences run
parallel to the rules that derive their logical form.
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6. Montague Grammar and Model-Theoretic Semantics
In section 3.2 we mentioned Davidson’s truth-functional program for the
semantics of natural language, a challenge addressed to both logicians and
linguists. At the beginning of the 1970s, Davidson’s challenge was accepted by
Richard Montague, who shared a similar view on the relation between artificial
and natural language, as stated in the incipit of English as a Formal Language
(1970) (Montague 1974):

I reject the contention that an important theoretical difference exists
between formal and natural languages. On the other hand, I do
not regard as successful the formal treatments of natural languages
attempted by certain contemporary linguists. Like Donald Davidson
I regard the construction of a theory of truth . . . as the basic goal
of serious syntax and semantics; and the developments emanating
from Massachusetts Institute of Technology offer little promise
towards that end. (Montague 1974, 188)

In the short period of his activity, Montague pursued this goal by developing
a rigorous formal system to describe the syntax and the semantics of natural
language, as well as the relation between them, within the tradition of logical
grammar. In particular, this was achieved by defining a fully compositional
model-theoretic semantics in the spirit of Tarski (1936) and Carnap (1947),
which also heavily relied on recent results in modal logic (Kripke 1963) and
the foundations of intensional logic (Kaplan 1964).

What is usually known as Montague grammar (MG) corresponds roughly
to the formal theory of natural language laid out by Montague in English
as a Formal Language (EFL) (1970), Universal Grammar (UG) (1970), and
The Proper Treatment of Quantification in Ordinary English (PTQ) (1973).
Montague’s work did not come out of the blue, but rather stood out in a
research environment in which the possibility of exploiting the tools of logic for
a formal description of natural language had come to a complete maturation
and ramified into many directions. Thus, the term “Montague grammar” itself
should be enlarged to include the important contributions made by Lewis
(1972), Cresswell (1973), and many others, who together with Montague have
been responsible for opening the field of model-theoretic semantics. Still, it is
not possible to deny the central role occupied by Montague’s own contribution,
whose influence largely and rapidly outclassed other formal models for natural
language semantics, particularly because of the extreme rigor with which the
formalization of syntax and semantics was carried out in MG, as well as for
the relevance and variety of linguistic phenomena to which Montague applied
his system in the three papers.

Montague’s work had a tremendous impact among both logicians and lin-
guists, with the character of a true revolution. He managed to show that
natural language, or some important fragments thereof, is amenable to formal-
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ization, thus bannishing the skepticism expressed by Carnap and Tarski before
him. Moreover, Montague has also revealed the relevance and power of various
logical tools—such as possible worlds semantics, intensional logic, higher-order
logic, type theory, lambda calculus, and so on—for the purposes of providing
a satisfactory formal description of natural language. However, this last claim
has raised much concern. It is, in fact, quite controversial whether Montague’s
appeal to higher order logic and intensional logic is not only fully justified but
also truly effective to tackle the problems it intends to address, thus making
the departure from first-order logic unnecessary. Actually, this is one of the
major points of disagreement between him and Davidson, who does not share
Montague’s appeal to possible world semantics. Still, it is undeniable that a
large part of the logical machinery employed nowadays in formal semanticists
derives form the logical tools underlying MG.

On the linguistic side, as Bach (1989) notices, the major advancement
brought by Montague was to prove that natural language can be regarded as
a formal system at the interpretive side, too. In fact, Chomsky’s revolution
had revealed that natural language can be satisfactorily described as a formal
system at the syntactic level, but semantics was still regarded as lying largely
beyond the possibility of such a treatment. Because of the deep mistrust in the
application of logical techniques to semantic analysis, and of the suspicions
toward truth-conditional semantics—particularly due to the Chomskian inter-
nalist and psychologist stand on language—semantic inquiry in the first years
of generative linguistics was largely dominated by the KF paradigm, based
on the decompositional analysis of meaning in terms of semantic markers.
As we pointed out in section 4.3, KF has a strong lexicographically oriented
approach to semantic analysis. The focus of the semantic analysis undertaken
by Katz and Fodor is the representation of word senses, and of relations among
them, such as analyticity, synonymy, semantic anomaly, polysemy, and so on.
Although this new perspective on lexical meaning appears quite remarkable,
still the inadequacies of the theoretical framework of KF have made the enter-
prise quite unsatisfactory. Among other things, unlike the truth-conditional
approach, KF has been criticized for not being explanatory in a substantial
way, given that semantic markers alone cannot provide any effective insight
into interpretive processes. Despite heavily relying on lexical decomposition,
generative semanticists should be given the credit for calling the linguists’
attention to the centrality of problems such as quantification, operator scope,
pronominal anaphora, and so on that pertain to the issue of logical form.
Yet the quite protean and adventurous nature of generative semantics was
not really able to lead to a solid framework within which to tackle these
issues. The multilevel syntactic architecture typical of generative linguistics,
notwithstanding its importance to overcome the shortcomings of traditional
phrase structure grammar, had raised the important question of determining
which representational layer is the input to semantic interpretation. The situa-
tion had become even more complex with the debate about the Katz–Postal
hypothesis and the proposal advanced in generative semantics to regard deep
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structure as semantic in nature. In summary, few real advancements have been
made on the issue of setting the relation between syntax and semantics on
solid grounds, let alone of giving it a formal foundation. This situation partly
justifies Montague’s criticism (1974, 223) against transformational grammar:

One could also object to existing syntactical efforts by Chomsky
and his associates on grounds of adequacy, mathematical preci-
sion and elegance. . . . In particular, I believe the transformational
grammarians should be expected to produce a rigorous definition,
complete in all details of the set of declarative sentences of some
reasonably rich fragment of English . . . before their work can be
seriously evaluated.

Montague was actually able to provide a mathematically precise, logical analysis
of a specific subfragment of English. But the revolutionary import of his contri-
bution lies above all in the general framework he set up to formalize the relation
between the logical semantics and the syntactic structure of natural language.

6.1. Compositionality and Universal Grammar
According to Frege (1984, 390),

even if a thought has been grasped by an inhabitant of the Earth for
the very first time, a form of words can be found in which it will be
understood by someone else to whom it is entirely new. This would
not be possible, if we could not distinguish parts in the thought
corresponding to the parts of a sentence, so that the structure of
the sentence can serve as a picture of the structure of the thought.

In this perspective, therefore, the principle of compositionality— stating that
the interpretation of a complex expression is a function of the interpretations of
its parts—is the key ingredient to explain linguistic creativity. Compositionality
is usually satisfied by logical languages, in which the definition of semantics runs
parallel to the recursive definition of syntax, like in the case of Tarski’s definition
of the satisfaction predicate. Actually, compositionality provides a finite method
for the semantic interpretation of an infinite number of expressions.

On the other hand, Chomsky has claimed that the explanation of linguistic
creativity cannot be based on the assumption of a systematic pairing between
syntax and semantics: Unlike formal languages, he did not find this correspon-
dence warranted for natural languages. Thus, the capacity of understanding
and producing a potentially infinite number of sentences would rather be
grounded in the generative capacity of the syntactic component, which can
and must be identified independently of any semantic considerations. Syntactic
rules generate structures that in turn drive semantic composition belonging
to an external interpretive module. This kind of architecture of the gram-
mar, having at its center the principle of the autonomy of syntax, is strongly
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criticized by Montague, who rejects the possibility of considering a syntactic
theory of language, independently of semantic considerations. Actually, the
main objection that Montague addresses to transformational grammar in UG
is exactly its lack of relevance for the enterprise of developing a semantics for
natural language.18 He thinks that

i. A proper semantic theory must be grounded on a theory of truth, and

ii. The core function of syntax is to provide the necessary structural
backbone for semantic interpretation.

Thus, while for Chomsky (1957) the purpose of syntax is to generate the
grammatical sentences of a language, for Montague syntax is mainly subservient
to the goal of defining how the interpretation of a sentences depends on the
interpretations of its components. In other terms, in the case of Montague the
problem of finding the right syntactic structure becomes part of the problem
of how to implement the requirement of compositionality.

Consistent with his tenet that no actual difference exists between formal
and natural language, Montague solves the problem of the interpretability of
a potentially infinite number of sentence in the same way as Frege (Montague
1974, 217). Interpreting means for him determining the truth values of sentences,
something to be achieved

by assigning extra-linguistic entities to all expressions involved
in the generation of sentences (including among these, sentences
themselves) in such a way that (a) the assignment of a compound
will be a function of the entities assigned to its components, and
(b) the truth value of a sentence can be determined from the entity
assigned to it.

UG represents the most general formulation of Montague’s formal framework,
where the principle of compositionality is given an algebraic formulation in
terms of an homomorphism between a syntactic algebra and a semantic algebra.
The algebraic perspective allows Montague to specify the structure of syntax,
the structure of semantics and the relation between them by abstracting
away from specific ontological and epistemological commitments, as well as
from the particular format of the syntactic rules. The aim of the paper is to
provide the universal architecture of syntax, semantics, and of their relation.
However, it is crucial to keep in mind that the term universal in Montague
has a radically different content and import than in generative linguistics. In
the latter, universal grammar means the rules and principles that define the
class of human learnable languages and that form the innate component of the
faculty of language, while in the former universal grammar intends to capture
the constraints on the structure of whatever possible language, artificial or
natural.

In UG, the syntax is defined as the system 〈A,F,Xδ〉δ∈Δ, such that:
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(21) i. 〈A,F 〉 is an algebra with A a nonempty set of expressions, and F a
set of operations on A;

ii. Δ is the set of syntactic categories;
iii. for all δ ∈ Δ, Xδ is a subset of A, that is, the set of basic expressions

of category δ (e.g., intransitive verbs, common nouns, etc.).

The operations in F apply to tuples of basic expressions to generate other
expressions like A. For instance, F may include a simple operation like concate-
nation, or any other operation of arbitrary complexity. This algebra generates
a disambiguated language, the set of all expressions which can be formed
starting from some basic expressions and applying operations on them a finite
number of times. An interpretation for the disambiguated language is a system
〈B,G, f〉, such that:

(22) i. 〈B,G〉 is the semantic algebra similar to 〈A,F 〉, such that B is the set
of meanings prescribed by the interpretation, G is the set of semantic
operations corresponding to the syntactic operations F and which
apply to tuples of elements in B;

ii. f is a function from Uδ∈ΔXδ into B, that is, it assigns meanings to
the basic expressions of the generated language.

G may contain operations like function-argument application, function compo-
sition, and so on. Crucially, given the system 〈A,F,Xδ〉δ∈Δ and the interpre-
tation 〈B,G, f〉, the meaning assignment to the generated language is defined
by Montague as the unique homomorphism g from 〈A,F 〉 into 〈B,G〉 such
that:

(23) i. F and G are sets of operations with the same number of places;
ii. g is a function with domain A and range included in B;
iii. for every n-ary operation F and G and every sequence a1, . . . , an in
A, we have g(F (a1, . . . , an)) = G(g(a1), . . . , g(an));

iv. f ⊆ g.
The principle of compositionality is implemented as the homomorphism re-
quirement, and not an isomorphism requirement, to allow for the fact that two
distinct syntactic expressions may have the same meaning, but each syntactic
expression must have at most one meaning. Defining the compositionality as a
homomorphism between two algebras requires a disambiguated level of repre-
sentation in syntax. This is not, however, what happens in natural language,
where the same linear sequence of elements can be structurally ambiguous, for
example, in the case of Every man love some woman or John saw a man in
the park with a telescope, etc. To account for this fact, in addition to defining
a disambiguated language DL generated by an algebra, Montague also defines
a language L as the pair 〈DL,R〉, where R is a relation with domain in A.
R maps expressions of A onto expressions of A, which so to speak represent
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their surface representation. This relation is often referred to as an “ambiguat-
ing” relation,19 because it maps expressions of a disambiguated language onto
expressions to which more than one syntactic description may correspond.
So, an expression ζ of the language L is ambiguous if and only if there are
at least two expressions ζ ′ and ζ ′′ generated by the relevant algebra such
that ζ ′Rζ and ζ ′′Rζ. This solution amounts to saying that a language may
contain expressions to which there actually correspond two different syntactic
representations generated by the syntax. The interpretation is defined on the
disambiguated algebra: If ζ is an expression of the language L and g the
homomorphism of the interpretation, then g means b if and only if there is
a ζ ′ ∈ DL, such that ζ ′Rζ and g(ζ ′) = b. This implies that an ambiguous
expression will also have two or several interpretations, each corresponding to
a particular syntactic representation.

In MG the principle of compositionality is implemented in terms of the so-
called rule-by-rule interpretation (Bach 1976). According to this procedure, the
syntax is given by a recursive definition starting from a set of basic expressions
of given categories with rules that operate on them to produce new expressions.
Here is an example with FI an arbitrary syntactic operation:

(24) Syntactic Rule SI
If α is a well-formed expression of category A and β is a well-formed
expression of category B, then γ is a well-formed expression of category
G, such that γ = Fi(α, β).

Semantics is then given by a parallel recursive definition, in which basic
expressions are assigned basic semantic values, and for each syntactic rule SI
there is a semantic rule of the following form:

(25) Semantic Rule SI
If α is interpreted as α′ and β is interpreted as β′, then γ is interpreted
as γ′, with γ′ = Gk(α′, β′).

Gk is a semantic operation (e.g., function-argument application) that combines
the semantic values of expressions to produce the semantic value of the complex
expression. The rule-by-rule interpretation is actually the method that is
normally employed to define the interpretation of formal languages, and is
employed by Montague in PTQ to provide a compositional formal semantics
of English. When the systems of rules that make up the syntax and the
semantics are recast as algebras, the rule-by-rule correspondence becomes
the requirement of homomorphism. So again, the framework defined in UG
is intended to provide the most general method to satisfy the constraint of
compositionality.20

Because Montague’s goal is to define a theory of truth for a language, the
notion of interpretation just given is not per se sufficient, given that it is
simply defined as a particular type of mapping between algebras without
further constraints on the format of semantics, consistently with the full
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generality of the approach pursued in UG. This is the reason why Montague
introduces the notion of Fregean interpretation, a semantic algebra consisting
of a model-theoretic structure containing domains with a typed structure.
The extensive use of type-theory and intensional logic to define the formal
semantics of natural language is one the most important innovations brought
by Montague. Actually, in the years immediately preceding the three papers
devoted to the formalization of English, Montague did important work in
intensional logic, leading to the unification of temporal logic and modal logic
and more generally to the unification of intensional logic and formal pragmatics,
defined by Bar-Hillel (1954) as the study of indexical expressions, that is, words
and sentences whose reference cannot be determined without knowledge of
the context of their use. In addition, Montague integrated the work of Carnap
(1947), Church (1951), and Kaplan (1964) into a fully typed intensional logic, in
which the function-argument structure typical of type theory (Russell) merges
with the functional treatment of intensions. The latter are in fact regarded by
Montague as functions from possible-world and time moments to extensions.
The results of this more foundational work are contained in Pragmatics (1968),
On the Nature of Certain Philosophical Entities (1969), and Pragmatics and
Intensional Logic (1970).

To guarantee that the mapping from the syntactic to the semantic algebra
is a homomorphism, it is necessary that the model-theoretic structure contains
a domain of interpretation for every syntactic category. In UG and in PTQ,
Montague defines recursively an infinite system of domains via an intensional
type theory, and then establishes a relation between syntactic categories and
a relevant sets of defined types.21 Montague first defines the set of types T in
the following way:

(26) i. e is a type;
ii. t is a type;
iii. if a and b are types then 〈a, b〉 is also a type;
iv. if a is a type, then so is 〈s, a〉.

Each type individuates a certain domain, which will provide the interpretation
of the expressions of the language having this type. Thus in (i)–(ii) the two
basic types, e and t are introduced. Their interpretation varies: In UG and
PTQ e is the type of entities, and t is the type of truth values, while in the
EFL system, t is the type of propositions defined as functions from possible
worlds to truth values. The clause in (iii) defines the functional types, that
is, the types of functions from objects of type a to objects of type b. Finally,
the clause in (iv) defines the intensional types, that is, the types of functions
from indices (usually possible worlds or world-time pairs) to objects of type a.
Notice that the type s has no independent existence, that is, it does not belong
to the domain of objects of the structure itself, and does not represent the
interpretation of any category of expressions.
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Given a nonempty set A (to be regarded as the set of entities or individuals),
a set I of possible worlds, and a set J of moments of time, for every type τ ∈ T
Montague recursively defines the domain associated to τ , Dτ,A,I,J (the domain
of possible denotations of type τ relative to A, I, and J) in the following way:22

(27) i. De,A,I.J = A;
ii. Dt,A,I,J = {0, 1};
iii. D〈a,b〉,A,I,J = DDa,A,I,Jb,A,I,J ;

iv. D〈s,a〉,A,I,J = DIxJa,A,I,J .

In PTQ, the domain D〈s,a〉,A,I,J is defined as the set of senses (meanings
in the UG terminology) of type a,23 regarded as intensional entities, that is,
functions from pairs of indices to objects of type a.

The relation between the syntactic categories of a language L and the
semantic types is determined by a function of type assignment, defined as the
function σ from Δ (the set of syntactic categories) into T , such as σ(δ0) = τ .
Finally, a Fregean interpretation for L is defined as an interpretation 〈B,G, f〉
such that for some non-empty sets A, I, J and type assignment σ:

(28) i. For every type τ , B includes at least the domain of possible denota-
tions for τ , that is, B ⊆ Uτ∈TDτ,A,I,J ;

ii. For every syntactic category δ, such that σ(δ) = τ , and every basic
expressions ζ ∈ Xδ, f(ζ) ∈ Dτ,A,I,J ;

iii. For every syntactic operation FI there is a corresponding semantic
operation GI , such that if FI applies to expressions of category δ′
to produce expressions of category δ′′, then GI applies to entities of
type σ(δ′) to produce entities of type σ(δ′′).

The system defined by these rules is then applied to two specific examples,
the language of intensional logic, and a fragment of English, with the purpose
of showing that the same procedure allows both formal and natural languages
to be treated alike. The fragment of English formalized by Montague is very
complex, including intensional verbs, relative clauses, quantifiers, and so on.
Before giving some of the details of Montague’s analysis, it is important to
spend a few words to describe two notions that play a crucial role in MG,
namely, the method of fragments and the method of indirect interpretation.

The former, one of the novelties of Montague’s approach, made its first ap-
pearance in EFL. It consists in writing a complete syntax and truth-conditional
semantics for a specific fragment of a given language to make fully explicit
assumptions employed in the formalization.

The method of indirect interpretation consists of interpreting a fragment
of a given language via its translation into a formal language, which is in
turn interpreted in a Fregean structure. It contrasts with the method of direct
interpretation where the syntactic algebra, the semantic algebra (corresponding
to the Fregean interpretation), and the homomorphism between them are
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given explicitly. The direct method is employed by Montague in EFL to
formalize a fragment of English, while in UG and PTQ the indirect method
is adopted, with intensional logic serving as an intermediate language into
which the fragment of English is translated. Montague provides a general
theory of compositional translation, in which a homomorphism g is built up
between the syntactic algebra Syn1 defining the source language L1 and the
syntactic algebra Syn2 defining the target language L2, for which, in turn,
there is a homomorphism h with a semantic algebra Sem which provides an
interpretation for L2. Because one can define an operation of composition of g
with h and show it is a homomorphism k from Syn1 to Sem, then it follows
that Sem may serve directly as an interpretation for the source language L1. In
other words, the compositionality of translation makes the intermediate level
totally dispensable. Nevertheless, the compositionality of translation provides,
according to Montague, a more perspicuous representation of the logical form
of expressions, thus making the indirect method of interpretation preferable
as a way to define a formal semantics for a given fragment of English.

6.2. PTQ: The Standard Model of Montague Grammar
The formal analysis of the fragment of English presented in The Proper Treat-
ment of Quantification in Ordinary English (PTQ) represents an illustration
of the general algebraic method for a compositional analysis of language ex-
posed in UG. This paper is the best vantage point to see at work Montague’s
approach to natural language, not only because the fragment discussed there
is the largest of the three that Montague formalized, but also because it is the
paper that had the strongest impact on the linguistic community and on the
subsequent development of model-theoretic semantics. Thus, PTQ represents
a sort of standard model of MG up to the point of being almost identifiable
with it.

In PTQ, the syntax of the fragment of English makes use of a categorial
grammar reminiscent of Ajdukiewicz’s system, whose set of categories Cat is
defined as the smallest set X such that:

(29) i. t ∈ X, with t the category that corresponds to sentences (the letter
t marks the fact that sentences are the expressions that can have a
truth value);

ii. e ∈ T , with e the category of entities;
iii. If A, B ∈ X, A/B ∈ X and A//B ∈ X.

The “double-slash” category is the only actual innovation brought to Aj-
dukiewicz’s categorial grammar, and it is used only to mark the syntactic
difference from A/B. That is to say, A/B and A//B are semantically alike,
although they have a different syntactic role. The set Cat contains an infinite
number of categories, out of which only a restricted number is actually used
in PTQ, which is listed in table 16.1, together with the abbreviations given
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Table 16.1 Syntactic categories in PTQ

Category Abbreviation Linguistic description Example
t/e IV Intransitive verb phrases run, walk
t/IV T Terms John, Mary,

he0, he1, . . .
IV/T TV Transitive verb phrases find, eat, seek
IV/IV IAV IV-modifying adverbs slowly, allegedly
t//e CN Common nouns man, unicorn,

temperature
t/t Sentence-modifying adverbs necessarily
IAV/T IAV-making prepositions in, about
IV/t Sentence-taking verb phrases believe that,

assert that
IV//IV IV-taking verb phrases try to, wish to

to some of them by Montague and their standard linguistic equivalent. The
“double-slash” category is, for instance, used to distinguish IV from CN: In
fact, while semantically they are both interpreted on the domains of functions
from individuals to truth values, at the syntactic level IV combine with terms
to produce sentences, while CN are used to build up terms. For each of the
categories listed in table 16.1, Montague introduces a set of basic expressions,
some of which are exemplified in the fourth column. Basic expressions form
what we might call the lexicon of the selected fragment of English, although it
is important to notice that in many respects it greatly differs from the linguists’
conception of lexicon. For instance, the categories IV/t and IV//IV contain
basic expressions like believe that or try to, which are not lexical under a strictly
linguistic point of view. Similarly, the basic expressions belonging to category T,
include, besides proper nouns, an infinite set of variables, he0, he1, he2, . . . ,
which play a crucial role in Montague’s analysis of relative clauses, quantifi-
cation and anaphora. Moreover, one of the characteristics of MG is that there
is no expression in the language, neither basic nor derived by syntactic rules,
belonging to the category e. Thus, this category is only used to create other
categories, but, in Montagovian terms, it has no linguistic exemplification.

The grammar of PTQ includes the set of syntactic rules described in
(24), which generate the set of expressions of various categories (sentences
included). The categories determine which expressions are to be combined
with which, as well as the category of the resulting expressions. In contrast
to the categorial grammars of Ajdukiewicz and Bar-Hillel (see section 2.5),
the syntactic operations include a rule of concatenation. Montague introduces
17 syntactic rules, grouped in five clusters. Some of the rules of functional
application (S4–S10) coincide with mere concatenation, other rules of the same
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group include operations that inflect the verb to the third singular person
of the simple present, to satisfy the agreement with the subject, or inflect a
pronominal variable to the accusative form, when it combines with a transitive
verb. In the cluster of basic rules (S1–S3), S2 introduces the determiners
every, the, and a syncategorematically,24 while S3 is a rule for forming relative
clauses. The rules of conjunction and disjunction (S11–S14) introduce and
and or syncategorematically, and the rules of tense and sign (S17) inflect
a verb for tenses other than present (future and present perfect) and adds
negation. Finally, the rules of quantification (S14–S16) replace a variable inside
an expression with a term: These rules have a crucial role in Montague’s
treatment of scope and quantification, as we will see in 6.2.3. The meaningful
expressions of the given fragment of English are those generated by the finite
application of the syntactic rules to the basic expressions. The way a sentence
is constructed through a finite application of the set of syntactic rules is called
by Montague the analysis tree of the sentence.

The Montagovian conception of grammar greatly differ from the generative-
transformational grammars, both from a formal and a substantial point of
view. First of all, the syntactic operations operate on strings and not on trees
or labeled bracketing. The analysis tree marks the history of the derivation
leading to a meaningful expression, but it is not in itself a symbolic object
which can be manipulated and transformed by syntactic rules. Second, there is
no notion of grammaticalness other than that of meaningfulness, in agreement
with Montague’s rejection of Chomsky’s autonomy of syntax. Therefore, the
syntactic rules in MG resemble more Husserl’s meaning connection rules and
the rules of traditional logical grammar, rather than the rules of the syntactic
component in generative grammar. The structure of the analyses tree in MG is
intended to reflect meaning constitution and semantic structural ambiguities,
and not so much purely syntactic criteria of constituency.

PTQ implements the algebraic framework set up in UG in terms of a rule-by-
rule interpretation procedure described in section 6.1. Since the interpretation
is performed according to the indirect method, syntactic rules are actually
paired with translation rules into the language of intensional logic (IL), which
is then interpreted in a Fregean structure through a homomorphic mapping.
Notice that Montague’s rule-by-rule method bears some similarities to the
projection rules which in KF operate on tree structures (see 4.3). However,
the similarity should not hide a deeper difference between the two: In KF
the projection rules provide an interpretation to an autonomous syntactic
component, while in MG the rules of syntax are designed in such a way as to
display the semantic structures.

Given the set of types T defined in (26), the set ME of meaningful expressions
of IL includes an infinite number of constants and variables for each type
τ ∈ T , and a set of expressions generated by a list of recursive rules. IL is
then interpreted in a (Fregean) interpretation or intensional model, which is a
quintuple M = 〈A, I, J,≤, F 〉, such that:
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(30) i. A, I, and J are nonempty sets, the domain of individual entities, the
set of possible worlds, and the set of moments of times, respectively;

ii. for every type τ ∈ T , Dτ,A,I,J is the set of possible denotations of τ ,
as defined in (27);

iii. ≤ is a linear order over J ;
iv. F is a function taking as arguments constants of IL, such that for

every type τ ∈ T and every constant α of type τ , F (α) ∈ D〈s,τ〉A,I,J .

As we pointed out in 6.1, for every type τ , the domainD〈s,τ〉A,I,J corresponding
to DIxJa,A,I,J , is called by Montague the set of intensions or senses of expressions
of type τ . Intensions—which Montague regards to be the equivalent to Fregean
senses—are defined as functions from world-time pairs 〈i, j〉, to entities of
appropriate type. The extension (or denotation) of a certain expression with
respect to the pair 〈i, j〉 is obtained in the standard way by application of the
intension function to the argument 〈i, j〉. Montague interprets the constants of
IL as intensions (30iv), and then, given an assignment g, he recursively defines
the notion of extension with respect to M and g for all the ME of IL.

The lambda calculus is an important part of IL, the intermediate language
employed in the interpretation of English. Here are some central definitions:

(31) i. If α ∈ MEa and u is a variable of type b, then λuα ∈ ME〈b,a〉;
ii. If α ∈ ME〈a,b〉 and β ∈ MEb, then α(β) ∈ MEb;
iii. If α ∈ MEa then [ˆα] ∈ ME〈s,a〉;
iv. If α ∈ ME〈s,a〉 then [ˇα] ∈ MEa.

Given an expression of type a and a variable of type b, the extension of an
expression like λuα (31i) is a function belonging to the domain D〈b,a〉,A,I,J ,
which associates with every argument x of type b the value that α has when the
variable u denotes x. Montague must be given credit for introducing lambda
calculus into the linguistic community, to whom it was virtually unknown
before him. This calculus has rapidly become one of the most powerful tools
for the formal description of natural language semantics. Montague himself
used lambda expressions for the analysis of relative clauses, conjunction, and
quantification.

In (31ii) we find another crucial ingredient of MG, functional application:
The expression α(β) denotes the result of applying the function denoted by
α to the argument denoted by b. That is to say, the extension of α(β) is the
value of the extension of α, when applied to the extension of b. Moreover, every
expression γ of type 〈a, t〉 denotes a set B of entities of type a, or equivalently
the characteristic function of B, that is, the function from the domain of
entities of type a to {1, 0}, such that it assigns 1 to all the entities that are
elements B, and 0 otherwise. Then, if γ has type 〈a, t〉 and α has type a, “we
may regard the formula γ(α) . . . as asserting that the object denoted by α is
a member of the set denoted by γ” (Montague 1974, 259).25
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Finally, (31iii, iv) introduce operators that move back and forth between
an expression and its intensional type. The “ˆ” (up or cap) operator takes
an expression α and forms a new expression denoting the intension of α: The
extension of ˆα is then the intension of α. The “ˇ” (down or cup) operator
performs the reverse operation when applied to intensional types. Thus, the
extension of ˇα with respect to a certain pair 〈i, j〉, is the result of applying
the intension of α to 〈i, j〉, that is to say, it is the extension of α at 〈i, j〉.26

Given the indirect method adopted in PTQ, the bulk of the interpretation
procedure consists in providing a compositional translation from English into
expressions of IL, which takes place in three steps.

First, a mapping f is introduced, defined on the categories of English with
arguments in the types T , so that every English expression of category A is
translated into an expression of IL of type f(A). The mapping is defined as
follows:

(32) i. f(e) = e,
ii. f(t) = t,

iii. f(A/B) = f(A//B) = 〈〈s, f(B)〉, f(A)〉, for every category A and B.

The particularity of this definition lies in the third clause. In fact, it states
that functional categories (such as IV or T, etc.) correspond to a function
from intensions of objects of type f(B) to objects of type f(A). That is to
say, expressions of functional types are always translated into expressions of
IL which denote functions operating on the intensions of their argument. For
instance, in PTQ expressions of category CN or IV are assigned the type
〈〈s, e〉, t〉, where 〈s, e〉 is the type of what Montague refers to as individual
concepts, that is, functions from world-time pairs to individual entities. As
it will be seen in 6.2.2, the reason for this choice lies in the analysis of the
expressions creating intensional contexts. In particular, the use of individual
concepts and the characterization of IV and CN expressions as sets of individual
concepts are motivated by Montague by the failure of the following argument:27

(33) a. The temperature is ninety.
b. The temperature is rising.
c. Ninety is rising.

The fact that the truth of (33c) does not follow from the truth of the two
premises can be explained in the following way: The value of a number word
like ninety is always equal to itself in every point of reference in which it is
evaluated, but this is not true for noun phrases like the temperature or the
price, whose denotations can change from context to context (temperatures
and prices can rise and fall). Montague (1974, 267–268) accounts for this
difference by assuming that a noun phrase like the temperature does not denote
an individual entity, but a function from world-time pairs to individual entities
(i.e., an individual concept), and that the IV rise is inherently intensional,
that is, “unlike most verbs, depends on its applicability on the full behavior
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of individual concepts, not just on their extension to the actual world and
. . . moment of time.” In this way the failure of (33) is seen to follow from
the fact that in (33b) the verb rise applies to an individual concept denoted
by a subject noun phrase, while the identity in (33a) holds between the
individual entity ninety and the individual entity that is the extension of
the individual concept denoted by the temperature at the actual world and
moment of time. In his attempt to grant the maximum level of generality to
the formal framework for the interpretation of the English fragment, Montague
generalizes the interpretation of price and rise as sets of individual concepts
to every IV and CN, while the fully extensional behavior of other elements of
these categories is captured through meaning postulates (see 6.2.1.). However,
Montague’s explanation of (33) as well as his interpretation of IV and CN
as functions of individual concepts has been widely criticized. Actually, the
idea of individual concepts soon became quite controversial, and Bennett
(1974) proposed an amendment to Montague’s type-assignment to syntactic
categories which assumes no individual concepts at all and in which IV and
CN are assigned the type 〈e, t〉. As a result, the function f in (32) can be
redefined as follows:

(34) i. f(e) = e,
ii. f(t) = t,

iii. f(IV) = f(CN) = 〈e, t〉,
iv. f(A/B) = f(A//B) = 〈〈s, f(B)〉, f(A)〉, for every category A and B.

This amendment has led to a major simplification of the translation procedure,
which has quickly found its way in standard expositions of MG (e.g., Dowty
et al. 1981) and will also be assumed in the rest of this chapter to describe the
formalization of the English fragment in PTQ.28

The second step of the translation procedures takes care of the translation
of the lexical items, that is, of the basic expressions, into IL. To this purpose,
Montague defines a function g defined on the set of basic expressions, except
for the verb be, sentence modifying adverbs (e.g., necessarily), and basic
expressions of type T, that is, proper nouns and variables (see table 16.1), all
of which are translated into complex logical expressions of IL:

• the verb be is translated as λPλxˇP (ˆly(x = y)), which has type 〈〈s, 〈〈s,
〈e, t〉〉, t〉〉, 〈e, t〉〉;

• necessarily is translated as λp�ˇp, which has type 〈〈s, t〉, t〉;
• the translations of proper nouns and variables will be discussed in

section 6.2.1.

All other lexical expressions are translated as constants of IL of appropriate
type. For instance, the intransitive verb walk of category IV is translated into
the constant walk ′ of type 〈〈s, e〉, t〉, which denotes a function from individual
concepts to truth values.
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In the third step of the procedure for compositional translation, Montague
provides a translation rule for each syntactic rule that generates a meaningful
expression of the English fragment. A sample of the 17 translation rules
proposed in PTQ will be closely inspected in the following sections, discussing
some of the most influential and controversial solutions offered in MG for the
characterization of the logical form of natural language, that is, the analysis
of noun phrases (6.2.1), the treatment of intensional constructions (6.2.2),
and the representation of scope ambiguities (6.2.3). However, as a general
remark, it is worth emphasizing that for Montague the function-argument
application, which appears in the interpretation of all the basic grammatical
relations, is the fundamental semantic glue. In fact, in PTQ all the nonbasic
semantic types are constructed as functional types. This way of building the
semantic interpretation of complex expressions represented an absolute novelty
for the linguistic community and had an enormous impact. This procedure
stands in deep contrast to the procedure of semantic composition in KF,
which is performed through a process of unification of feature clusters in
which functional application had no role to play. Montague’s extensive use of
function-argument structures in semantics brought to a new life the machinery
of categorial grammar, neutralizing some of the criticisms levelled against it
by Chomsky on account of its limited explanatory power. Given a function-
argument based semantics, categorial grammar seemed to offer a very good
syntactic layer to build a fully compositional model-theoretic semantics for
natural language, especially if it is enriched in such a way that it can handle the
structural complexity of natural language. As we showed, one such emendation
was performed by Montague himself in PTQ, when he used categorial grammar
to define the mapping between syntactic categories and semantic types as
the basis for the homomorphic translation: He did not limit the operation of
syntactic composition to concatenation. As Partee and Hendriks (1997, 30)
remark, while in classical categorial grammar the derivation tree that displays
the application of the syntactic rules is isomorphic to the surface structure of
the relevant string, in PTQ this is no longer true, and “it is the analysis tree
which displays the semantically relevant syntactic structure.”

6.2.1. The Interpretation of Noun Phrases

In PTQ, proper names, pronouns, and noun phrases prefixed by determiners
like every or the belong to the same syntactic category of terms, T, despite the
fact that the first two are basic expressions, while determiners are introduced
syncategorematically via syntactic rules. Because T = t/IV, then given (34),
every term is assigned the type 〈〈s, 〈e, t〉〉, t〉. The type 〈s, 〈e, t〉〉 is the type of
functions from world-time pairs to sets of individuals, and is called by Montague
the type of properties. Thus terms are regarded as denoting sets of properties, or
equivalently functions from properties to truth values. This approach resembles
Frege’s analysis of quantifiers as second-order concepts: In PTQ a noun phrase
like every man is a second-order predicate, true of a property of individuals if
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every individual that is a man has that property. For instance, the sentence
Every man dreams is interpreted as stating that the property of dreaming
has the property of being true of every man. PTQ provides the following
translation rule (T2) for phrases containing the determiners every, a/an and
the, where P is a variable of type 〈s, 〈e, t〉〉, and x and y are variables of type e:

(35) If ζ is of category CN and translates as ζ ′, then:
a. every ζ translates into λP∀x[ζ ′(x) → ˇP (x)];
b. the ζ translates into λP∃x[∀y[ζ ′(y) → x = y] ∧ ˇP (x)];
c. a/an ζ ′ translates into λP∃x[ζ ′(x) ∧ ˇP (x)].

A major difference between the PTQ analysis of noun phrases and Frege’s
analysis is the view of proper names, which in the former are interpreted
as sets of properties.29 While in Frege proper names denote objects, that is,
individual entities, in Montague their type is the same as that of quantificational
expressions, 〈〈s, 〈e, t〉〉, t〉. Thus the translation of a proper name like John
is λP ˇP (j), with j a constant of type e which denotes the individual John,
and the denotation of the name John is the set of properties that John has.
Montague’s analysis is careful to obey the principle of compositionality as a
strict architectural constraint on the semantics for natural language: Proper
names belong to the same category as quantified phrases, that is, they are terms,
and therefore they must have the same type.30 In fact, if two expressions of the
same syntactic category would be assigned two different types, the principle
of compositionality would be violated. Accordingly, no expression in natural
language is assigned the type e in PTQ: Even those expressions that would
most naturally seem to denote individual entities (i.e., pronouns and proper
names) are actually assigned a higher type.

One of the most interesting consequences of the analysis of terms in PTQ is
that it is possible to provide a uniform formalization of the logical form of the
sentences in which they occur, irrespective of whether they contain quantified
noun phrases or truly referential terms. As an example, let us consider the
case of simple subject-predicate sentences:

(36) a. John dreams.
b. Every man dreams.

Traditionally, these sentences are taken to provide a clear example of the mis-
match between linguistic surface form and semantic structure. Although they
have the same structure, they are attributed distinct logical forms, dream′(j)
and ∀x[man′(x) → dream′(x)], respectively. This is not any longer so in
Montague’s PTQ where their syntactic analysis is as follows:

(37) a.
John dreams, 4




�
�

John dream
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b.
Every man dreams, 4




�
�

Every man dream

The syntactic rule that combines a subject term and an intransitive verb (S4)
is associated to the following translation rule (T4):

(38) If δ is an expression of category T and β is an expression of category
IV, and δ and β translate into an δ′ and β′ respectively, than F4(δ, β)
translates into δ′(ˆβ′).

Therefore, the two syntactic trees in (37) give rise to the following parallel
translations into expressions of IL.

(39) a.
dream′(j) t ˇˆ-elimination

(
ˇˆdream′(j) t λ-conversion

(
λP ˇP (j)(ˆdream′)t

�
��

�
��

λP ˇP (j)〈〈s, 〈e, t〉〉, t〉 dream′ 〈e, t〉
b.

∀x[man′(x) → dream′(x)] t ˇˆ-elimination

(
∀x[man′(x) → ˇˆdream′(x)] t λ-conversion

(
λP∀x[man′(x) → ˇP (x)] (ˆdream′) t

�
��

�
��

λP∀x[man′(x) → ˇP (x)]
〈〈s, 〈e, t〉〉, t〉

dream′ 〈e, t〉

In both cases, the top node of the tree receives a structurally similar trans-
lation, consisting of the functional application of a IL expression denoting a
set of properties to the property denoting the expression associated to the
predicate. The double arrows in (39) show that this formula can be further
simplified through the “meaning-preserving” operations of IL logic (such as
λ-conversion and the ˇˆ-theorem), which produce logically equivalent formulas.
The expressions that are usually regarded as exhibiting the logical form of the
sentences in (36) then correspond to the result of such simplification. However,
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notwithstanding the fact that (36a) and (36b) come to be associated with
very different expressions of IL, they share the same pattern of composition,
exhibited by the analysis tree and the step-by-step translation procedure. This
also opens the issue of the real status of the notion of logical form in Montague,
since prima facie it seems that expressions of IL and analysis trees are both
plausible candidates to play this role, and as in the case of (39) it can happen
that two natural language expressions have the same analysis tree, but they
ultimately correspond to different expressions of IL. As Partee and Hendriks
(1997, 43) argue,31 actually “the analysis trees are . . . the best candidates for a
level of ‘logical form,’ if by ‘logical form’ one means a structural representation
of an expression from which its meaning is transparently derivable.” In support
of this claim we have to remember that for Montague the level of IL is totally
dispensable, its role being solely to increase perspicuity (see 6.1).

6.2.2. Intensionality and Meaning Postulates

The existence of nonextensional contexts has attracted the efforts of logi-
cians and philosophers of language from Frege to Carnap, from Quine to
Hintikka among many others, who have tried to provide an explanation for this
widespread phenomenon of natural language. Nonextensional constructions are
typically identified by the failure of the substitutability salva veritate of expres-
sions having the same extensions. Among the core examples of nonextensional
contexts we find the constructions containing epistemic verbs like believe and
know, modal expressions like the adverb necessarily, verbs expressing intention
like look for, seek, and want, temporal expressions, and so on. Since Frege,
these constructions seem to challenge the universal validity of the principle
of extensionality according to which the extension of every expression would
depend only on the extension of its components. As we have said, Montague
uses intensional logic and structures containing possible worlds and time
indexes to provide a compositional semantics of natural language with the
goal of accounting for the contexts in which extensionality failures occur. In
MG, nonextensional contexts are treated as intensional constructions, that is,
expressions in which the determination of the extension of the whole depends
not simply on the extensions of the parts but on the intension of at least one
of the parts. Interestingly, in PTQ intensionality is taken by Montague to
represent the general case, in the sense that, rather than providing a special
representation for the expressions giving rise to nonextensional contexts, he
treats all basic grammatical relations as intensional, while the subset of exten-
sional expressions is then singled out through meaning postulates. This choice,
which is motivated by Montague’s overall plan to formulate a translation
procedure for an English fragment that has maximum level of generality, is
visible in the type-assignment function (34): Every expression belonging to
the functional category A/B or A//B32 is assigned as type a function which
takes as arguments the intensions of expressions belonging to category A. For
instance, the basic expression believe that of category IV/S is assigned the
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type 〈〈s, t〉, 〈e, t〉〉, where 〈s, t〉 is the type of propositions, that is, functions
from world-time pairs to truth value. So in PTQ believe that is interpreted as
a relation between an individual and a proposition,33 and a sentence like (40a)
is translated as (40b):

(40) a. John believes that Mary dreams.
b. believe′(j, ˆdream′(m)).

In PTQ Montague departs from the tradition and does not regard all
intensional constructions as having the form of a propositional operator acting
on some implicitly embedded propositional structure. Quine (1960) is a typical
example of the received view: He explains the nonextensional character of
John seeks a unicorn by rephrasing it as John endeavours that he finds a
unicorn. Although Montague considers seek as being equivalent to try to find, he
nevertheless claims that the intensionality of the former should not be explained
by reducing it to the latter. Rather, intensionality is an inherent character
of seek as a basic transitive expression. In fact, in PTQ all transitive verbs,
being of category IV/T are assigned the type f(IV/T) = 〈〈s, f(T)〉,f(IV)〉 =
〈〈s, f(S/IV)〉,f(IV)〉 = 〈〈s, 〈〈s, 〈e, t〉〉, t〉〉, 〈e, t〉〉. Because terms are translated
in PTQ as expressions of type 〈〈s, 〈e, t〉〉, t〉, that is, sets of properties, then
semantically a transitive verb denotes a relation between the intension of a set
of properties (i.e., a property of properties or a second-order property) and
an individual. This results in the following translation for the sentence John
seeks a unicorn (in its de dicto reading):34

(41) seek′(j, ˆλP∃x[unicorn′(x) ∧ ˇP (x)])

Similarly, Montague’s translation regards as inherently intensional prepositions
like about (see John is talking about a unicorn), intransitive verbs like raise or
change and adverbs like necessarily or allegedly.

As we said, extensional expressions are captured by Montague by letting a
set of formulas of IL play the role of meaning postulates. The terminology is
from Carnap (1952) and their role is to restrict the class of possible models
of IL. Carnap introduced them to explain analytical relations between lexical
items and to overcome the shortcomings of the model of intensions and L-truth
formulated in his Meaning and Necessity (1947). More generally, meaning
postulates have come to be widely used in model-theoretic semantics as
a powerful tool to represent relations about words meanings. In fact, one
of the main features of Montague’s model-theoretic semantics is its lexical
underspecification. As we saw in 6.1, for Montague interpreting a language
amounts to determine the type of reference of the different categories of its
expressions. The interpretation procedure consists essentially in assigning, for
instance, to the category of intransitive verbs the type of sets of entities, while
nothing is said of the way in which specific members of this category, say,
eat and run, differ semantically. Actually, making further distinctions about
the semantic content of elements within the same categories is far beyond
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Montague’s aim, because as Marconi (1997, 10) remarks, he did not need to go
any further, “for that was enough to make his point, namely, the availability of
a formal method for the construction of a definition of truth for a language that
met his own formal and material constraints.” In MG, meaning postulates are
the formal instrument with which finer-grained semantic distinctions within a
given category of expressions can be expressed, and lexical properties of words
are captured in terms of implications between propositions containing them.

Montague applies the method of meaning postulates to characterize the
extensional character of certain expressions of English. For instance, (42)
illustrates the postulate introduced in PTQ to capture extensional verbs,
where S is a variable of type 〈s, 〈e, 〈e, t〉〉〉, and X is a variable for the intension
of a set of properties:

(42) ∃S∀x∀X(δ(x,X) ↔ ˇX(ˆλyˇS(x, y))), where δ = love′, find′, kiss′, etc.

This postulate says that although the object of extensional verbs like kiss,
love, and so on is semantically a second-order property, for each of these verbs
there is an expression denoting a relation between two entities, to which it is
equivalent. For instance, unlike John seeks a unicorn, the sentence John finds
a unicorn implies the existences of unicorns, because the verb find is fully
extensional:

(43) John finds a unicorn.

To preserve the compositional mapping between syntactic categories and
semantic types, find is assigned the same type as seek, that is, 〈〈s, 〈〈s, 〈e, t〉〉, t〉〉,
〈e, t〉〉, which gives the flowing translation for (43):

(44) find′(j, ˆλP∃x[unicorn′(x) ∧ ˇP (x)]).

However, since the interpretations of IL are restricted to those in which the
meaning postulate (42) holds, then there is a relation between individuals, say
find* of type 〈s, 〈e, 〈e, t〉〉〉, such that (44) is equivalent to (45):

(45) ˇˆλP∃x[unicorn′(x) ∧ ˇP (x)](ˆλyˇfind*(j, y)).

Applying the ˇˆ-theorem and the λ-conversion, we obtain the logically equiva-
lent (46), which actually means that there is an individual entity such that it
is a unicorn and John finds it:

(46) ∃x[unicorn′(x) ∧ ˇfind*(j, x)].

Other meaning postulates in PTQ capture the extensional nature of the
preposition in; the extensionality of intransitive verbs other than rise and
change; the fact that proper names are rigid designators in the sense of Kripke
(1972), that is, they denote the same individual in every possible world; the fact
that verbs like seek, and believes that, which are intensional in their direct object,
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are nevertheless extensional in their subject position; the truth-conditional
equivalence of seek and try to find, and so on.

Prima facie, meaning postulates provide an alternative to lexical decom-
position to capture linguistically relevant aspects of word meaning. In fact,
rather than assuming a set of noninterpreted primitive elements, such as the
semantic markers in KF, meaning postulates allow for expressing inferences
between lexical items in a fully model-theoretic fashion. However, introducing
a meaning postulate is by itself not less ad hoc than introducing a certain
conceptual primitive, and therefore meaning postulates are unable to achieve
a real breakthrough with respect to word meaning analysis. In fact, the real
challenge, for both meaning postulates and semantic decomposition, lies in the
empirical issue of determining which aspects of lexical meaning are systemati-
cally relevant in the lexicon and active in affecting the linguistic behavior of
lexical items. The problem is thus to motivate in a principled way the adoption
of a given postulate or semantic primitive.

6.2.3. The Treatment of Scope

The claim that nonlexical ambiguities are syntactic ambiguities is one of the
most important features of MG, and is a direct consequences of the principle of
compositionality as defined by Montague. Since the syntax-semantics mapping
is defined in terms of a homomorphism between algebras, every aspect of
semantics that is not related to the interpretation of basic expressions must
be traced back to a syntactic opposition. In other terms, every nonlexical
ambiguity of a natural language expression must be explained by assigning to
it more than one truth-conditionally distinct analysis tree. In fact, the input
to semantic interpretation must be provided by a fully disambiguated syntax.

One of the novelties of PTQ with respect to the linguistic theory of its time
is the way disambiguation is resolved in terms of the order of application of
the syntactic rules as encoded in the derivational trees. A typical example is
the treatment of scope ambiguities, as in the following sentence:

(47) Every man loves a woman.

Montague’s ingenious solution to this problem is to see terms as entering
syntactic composition “indirectly,” through the process of replacement of a
free variable in a sentence. As mentioned in 6.2, the category of terms include
an infinite set of syntactic variables, he0, he1, . . . , which are the only lexical
“abstract” (i.e., not corresponding to actual English expressions) elements
in PTQ. (S14), the most important of the three rules of quantification (also
known as the quantifying in rules), combines a term T with a formula,35 which,
unless the rule applies vacuously, must be “open,” that is, it contains one or
more free variables. In this case, the first occurrence of the variable is replaced
with T, and all the other occurrences of the same variable are replaced with
an appropriate pronoun. As a consequence, the ambiguity of (47) is traced
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back to the alternative ways in which the sentence can be derived from its
basic expressions, as shown here.

(48) a.
Every man loves a woman, 4
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every man, 2

man

loves a woman, 5
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loves a woman, 2

woman

b.
Every man loves a woman, 10, 0
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��

a woman, 2

woman

every man loves him0, 4
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every man, 2

man

loves him0, 5




�
�

love he0

In the translation rule (T14) associated to (S14), first the interpretation
of the “open” sentence is lambda-abstracted over the variable, and then the
interpretation of the term is applied to the intension of the lambda abstraction:

(49) If α is an expression of category T and ϕ is an expression of category t,
and α and ϕ translate into an α′ and ϕ′ respectively, then F10,n(α,ϕ)
translates into α′(ˆλxnϕ′).

Details aside, it can be proved that the top node in the analysis tree (48a)
translates into

λP∀x[man′(x) → ˇP (x)](ˆlove′(λQ∃z[woman(z) ∧ ˇQ(z))]),

which after several conversions comes to be logically equivalent to

∀x[man′(x) → ∃z[woman′(z) ∧ love*(x, z)]]

(with love* the extensional variant of love′).
On the other hand, the top node of (48b) translates into

λP∃z[woman′(z) ∧ ˇP (z)](ˆλy∀x[man′(x) → love*(x, y)]),

which is logically equivalent to

∀z[woman′(z) ∧ ∀x[man′(x) → love*(x, z)]],
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thereby giving the wide scope reading of the existential quantifier.
It is interesting to notice that the function F10 in (49) has an index n, ranging

over natural numbers. In fact, the rules of quantification are rule schemas
such that for every n there is a different rule instantiating them. Consequently,
distancing himself from the principle of the autonomy of syntax, Montague
claims that each declarative sentence of the fragment he is interested in, has
infinitely many analysis trees, which are nevertheless “inessential,” exactly
because they do not amount to semantic differences. To see this, we have to
remember that every term can be either interpreted “in situ” or introduced
into a sentence via the rules of quantification and the use of the syntactic
variables; in addition, basic expressions contain an infinite number of variables.
Therefore, there are an infinite number of analysis trees which are syntactic
variants of (48b), that is, they differ only with respect to the pronominal
variable he0. Moreover, there is another possible derivation for (47) on top of
(48a) and (48b), one in which the object term a woman can also be composed
by applying (S14). Similarly, for the sentences John dreams and Every man
dreams the analyses reported in (37) are not the only possible ones. In fact in
both cases the subject term can be introduced “indirectly” via the rule (S14).
In both cases, the alternative analyses yield interpretations logically equivalent
to the given ones.

Montague’s analysis of quantification bears a strong resemblance to the
one proposed in generative semantics based on the operation of quantifier
lowering (section 5). However, it is important to stress that in contrast to
generativist semantics, in MG quantifier scope is determined in a purely
derivational fashion. In fact, the analysis tree is not properly to be regarded
as a syntactic representational level in the sense of generative grammar, but
rather as a way of keeping trace of the process of syntactic composition.
Accordingly, the relative scope of quantifiers is defined in terms of the order of
their introduction into the analysis tree, and not in terms of the geometry of the
tree itself. Nevertheless, the two models gave quickly rise to convergent studies,
as witnessed by a number of efforts to stress the synergies between them. For
instance, Cooper and Parsons (1976) define a transformational grammar for
English equivalent to PTQ which is very close to Lakoff’s and McCawley’s
analyses of quantification. Similarly, Dowty (1979) combines PTQ with the
lexical decomposition approach widely adopted in generative semantics.

Montague’s original approach to the logical syntax of natural language has
motivated a whole stream of research in model-theoretic semantics, which
has widely enlarged Montague’s original fragment and has addressed some
of the open issues in PTQ. Some of the most active areas of application
of Montague’s method have been the interpretation of pronouns, adverbial
quantification, verb aspect, and so on. These developments have often led
to major changes in Montague’s original solutions. A typical example is the
analysis of “donkey sentences” in Kamp (1981), which has been the starting
point of one of the most important and influential model-theoretic frameworks
of logical semantics, discourse representation theory, which radically departs
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from PTQ under many respects. The work of Partee, Heim, Kratzer, and
Chierchia among many others also represent important contributions to the
logical investigation of natural language stemming from the Montagovian
tradition. These have led to important developments of the original framework,
while sticking to its spirit.

7. The Problem of Logical Form in Generative Linguistics
As stated in Chomsky (1981, 17), “At the most general level of description, the
goal of a grammar is to express the association between representations of form
and representations of meaning.” In MG this association is resolved by defining
the algebra of syntax as homomorphic to the algebra of meaning, thereby
implementing the general constraint of compositionality to which Montague’s
system adheres. In the early period of generative linguistics, the form-meaning
relation is determined through the Katz–Postal hypothesis, which assigns
to deep syntactic structures the whole burden of providing the input to
semantic interpretation. As we saw in section 5, generative semantics brings
this principle up to the extreme consequence of overthrowing the assumption
of the autonomy of syntax itself. The progressive implosion of the generative
semantics movement has then run parallel to the exploration of new solutions
for the form-meaning relation in grammar, with a twofold goal:

i. Reasserting Chomsky’s principle of the autonomy of syntax, and

ii. Improving the grammar so that it can accommodate the phenomena
(quantification) that had led generative semanticists to depart from this
principle.

In the 1970s, the so-called extended standard theory revises the Aspects
model by abandoning the Katz–Postal hypothesis and by proposing that both
deep and surface syntactic structures contribute to the semantic interpretation
of sentences (Jackendoff 1972). In particular, the deep structure would be
responsible for those aspects of meaning concerning thematic relations, while
structural aspects like quantification and anaphora would be established at the
level of surface structure. Thematic relations include notions like agent, patient,
goal, source, and so on and define the semantic roles of predicate arguments.
Transformations like the passive do not actually alter these relations. For
instance, John is the patient of the killing event in (50a), and does not change
this role after the passive transformation:

(50) a. The car killed John.
b. John was killed by the bomb.

On the other side, transformations seem to affect pronominal coreference, and
constitute in this way positive evidence for this relation to be marked at the
level of the surface structure:
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(51) a. John saw himself.
b. *Himself was seen by John.

Under the pressure to find solutions to this kind of phenomena, the gen-
erative paradigm underwent its most critical changes since its rising in the
1950s, which led to a huge reorganization of the architecture of grammar.
In its early stages, the generative theory of grammar included a set of base
phrase structure rules that generated deep structure representations. Then,
transformational rules derived surface structure representations by moving
some of the constituents, inserting lexical material or deleting some of the
elements. Some of the main shortcomings of this model had their roots in the
fact that the machinery of transformations was too powerful, the rules too
loosely constrained, and they lacked generality. In its new developments, the
generative paradigm tries to overcome these shortcomings by adopting a much
more general and constrained description of the architecture of language. A
new grammatical architecture is now proposed organized around the following
modules:

1. A basic module that generates the constituent structures. It includes the
principles of X-bar theory (Jackendoff 1972), which represents a major
generalization and abstraction of phrase structure rules;

2. One single transformation or operation, Move-α, which moves elements
from one position to another within the phrase markers system generated
by the X-bar principles;

3. Principles and filters constraining the structures produced by the genera-
tive component together with Move-α. These principles are organized in
several subsystems: bounding theory, government theory, theta-theory,
binding theory, Case theory, and control theory.

The new architecture corresponds to the Government and Binding (GB)
approach to the formal study of grammar (Chomsky 1981, 1982, 1986), and
represents the mainstream version of the generative paradigm up to the
minimalist turn that occurred in the 1990s. In the GB model, various syntactic
constructions, like passive or relative clauses, are not projected into specific
rules of the grammar, but are regarded rather as epiphenomenal distinctions
to be analyzed and explained in terms of the interaction of the different
principles of the modules of grammar. As a consequence, “The notions ‘passive’,
‘relativization’, etc., can be reconstructed as processes of a more general nature,
with a functional role in grammar, but they are not ‘rules of grammar’.”
(Chomsky 1981, 7).

One of the most interesting aspects of the GB model concerns the relation
between syntax and meaning, and the way it has opened new important
connections with model-theoretic semantics and with the tradition of logical
grammar. The locus of meaning in GB depends on two main innovations that
characterize this stage of the generative paradigm. The first one is the notion
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of trace, that is, an “empty” syntactic category that appears within syntactic
representations as an effect of the application of the rule Move-α. In the
previous versions of generative grammar, an element which at surface structure
had to appear in a different position from the one occupied at deep structure
was simply displaced by a specific transformation rule, leaving behind a gap
in the original position, as in the case of the interrogative pronoun in (52):

(52) a. you see + PAST what.
b. what did you see.

Here Move-α moves a syntactic constituent to a new position in the syntactic
representation, but the moved element leaves behind it a trace t coindexed
with it:

(53) a. you see + PAST who.
b. whoi did you see ti.

Traces are syntactic elements voided of any phonological content, but carrying
important information: the index of the moved element. According to Chomsky
(1976), traces are like variables bound by the syntactic constituent with which
they are coindexed.

The appearance of traces in syntactic theory has a number of important
consequences. First of all, traces preserve the syntactic and semantic relations
that obtained prior to movement. Thus, if in (53a) who is the theme argument
of the verb, it keeps this role also after it has moved, via the coindexed
trace ti. This fact makes it substantially unnecessary to have both deep and
surface structure as input to the semantic component (as assumed by the
extended standard theory), since thematic relations are preserved also at
surface structure. Second, with traces, syntactic variables appear on the scene
of generative linguistics, thereby adding and important element of similarity
with Montague’s system. Third, the original notion of surface structure now
disappears, at least in the way it was understood in the standard theory. In fact,
the syntactic representations resulting from applications of Move-α contain
traces that do not have any phonological content. This is the reason why in
GB the syntactic representations derived from deep structures via Move-α are
called S-structures (SS), a notational way to indicate they resemble and yet at
the same time are distinct from surface structures.

The second major innovation of the GB model, closely interrelated with the
former, is the appearance of logical form (LF) as a new and independent layer
of syntactic representation, which replaces S-structure as the only interface
with the semantic component. One of the main motivations for the introduction
of LF in the architecture of generative grammar was the need to account for
the behavior of interrogative pronouns and quantifiers in natural language
which semantically behave as operators binding a variable occurring within
their scope. For instance, identifying a question with its possible answers
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(Karttunen 1977; Higginbotham 1983), allows for the possibility to take the
logical form of (54a) to be (54b):

(54) a. Who did you see?
b. For which person x: you saw x.

Once again, this is a move made possible by associating (54a) to the S-structure
(53b), making the manipulation mentioned, and then interpreted traces as
bound variables. However, since the late 1970s various types of evidence have
been brought to show that this could not be the whole story. For instance, in
(55a) the pronoun what appears in the S-structure in its original position at
the end of the clause (in English only one interrogative pronoun is allowed to
appear at the left end of the clause). Nevertheless, semantically what behaves
exactly like who, that is, as an operator with its scope over the whole sentence,
as showed by (55b), which expresses the LF of the sentence:

(55) a. Who saw what?
b. For which person x and thing y: x saw y.

If syntactic representation must display the proper scopes of operators, then
it follows that S-structures cannot perform this role. (See Williams 1977 and
Fiengo 1977, for similar conclusions.) The conclusion that emerged was that
if syntactic representations must provide the proper input to the sound and
to the meaning systems, then this input cannot come from the same level of
description, because there are elements that are interpreted as if they occurred
at a different place from the one in which they are pronounced. This hypothesis
has been incorporated into the theory starting from Chomsky and Lasnik
(1977) and has a stable place in Chomsky (1981), who adopts the following
architecture of grammar (i.e., the “T-model”).

(56) lexicon



D-Structure (DS)



S-structure (SS)

�
���

�
���

P-Structure (PF)



sound

Logical Form (LF)



meaning

According to this proposal, each sentence is associated with four levels of
linguistic representation. Lexical items enter into syntactic representations at
DS (roughly equivalent to previous deep structures), prior to any transforma-
tion. Move-α links DS to SS by moving constituents within phrase markers,
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and leaving traces in the original place coindexed with the moved element. In
addition, SS is related, on one hand to PF (phonetic form), which represents
the interface with the phonological and phonetic component by providing the
grammatical information relevant to sound assignment. On the other hand,
further applications of Move-α generate LF, which May (1985, 2) defines as
follows:

[LF ] represents whatever properties of syntactic form are relevant
to semantic interpretation—those aspects of semantic structure
which are expressed syntactically. Succinctly, the contribution of
grammar to meaning.

LF is the level at which proper scope relations are assigned to operator-like
elements (e.g., interrogative pronouns). For example, (55a) would be rendered
at LF as:

(57) [S whatj [S whoI [S tI saw tj ]]].

Similarly, May (1977, 1985) proposes that quantificational NPs are assigned
scope at LF through Quantifier Raising (QR), a particular instance of Move-α
that “adjoins” the NP to a proper scope position in the phrase marker, typically
the S node.36 For instance, the SS of the sentence in (47) (repeated here as
(58a)) is presented in (58b). Then two successive applications of QR produce
two possible LF representations (58c) and (58d), depending on their order of
application:

(58) a. Every man loves a woman.
b. [S every man [VP loves a woman]].
c. [S every manI [S a womanj [StI [VP loves tj ]]]].
d. [S a womanI [S every manj [StI [VP loves tj ]]]].

The scope of a quantifier (and in general of any expression behaving as a
variable-binding operator) is defined as a relation over syntactic representations:

(59) The scope of α is the set of nodes that α c-commands at LF.

In turn, c-command is defined as follows:37

(60) α c-commands β if and only if (i) the first branching node dominating α
dominates β, and (ii) α does not dominate β.

A trace is bound by α if and only if it is within the scope of α and is coindexed
with it. Therefore, in (58c)–(58d), both NPs have wider scope over the whole
clause, since they c-command it, and the traces left by QR are the variables
bound by the quantifiers.

In May (1977), this definition of scope also accounts for the structural
ambiguity of (58a). Actually, the existence of two interpretations (wide and
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narrow scope of the existential quantifier) is explained by the fact that (58a)
corresponds to two possible LFs, the first one in which the universal quantifier
has wider scope than the existential one (since it c-commands it) and the
second one in which the scope order is reversed. In a later version of his theory
of quantification, May revises the definition of scope, by assuming that, given
a LF of the form [SQ1[SQ2[S . . . ]]], the operators Q1 and Q2 belong to the
same Σ-sequence. Then, May defines a general scope principle, such that the
members of a Σ-sequence are free to take any ordering relation (May 1985,
34) Therefore, (58c) and (58d) are both compatible with the narrow and the
wide scope interpretation of the existential quantifier, and also with a further
reading in which the quantifiers are interpreted independently of one another,
that is, as “branching quantifiers.”38

It is interesting to compare the foregoing treatment of quantification in GB
with Montague’s analysis.

First of all, in MG the relative scope of quantifiers is the result of the
order of their introduction in the compositional process, that is, the result of
the derivational history as shown in the analysis tree (6.2.3). On the other
side, according to May, the scope of quantifiers and quantifier-like elements
is determined by the particular structure of the representations at the level
of LF.

Second, Montague defines a rule of Quantifying in over terms, a general
category including every type of NP: proper nouns, syntactic variables, quan-
tificational expressions, and so on. Terms, as we have seen, have the type
〈〈s, 〈e, t〉〉, t〉, and denote sets of properties. Consequently, Montague assigns
the same derivation (and thus the same logical form) to John dreams and to
Every man dreams (see (37a,b)), which has the effect that at the interpretive
level, both are analyzed as the functional application of the denotation of the
subject NP to the denotation of the VP. On the other hand, the analysis of
NPs in generative grammar radically departs form such a model. Chomsky
(1976, 198) explicitly criticizes Montague for blurring crucial syntactic and
semantic differences within the set of NPs. Similarly, in May’s theory, the two
sentences would come to have two distinct LF representations:

(61) a. [S John [VP dreams]].
b. [S Every manI [StI [VPtI dreams]]].

In fact, “at LF, quantified and nonquantified phrases are distinguished not only
in their interpretation, but in those aspects of their syntax to which the rules of
interpretation are sensitive” (May 1985, 25). While for Montague all the NPs are
alike in their type (and consequently in their syntactic and semantic behavior),
GB grammarians make a distinction, in the spirit of Frege, between referential
and quantificational expressions. Referential expressions include proper names,
pronouns, and in general the traces left by Move-α. Quantificational expressions
include all the expressions that behave like operators binding variables (i.e.,
quantifiers, interrogative pronouns, etc.), and whose correct interpretation
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requires the assignment of scope. Since scope is now defined as a relation over
LF syntactic representations, one of the consequences of this distinction is
that the movement of quantificational expressions at LF becomes obligatory
in GB. This also represents another crucial difference between May’s theory
of quantification and MG: In fact, for Montague the application of the rule
Quantifying in is optional, and every term can roughly be interpreted “in
situ.” Conversely, in the GB analysis, NPs can be interpreted “in situ” (i.e.,
in the position in which they appear at SS) only if they are referential, while
quantificational NPs must necessarily move to a position at which they are
assigned a scope.

The appearance of LF in the generative theory of grammar has brought
with it new ways to understand the relationship between formal linguistics, on
one side, and model-theoretic semantics and logical grammar on the other:

LF-Theory and model-theoretic semantics are very similar in some
respects. Both are concerned with “structural meaning,” abstracting
away from word meaning and pragmatics, and both postulate a
logical language as the representation of the “structural meaning”
of sentences. (Riemsdijk and Williams 1986, 183)

In the early stages of the theory, the dominant semantic paradigm in generative
linguistic, KF semantics (4.3), was essentially concerned with the explanation
of phenomena like analyticity, entailment, synonymy, and so on, in terms of
an “internalist” approach to word meanings based on their decomposition into
conceptual primitives. KF rejected categorically talk of truth-conditions and
reference as the ground for any semantic theory aiming to model linguistic
competence. The introduction and the growing role of LF in the architecture of
grammar radically changes this perspective, with the effect of leaving outside
the domain of the theory of grammar all the notions that are beyond structural
semantics. In particular, one of the goals of the generative enterprise is to
study those aspects of meaning—such as scope ambiguities, anaphora—which
depend on structural conditions. Moreover, as Riemsdijk and Williams (1986,
188) remark, LF basically models the same aspects of meaning represented in
a “predicate calculus”: “the scope of operators and quantifiers, sameness and
distinctness of variables, and predicate-argument structure.”

Nevertheless, LF differs from Montagovian logical syntax in different re-
spects. First of all, the algebra of syntax in MG provides a disambiguated
input to interpretation. In contrast, LF representations do not need to be
semantically unambiguous. For instance, May’s scope principle establishes that
a LF can be totally underspecified with respect to the actual interpretation of
the relation between the quantifiers. Second, although LF provides the proper
structural information for the semantic interpretive component, it is still a
layer of syntax, with the same status as DS or SS. QR is actually an instance
of Move-α, the same movement operation that accounts for the displacement
of constituents in passive sentences. As such, QR is subject to the same type
of constraints that regulate the “overt” movement of constituents. In MG, a
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sentence is assigned those syntactic derivations that are necessary to explain its
possible interpretations. In GB, a sentence is assigned those LF representations
that are licensed by the independently motivated principles of grammar. It is
therefore an empirical issue whether the principles of universal grammar are
able to assign to a given sentence all and only all the LF representations that
will correspond to its possible structural interpretations. LF is in fact a way to
reassert the validity and centrality of the principle of the autonomy of syntax.

As a consequence, while Montague pursues his program within the general
tradition of logical syntax, the introduction of LF in the architecture of
grammar opens the way to a wide program that aims to convert logical
semantics into syntax: As long as the distribution of linguistic phenomena
like quantification, or bound anaphora can be explained on the ground of
general, independently motivated principles of syntax, these phenomena can
be regarded as part of a theory of syntax. A particularly radical version of this
type of approach is given by Hornstein in Logic as Grammar (1984, 1):

semantic theories of meaning for natural language—theories that
exploit semantic notions such as “truth,” “reference,” “object,”
“property”—are not particularly attractive in explaining what speak-
ers know when they know the meaning of a sentence in their native
language. In short a theory of meaning that is viewed as responsive
to the same set of concerns characteristic of work in generative
grammar to a large extent will not be a semantic theory, . . . but
instead a syntactic one.

He concludes that “many of the phenomena earlier believed to be semantic . . .
are better characterized in syntactic terms” (ibid.), where syntactic refers now
to the autonomous theory of universal grammar.

Actually, as a layer of syntactic representation LF is not directly committed
to a particular interpretation. A theory of syntax for Chomsky is supposed to
take one up to the point of specifying the structural information relevant for
the interpretation of sentences. He does not, strictly speaking, take any position
with respect to the nature and form of this interpretation. Although it is the
only interface level with the interpretive module, LF is in fact an “uninterpreted”
level of representation. This leaves the door open to new synergies between
the generativist grammar and the truth-conditional semantics. One step in
this direction is May (1985) who analyzes quantifiers truth-conditionally as
generalized quantifiers in the sense of Barwise and Cooper (1981).

Similarly, Higginbotham (1985, 1986, 1989) argues for the possibility of
pursuing Davidson’s program in semantics by giving a recursive definition of
truth for natural language using as input LF syntactic representations. We
recall that Montague also intended his logical grammar to be a realization of
Davidson’s program. It then seems that this program is compatible with the
principles of the generative enterprise. Chierchia (1995a, 1995b) represents
interesting attempts to provide a model-theoretic analysis that pairs GB
syntactic representations with type-theoretical semantic interpretations in
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the style of Montague. Both Higginbotham’s and Chierchia’s works, among
many others, are indicative of the new dialectic that characterizes the most
recent developments in generative linguistics and in the logical semantics
tradition. A few decades ago the principles and methods arising from formal
linguistics seemed to be radically orthogonal to the logical investigation of
natural language, whereas the intense work and changes on both sides have
allowed them to reach important and unprecedented convergences in the
inquiry into the universal principles of language.

Notes
1. De Saussure introduced the notion of phoneme. As for syntax, he considered

it as mostly belonging to parole, that is, not to the language as a system, but to
language usage.

2. Bloomfield wrote on linguistics in the International Encyclopaedia of Unified
Science (1939).

3. See our comments at the end of section 2.1.
4. A third level of adequacy is the descriptive one, which is intermediate between

observative and explanatory adequacy. Descriptive adequacy is defined as follows:
“the grammar gives a correct account of the linguistic intuition of the native speaker,
and specifies the observed data (in particular) in terms of significant generalizations
that express underlying regularities in the language” (Chomsky 1964, 63).

5. For instance, “In fact, the realization that this creative aspect of language is its
essential characteristic can be traced back at least to the seventeenth century. Thus
we find the Cartesian view that man alone is more than mere automatism, and that
its is the possession of true language that is the primary indicator of this” (Chomsky
1964, 51).

6. -en is the past participle affix.
7. Some of these are context-sensitive rules, meant to account for the subcatego-

rization properties of lexical items (e.g., V cannot be intransitive if it is followed by
a NP, etc.)

8. Chomsky (1957), 15.
9. Particularly through the contributions in Fillmore (1968), Gruber (1976), and

Jackendoff (1972).
10. The strongest and most definitive attack against the behaviorist view of

language is in Chomsky (1959), which critically reviews B. F. Skinner’s Verbal
Behavior.

11. The output of the semantic component is actually formed by the set of readings
that the projection rules can derive by all the possible senses that form the dictionary
entry of the lexical items (by excluding, at the same time, those combinations that
violate semantic selectional constraints).

12. For the chemical theory of concepts, see Coffa (1991).
13. The explicit target of Katz’s critique is the definition of the domain of logic

in Quine (1955).
14. See for instance Dowty (1979).
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15. This characterization of the scope of operators in terms of command will be
incorporated in the later stages of the Chomskian framework (see the definition of
c-command in section 7).

16. The fuzziness of the notion of meaning adopted by generativist semanticists
has also lead them to try to incorporate more and more phenomena within grammar,
including presuppositions, speech acts, different sorts of pragmatic phenomena, and
so on. Each step was also associated with the posit of more and more abstract deep
structures and with the necessity of complex mechanism to derive the surface ones.
For a history of this stage, see Newmeyer (1986).

17. “If it were necessary to choose between a categorial base that was convenient
for semantics and a non-categorial base that was convenient for transformational
syntax, I might still choose the former” (Lewis 1972, 22).

18. “It appears to me that the syntactic analyses of particular fragmentary lan-
guages that have been suggested by transformational grammarians, even if successful
in correctly characterizing the declarative sentences of those languages, will prove
to lack semantic relevance; and I fail to see any great interest in syntax except as a
preliminary to semantics” (Montague 1974, 223).

19. See for instance Partee and Hendriks (1997).
20. As Partee and Hendriks (1997, 22) remark, in the rule-by-rule interpretation

the homomorphism applies at the level of rules or derivation trees, not at the level
of syntactic or semantic operations employed in the rules: “This is frequently a point
of confusion. . . . But it is clear that while there my be a uniform compositional
interpretation of the Subject-Predicate combining rule . . . , there could not be
expected to be a uniform semantic interpretation of a syntactic operation such as
concatenation, a syntactic operation which may be common to many rules.”

21. This actually amounts to a generalization of the technique employed in EFL,
where eight semantic domains are individually defined.

22. See Montague (1974, 228, 258).
23. In UG, senses are instead the members of D〈s,a〉A,I , that is, functions of only

one argument, regarded as a possible world.
24. In PTQ, quantified terms are introduced syncategorematically, in the sense

that there is no syntactic category to which quantifiers and determiners are assigned,
and they are rather introduced directly by the syntactic rule forming the term. The
same holds true for conjunction and disjunction (see the following).

25. Notice that in MG there are only unary functions. Expressions denoting binary
relations are of type 〈e, 〈e, t〉〉. The expression γ(α)(β) is then taken to assert that
the objects denoted by β and α stand in the relation denoted by γ. In fact, as is well
known, every binary function f from A into {1, 0} is equivalent to the function g of
type 〈e, 〈e, t〉〉 such that for every x ∈ A, g(x) is the function of type 〈e, t〉 such that
for every y ∈ A, g(x)(y) = f(y, x).

26. It can be shown that for every expression α, ˇˆα is equivalent to α. However,
it is not always the case that α is equivalent to ˆˇα.

27. The argument is attributed by Montague to Barbara Hall Partee.
28. The usefulness of individual concepts has been again advocated from time to

time, as for instance in Janssen (1984).
29. Notice also the Russellian treatment of definite descriptions in (35).
30. Montague’s analysis is also claimed to have some empirical advantages, since

it is then possible to give a straightforward representation of proper nouns when
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they appear as elements in a conjunction with some quantified term, as in John and
a student.

31. For a similar position see Gamut (1991).
32. Others than IV and CN, which are assigned the type 〈e, t〉, see 6.1.
33. Hintikka (1962, 1968) also analyzes believe as a relation between an individual

and a proposition, the latter intended as set of possible worlds. Notice that, while
for Hintikka (40a) is true if and only if the proposition expressed by the embedded
sentence includes the set of the possible worlds compatible with John’s beliefs,
Montague does not set any specific constraint on the type of the relation denoted by
believe that.

34. Montague’s analysis of transitive intensional verbs has been deeply revised,
and alternative solutions have been proposed by many scholars. Notice however that
the PTQ translation of seek is actually able to account for interesting semantic
properties of this verb. For instance, (41) is able to explain why the fact that John
seeks a unicorn does not entail the existence of these animals. In fact, (41) is true
even if the set of unicorns is empty in the real world. Moreover, we can also explain
why from the fact that neither unicorns nor chimeras exist and that John seeks a
unicorn we can not infer that John seeks a chimera. For further details, see Gamut
(1991).

35. The other two rules of quantification defined in PTQ, (S15) and (S16), combine
terms with expressions of category CN and IV, respectively, so that it is possible to
quantify also over these types of expressions, besides sentences.

36. Given a constituent β and a node α in a phrase marker, adjoining β to α means
to yield either a structure of the form [αβ[α. . . ]] (left adjunction) or a structure of
the form [α[α. . . ]β] (right adjunction).

37. See Reinhart (1976).
38. See Hintikka (1974), Barwise (1979).
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Logic and Artificial Intelligence
Richmond H. Thomason

1. Logic and Artificial Intelligence
Artificial intelligence (which I’ll refer to hereafter by its nickname, “AI”)
is the subfield of computer science devoted to developing programs that
enable computers to display behavior that can (broadly) be characterized as
intelligent. Most research in AI is devoted to fairly narrow applications, such as
planning or speech-to-speech translation in limited, well-defined task domains.
But substantial interest remains in the long-range goal of building generally
intelligent, autonomous agents.1

Throughout its relatively short history, AI has been heavily influenced
by logical ideas. AI exhibits a rather eclectic assortment of theories and
research methodologies; the value and relative importance of logical formalisms
is questioned by some leading practitioners and has been debated in the
literature from time to time.2 But most members of the AI community would
agree that logic has an important role to play in at least some central areas
of AI research, and an influential minority considers logic to be the most
important factor in developing strategic, fundamental advances.

1.1. Guide to This Chapter

I imagine that the audience for this chapter will consist primarily of logicians
and historians of logic who have little or no familiarity with AI. In writing
this chapter, I have tried to provide an overview of the issues that arise when
logic is used in helping to understand problems in intelligent reasoning and
to guide the design of mechanized reasoning systems. Logic in AI is a large
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and rapidly growing field—I could not hope to achieve anything like complete
coverage. In sections 3 and 4 I have tried to provide an overview with some
historical and technical details concerning nonmonotonic logic and reasoning
about action and change, a topic that is not only central in AI but that should
be of considerable interest to philosophers. The remaining sections provide
brief and inadequate sketches of selected topics, with references to the primary
literature.

While this chapter was being written, Minker (2000b) appeared. This
book is a comprehensive, up-to-date collection of survey papers and original
contributions to the field of logic-based AI, with extensive references to the
literature and with an introduction (to the book and to the field), Minker
(2000a). I highly recommend this volume as a beginning point for any readers
who wish to pursue this topic further.

1.2. The Role of Logic in Artificial Intelligence
Theoretical computer science developed out of logic, the theory of computation
(if this is to be considered a different subject from logic), and some related
areas of mathematics.3 So theoretically minded computer scientists are well
informed about logic even when they aren’t logicians. Computer scientists in
general are familiar with the idea that logic provides techniques for analyzing
the inferential properties of languages, and with the distinction between a
high-level logical analysis of a reasoning problem and its implementations.
Logic, for instance, can provide a specification for a programming language by
characterizing a mapping from programs to the computations that they license.
A compiler that implements the language can be incomplete, or even unsound,
as long as in some sense it approximates the logical specification. This makes it
possible for the involvement of logic in AI applications to vary from relatively
weak uses in which the logic informs the implementation process with analytic
insights, to strong uses in which the implementation algorithm can be shown
to be sound and complete. In some cases, a working system is inspired by ideas
from logic, and acquires features that at first seem logically problematic but
can later be explained by developing new ideas in logical theory. This sort of
thing has happened, for instance, in logic programming.

In particular, logical theories in AI are independent from implementations.
They can be used to provide insights into the reasoning problem without
directly informing the implementation. Direct implementations of ideas from
logic—theorem-proving and model-construction techniques—are used in AI,
but the AI theorists who rely on logic to model their problem areas are free
to use other implementation techniques as well. Thus, in R. C. Moore (1995,
chapter 1), Robert C. Moore distinguishes three uses of logic in AI: as a tool
of analysis, as a basis for knowledge representation, and as a programming
language.

A large part of the effort of developing limited-objective reasoning systems
goes into the management of large, complex bodies of declarative information.



850 The Development of Modern Logic

It is generally recognized in AI that it is important to treat the representation
of this information, and the reasoning that goes along with it, as a separate
task, with its own research problems.

The evolution of expert systems illustrates the point. The earliest expert
systems, such as Mycin (a program that reasons about bacterial infections,
see Buchanan and Shortliffe 1984), were based entirely on large systems of
procedural rules, with no separate representation of the background knowledge—
for instance, the taxonomy of the infectious organisms about which the system
reasoned was not represented.

Later generation expert systems show a greater modularity in their design. A
separate knowledge representation component is useful for software engineering
purposes—it is much better to have a single representation of a general fact
that can have many different uses, since this makes the system easier to develop
and to modify. And this design turns out to be essential in enabling these
systems to deliver explanations as well as mere conclusions.4

1.3. Knowledge Representation
In response to the need to design this declarative component, a subfield of AI
known as knowledge representation (KR) emerged during the 1980s. Knowl-
edge representation deals primarily with the representational and reasoning
challenges of this separate component. The best place to get a feel for this
subject is the proceedings of the meetings that are now held every other year:
see Brachman et al. (1989), Allen et al. (1991), Nebel et al. (1992), Doyle et al.
(1994), Aiello et al. (1996), Cohn et al. (1998), Cohn et al. (2000), and Fensel
et al. (2002).

Typical articles in the proceedings of the KR and Reasoning conferences
deal with the following topics.

1. Topics in logical theory and the theory of computation, including

a. Nonmonotonic logic
b. Complexity theory

2. Studies in application areas, including

a. Temporal reasoning
b. Formalisms for reasoning about planning, action, and change
c. Metareasoning
d. Reasoning about context
e. Reasoning about values and desires
f. Reasoning about the mental states of other agents, and especially

about knowledge and belief
g. Spatial reasoning
h. Reasoning about vagueness
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3. Studies in application techniques, including

a. Logic programming
b. Description logics
c. Theorem proving
d. Model construction

4. Studies of large-scale applications, including

a. Cognitive robotics
b. Merging, updating, and correcting knowledge bases

These topics hardly overlap at all with the contents of the Journal of Sym-
bolic Logic (JSL), the principal research archive for mathematical logic. But
there is substantial overlap in theoretical emphasis with the Journal of Philo-
sophical Logic (JPL), where topics such as tense logic, epistemic logic, logical
approaches to practical reasoning, belief change, and vagueness account for a
large percentage of the contributions. Very few JPL publications, however, deal
with complexity theory or with potential applications to automated reasoning.

1.4. Philosophical Logic
I do not know of a good history of philosophical logic. In fact, the distinc-
tion between mathematical and philosophical logic may well be incidental in
relation to the overall goals of the subject, since technical rigor and the use
of mathematical methods seem to be essential in all areas of logical research.
However, the distinction between the two subfields has been magnified by
differences in the sorts of professional training that are available to logicians,
and by the views of individuals on what is important for the field. The state-
ment of policy presented in volume 1, no. 1 of the Journal of Symbolic Logic
(1936) lists bringing together the mathematicians and philosophers working
in logic among the goals of the new journal. Probably at this time both the
mathematicians and the philosophers shared a sense that their subject was
considered to be somewhat marginal by their colleagues, and may have felt a
primary loyalty to logic as a subject rather than to any academic discipline.
Articles in the first volume of the JSL were divided about equally between
professional mathematicians and philosophers, and the early volumes of the
JSL do not show any strong differences between the two groups as to topic.

This situation changed in the 1960s. The 1969 volume of the JSL contained
39 articles by mathematicians, and only 9 by philosophers. By the early 1970s,
many philosophers felt that philosophical papers on logic were unlikely to be
accepted by the JSL, and that if they were accepted they were unlikely to be
read by philosophers. At this point, the goals of the two groups had diverged
considerably. Mathematicians were pursuing the development of an increasingly
technical and complex body of methods and theorems. Many philosophers
felt that this pursuit was increasingly irrelevant to the goal of illuminating
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philosophical issues. These divisions led to the founding of the Journal of
Philosophical Logic in 1972. The list of sample topics in the first issue included:

1. Contributions to branches of logical theory directly related to philosophi-
cal concerns, such as inductive logic, modal logic, deontic logic, quantum
logic, tense logic, free logic, logic of questions, logic of commands, logic
of preference, logic of conditionals, many-valued logic, relevance logics;

2. Contributions to philosophical discussions that utilize the machinery of
formal logic;

3. Discussions of philosophical issues relating to logic and the logical
structure of language;

4. Philosophical work relating to the special sciences.

Most of the articles over the subsequent 28 years of the JPL belong to the
first of these four categories. But the description with which this list begins
is not particularly illuminating: Why should these particular topics be of
interest to philosophers? I believe that the most important feature they share
is a sense that despite successes in formalizing areas of mathematical logic,
the scope of logic remained severely limited. There are unsolved problems in
formalizing the nonmathematical sciences that seem to require thinking through
new and different logical issues (quantum logic and the logic of induction, for
instance). The remaining topics cover a part, at least, of the even more pressing
problems involved in extending logical theory to nonscientific reasoning. The
dominant goal, then, of philosophical logic is the extension of logical methods
to nonmathematical reasoning domains. This goal has a theoretical dimension
if (as many philosophical logicians seem to feel) it requires reworking and
extending logical formalisms.

The development and testing of applications (applications such as the
problem of formalizing the reasoning involved in getting to the airport, that was
posed as a challenge in McCarthy 1959—see section 2.2) doesn’t even appear
as a category in the list of JPL topics, and in fact most of the philosophical
logic literature is theoretical.

1.5. Logic in AI and Philosophical Logic
The rough comparison in section 1.3 of the contents of the main publications
for research in logical AI and philosophical logic suggests the following picture.
Theoretical work in logical AI and in philosophical logic overlap to a large
extent. Both are interested in developing nonmetamathematical applications
of logic, and the core topics are very similar. This overlap is due not only to
commonality of interest but to direct influence of philosophical logic on logical
AI; there is ample evidence, as we will see, that the first generation at least of
AI logicists read and were influenced by the literature in philosophical logic.

Since that point, the specialties have diverged. New logical theories have
emerged in logical AI (nonmonotonic logic is the most important example)
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which are familiar only to a subcommunity of the philosophical logicians.
Other differences are due to the AI community’s interest in the theoretical
analysis of algorithms and, of course, to their sense of the importance of
implementations. Some have to do with the emerging development in computer
science of ambitious applications using unprecedentedly large bodies of logical
axioms. The sheer size of these applications produces new problems and new
methodologies. And other differences originate in the interest of philosophical
logicians in some topics (metaphysical topics, for instance) that are primarily
inspired by purely philosophical considerations.

Concern for applications can be a great influence on how research is carried
out and presented. The tradition in philosophical logic predates applications in
automated reasoning, and to this day remains relatively uninterested in such
applications. The methodology depends on intuitions, but operates without any
generally accepted methodology for articulating and deploying these intuitions.
And the ideas are illustrated and informed by artificial, small-scale examples.5
In general, the philosophical literature does not deal with implementability or
efficiency of the reasoning, or indeed with any features of the reasoning process.
It is hard to find cases in which the philosophical theories are illustrated or
tested with realistic, large-scale reasoning problems.

These differences, however, are much more a matter of style than of substance
or of strategic research goals. It is difficult to think through the details of the
reasoning process without the computational tools to make the process concrete,
and difficult to develop large-scale formalizations of reasoning problems without
computational tools for entering, testing, and maintaining the formalizations.
Because the core theoretical topics (modal, conditional, and temporal logic,
belief revision, and the logic of context) are so similar, and because the ultimate
goal (the formalization of nonmathematical reasoning) is the same, I think of
logic in AI as a continuous extension of the philosophical logic tradition.

The early influence of philosophical logic on logic in AI was profound. The
bibliography of McCarthy and Hayes (1969), one of the most influential early
papers in logical AI, illustrates the point well. There are 58 citations in the
bibliography. Of these, 35 refer to the philosophical logic literature. (There
are 17 computer science citations, 1 mathematical logic citation, 1 economics
citation, and 1 psychology citation.) This paper was written at a time when
there were hardly any references to logical AI in the computer science literature.
Naturally, as logical AI has matured and developed as a branch of computer
science, the proportion of cross-disciplinary citations has decreased. A sampling
of articles from the first Knowledge Representation conference, Brachman et al.
(1989), held in 1989, shows only 12 philosophical logic citations out of a total
of 522 sampled citations; a sampling of articles from Cohn et al. (1998) shows
23 philosophical logic citations out of a total of 468 sampled.6

Despite the dramatic decrease in quantity of explicit citations, the contem-
porary literature in logical AI reflects an indirect acquaintance with the earlier
literature in philosophical logic, since many of the computational papers that
are explicitly cited in the modern works were influenced by this literature. Of
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course, the influence becomes increasingly distant as time passes, and this
trend is accelerated by the fact that new theoretical topics have been invented
in logical AI that were at best only dimly prefigured in the philosophical
literature.

Although philosophical logic is now a relatively small field in comparison
to logical AI, it remains a viable area of research, with new work appearing
regularly. But references to contemporary research in philosophical logic are
rare in the AI literature. Similarly, the papers currently published in the
Journal of Philosophical Logic, at least, do not show much influence from AI.7
In Europe, the lines are harder to draw between professional divisions among
logicians: some European journals, especially the Journal of Logic, Language,
and Information, are successful in maintaining a focus in logic while attracting
authors from all the disciplines in which logic is represented.

1.6. The Role of Artificial Intelligence in Logic
The importance of applications in logical AI, and the scale of these applications,
represents a new methodology for logic—one that would have been impossible
without mechanized reasoning. This methodology forces theoreticians to think
through problems on a new scale and at a new level of detail, and this in turn
has a profound effect on the resulting theories. The effects of this methodology
will be illustrated in the following sections, dealing with various topics in logical
AI. But the point is illustrated well by reasoning about action and change.
This topic was investigated in the philosophical literature. Reasoning about
change, at least, is part of tense logic, and the consequences of actions are
investigated in the literature on “seeing to it that”; see, for instance, Belnap
(1996). The latter theory has no very robust account of action. The central
construct is a variation on a branching-time modality of the sort that has been
familiar since Prior (1967). Although it represents an interesting development
in philosophical logic, the scale of the accomplishment is very different from
the research tradition in logical AI reported in section 4. The formalisms in
this tradition not only support the formalization of complex, realistic planning
problems, but provide entirely new insights into reasoning about the causal
effects of actions, the persistence of states, and the interactions between actions
and continuous physical processes. Developments such as this would have been
impossible without the interactions between the logical theories and large-scale,
practical applications in automated planning.

Rudolf Carnap (1955) attempted to clarify intensional analyses of linguistic
meaning, and to justify them from a methodological point of view, by imagining
how the analysis could be applied to the linguistic usage of a hypothetical
robot. Carnap hoped that the fact that we could imagine ourselves to know
the internal structure of the robot would help make the case for an empirical
science of semantics more plausible. This hope proved to be unjustified; the
philosophical issue that concerned Carnap remains controversial to this day,
and thought experiments with robots have not proved to be particularly
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rewarding in addressing it. Real robots, though, with real applications,8 are
a very different matter. Though it is hard to tell whether they will prove to
be helpful in clarifying fundamental philosophical problems, they provide a
laboratory for logic that is revolutionary in its potential impact on the subject.
They motivate the development of entirely new logical theories that I believe
will prove to be as important for philosophy as the fundamental developments
of the late nineteenth century proved to be.

The emergence of separate mathematical and philosophical subspecialties
within logic was not an entirely healthy thing for the field. The process of
making mathematical logic rigorous and demonstrating the usefulness of the
techniques in achieving mathematical ends that was pursued so successfully
in the first half of the twentieth century represents a coherent refinement of
logical methodology. All logicians should be pleased and proud that logic is
now an area with a body of results and problems that is as substantial and
challenging as those associated with most areas of mathematics.

But these methodological advances were gained at the expense of coverage.
In the final analysis, logic deals with reasoning—and relatively little of the
reasoning we do is mathematical, while almost all of the mathematical reasoning
that nonmathematicians do is mere calculation. To have both rigor and scope,
logic needs to keep its mathematical and its philosophical side united in a single
discipline. In recent years, neither the mathematical nor the philosophical
professions—and this is especially true in the United States—have done a great
deal to promote this unity. But the needs of computer science provide strong
unifying motives. The professional standards for logical research in computer
science certainly require rigor, but the field also puts its practitioners into
contact with reasoning domains that are not strictly mathematical, and creates
needs for innovative logical theorizing.

The most innovative and ambitious area of computer science, in terms of its
coverage of reasoning, and the one that is closest in spirit to philosophical logic,
is AI. This chapter provides an introduction, for outsiders who are familiar with
logic, to the aspects of AI that are closest to the philosophical logic tradition.
This area of logic deserves, and urgently needs, to be studied by historians.
But I am not a historian, and this document does not pretend to be a history.

2. John McCarthy and Commonsense Logicism
2.1. Logical AI
The most influential figure in logical AI is John McCarthy. McCarthy is one
of the founders of AI, and has consistently advocated a research methodology
that uses logical techniques to formalize the reasoning problems that AI needs
to solve.9 All but the most recent work in McCarthy’s research program can be
found in Lifschitz (1990a), which also contains an introduction to McCarthy’s
work, and Lifschitz (1990b); for additional historical background, see Israel
(1991).
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McCarthy’s methodological position has not changed substantially since it
was first articulated in 1959 and elaborated and amended in McCarthy and
Hayes (1969). The motivation for using logic is that—even if the eventual
implementations do not directly and simply use logical reasoning techniques
like theorem proving—a logical formalization helps us understand the reason-
ing problem itself. The claim is that without an understanding of what the
reasoning problems are, it will not be possible to implement their solutions.
Plausible as this Platonic argument may seem, it is in fact controversial in the
context of AI; an alternative methodology would seek to learn or evolve the
desired behaviors. The representations and reasoning that this methodology
would produce might well be too complex to characterize or to understand at
a conceptual level.

From McCarthy and Hayes (1969), it is clear that McCarthy thinks of
his methodology for AI as overlapping to a large extent with traditional
philosophy, but adding to it the need to inform the design of programs capable
of manifesting general intelligence. This idea is not uncongenial to some
philosophers (see, for instance, Carnap 1956, 244–247, and Pollock 1995), and
I personally believe that logical AI is potentially of great value for philosophy.
In practice, however, the actual theories that have emerged from McCarthy’s
methodology are influenced most strongly by work in philosophical logic, and
the research tradition in logical AI represents a more or less direct development
of this work, with some changes in emphasis. This review concentrates on logical
AI in relation to philosophical logic, without further comment on relations to
philosophy in general or to the feasibility of developing human-level intelligent
systems.

2.2. The Formalization of Common Sense
McCarthy’s long-term objective is to formalize commonsense reasoning, the
prescientific reasoning that is used in dealing with everyday problems. An
early example of such a problem, mentioned in McCarthy (1959), is getting
from home to the airport. Other examples include:

1. Narrative understanding. The reasoning involved in reconstructing im-
plicit information from narratives, such as sequencing of eventualities,
and inferred causal connections.

2. Diagnosis. For instance, detecting faults in physical devices.

3. Spatial reasoning. For instance, reasoning about the parts of rigid bodies
and their shapes, and their relation to the shape of the whole.

4. Reasoning about the attitudes of other agents. For instance, making
informed guesses about the beliefs and desires of other agents, not from
“keyhole observation” but from conversational clues of the sort that could
be obtained in a brief, interactive interview.
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Stated baldly, the goal of formalizing common sense would probably seem
outrageous to most philosophers, who are trained to think of common sense
as rather elusive. But whether or not the ultimate goal is appropriate and
achievable, the specific formalization projects that have emerged from this
program have been successful in several ways. They have succeeded in breaking
new territory for logic by extending the scope of the reasoning problems to
which logical techniques can be successfully applied. They have demonstrated
that logical techniques can be an important part of the solutions to specific
AI problems—planning is the most successful of these, but some success has
been achieved in other areas as well.10 They form the basis of one approach to
developing complete, autonomous agents.11 And they have illuminated many
specific forms of nonscientific reasoning—for instance, qualitative reasoning
about the behavior of physical devices.12

3. Nonmonotonic Reasoning and Nonmonotonic Logics
3.1. Nonmonotonicity

Aristotle believed that most reasoning, including reasoning about what to
do and about sublunary natural phenomena, dealt with things that hold
“always or for the most part.” But Aristotelian logic deals only with patterns of
inference that hold without exception. We find at the very beginning of logic
a discrepancy between the scope of logical theory and commonsense reasoning.
Nonmonotonic logic is the first sustained attempt within logical theory to
remedy this discrepancy. As such, it represents a potential for a sweeping
expansion of the scope of logic, as well as a significant body of technical results.

The consequence relations of classical logics are monotonic. That is, if a
set Γ of formulas implies a consequence C then a larger set Γ ∪ {A} will also
imply C. A logic is nonmonotonic if its consequence relation lacks this property.
Preferred models provide a general way to induce a nonmonotonic consequence
relation. Invoke a function that for each Γ produces a subset MΓ of the models
of Γ; in general, we will expect MΓ to be a proper subset of the models of Γ.
We then say that Γ implies C if C is satisfied by every model in MΓ. As long
as we do not suppose that MΓ∪{A} ⊆MΓ, we can easily have an implication
relation between Γ and C without imposing this relation on supersets of Γ.13

This model theoretic behavior corresponds to expectation-guided reasoning,
where the expectations allow certain cases to be neglected. Here is an important
difference between common sense and mathematics. Mathematicians are trained
to reject a proof by cases unless the cases exhaust all the possibilities; but
typical instances of commonsense reasoning neglect some alternatives. In fact,
it is reasonable to routinely ignore outlandish possibilities. Standing in my
kitchen in California, wondering if I have time to wash my dishes before leaving
for work, I do not take the possibility of an earthquake into account.
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There seem to be many legitimate reasons for neglecting certain cases in
commonsense reasoning. A qualitative judgment that the probability of a case
is negligible is one reason. But, for instance, in a planning context it may be
reasonable to ignore even nonnegligible probabilities, as long as there is no
practical point in planning on these cases.

The motivations for nonmonotonicity seem to involve a number of complex
factors; probability (perhaps in some qualitative sense), normality, expectations
that are reasonable in the sense that one can’t be reasonably blamed for having
them, mutual acceptance, and factors having to do with limited rationality.
As far as I know, no one has succeeded in disentangling and clarifying these
motivating considerations. In the early stages of its emergence in logical
AI, many researchers seem to have thought of nonmonotonic reasoning as a
general method for reasoning about uncertainty; but by the end of the 1980s,
implementations of fully quantitative probabilistic reasoning were not only
possible in principle, but were clearly preferable in many sorts of applications
to methods involving nonmonotonic logic. A plausible and realistic rationale
for nonmonotonic logic has to fit it into a broader picture of reasoning about
uncertainty that also includes probabilistic reasoning.14

3.2. Historical Motivations
Three influential papers on nonmonotonic logic appeared in 1980: McCarthy
(1980), McDermott and Doyle (1980), and Reiter (1980). In each case, the
formalisms presented in these papers were the result of a gestation period of
several years or more. To set out the historical influences accurately, it would
be necessary to interview the authors, and this I have not done. However, there
seem to have been two motivating factors: strategic considerations having to do
with the long-range goals of AI, and much more specific, tactical considerations
arising from the analysis of the reasoning systems that were being deployed in
the 1970s.

Section 2.2 drew attention to McCarthy’s proposed goal of formalizing
common sense reasoning. The brief discussion in section 3.1 suggests that
monotonicity may be an obstacle in pursuing this goal. An additional motive
was found in Minsky (1974), which was widely read at the time. This paper
presents an assortment of challenges for AI, focusing at the outset on the
problem of natural language understanding.15 Minsky advocates frame-based
knowledge representation techniques,16 and (conceiving of the use of these
representations as an alternative to logic) he throws out a number of loosely
connected challenges for the logical approach, including the problem of building
large-scale representations, of reasoning efficiently, of representing control
knowledge, and of providing for the flexible revision of defeasible beliefs. In
retrospect, I think most AI researchers would agree that these problems
are general challenges to any research program in AI (including the one
Minsky himself advocated at the time) and that logical techniques are an
important element in addressing some, perhaps all, of the issues. (For instance,
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a well-structured logical design can be a great help in scaling up knowledge
representation.)

Minsky apparently intended to provide a general argument against logical
methods in AI, but McCarthy (1980) and McDermott and Doyle (1980)
interpret it as a challenge that can be met by developing logics that lack
the monotonicity property. Perhaps unintentionally, Minsky’s paper seems
to have provided some incentive to the nonmonotonic logicians by stressing
monotonicity as a source of the alleged shortcomings of logic. In fact, the term
“monotonicity” apparently makes its first appearance in print in this paper.

The development of nonmonotonic logic also owes a great deal to the
applied side of AI. In fact, the need for a nonmonotonic analysis of a number
of AI applications was as persuasive as the strategic considerations urged by
McCarthy, and in many ways more influential on the shape of the formalisms
that emerged. Here, I will mention three such applications that appear to have
been important for some of the early nonmonotonic logicians: belief revision,
closed-world reasoning, and planning.

Belief Revision Doyle (1979) provides an analysis and algorithm for a “truth
maintenance system.” The TMS answers a general need, providing a mechanism
for updating the “beliefs” of knowledge bases. The idea of the TMS is to
keep track of the support of beliefs, and to use the record of these support
dependencies when it is necessary to revise beliefs. In a TMS, part of the support
for a belief can consist in the absence of some other belief. This introduces
nonmonotonicity. For instance, it provides for defaults; that Wednesday is the
default day for scheduling a meeting means the belief that the meeting will
be on Wednesday depends on the absence of the belief that it will not be on
Wednesday.

The TMS algorithm and its refinements had a significant impact on AI
applications, and this created the need for a logical analysis. (In even fairly
simple cases, it can be hard in the absence of analytic tools to see what
consequences a TMS should deliver.) This provided a natural and highly
specific challenge for those seeking to develop a nonmonotonic logic. The TMS
also provided specific intuitions: The idea that the key to nonmonotonicity
has to do with inferences based on unprovability was important for the modal
approaches to nonmonotonic logic and for default logic. And the TMS’s
emphasis on interactions between arguments began a theme in nonmonotonic
logic that remains important to this day. (See the discussion of argument-based
approaches, in section 3.4.)

Closed-World Reasoning The study of databases belongs to computer science
rather than to AI. But one of the research paradigms in the scientific analysis
of databases uses logical models of the representations and reasoning (see
Minker 1997 for a recent survey of the field), and this area has interacted
often with logical AI. The deductive database paradigm was taking shape at
about the same time that many AI researchers were thinking through the
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problems of nonmonotonic logic, and provided several specific examples of
nonmonotonic reasoning that called for analyses. Of these, perhaps the most
important, is the closed-world assumption, according to which—at least as
far as simple facts are concerned, represented in the database as positive or
negative literals—the system assumes that it knows all that there is to be
known. It is the closed-world assumption that justifies a negative answer to a
query “Is there a direct flight from Detroit to Bologna?” when the system finds
no such flight in its data. This is another case of inference from the absence of
a proof; a negative is proved, in effect, by the failure of a systematic attempt
to prove the positive. This idea, which was investigated in papers such as
Clark (1978) and Reiter (1978), also provided a challenge for nonmonotonic
logics, as well as specific intuitions—note that again, the idea of inference rules
depending on the absence of a proof is present here.

Planning The need for inertial defaults in temporal reasoning—defaults to
the effect that things will stay put in the absence of a reason for them to
change—arises in attempting to formalize the reasoning needed in planning.
This application (the apparent need for a nonmonotonic logic in developing an
economical formal solution to the frame problem) provided another specific
formal need. One of the earliest attempts to formalize nonmonotonic reasoning,
Sandewall (1972), addresses this problem. Inertial defaults are an especially
important and instructive case study; I will say no more about them here,
because they are discussed in detail in section 4.4.

3.3. The Earliest Formalisms
The three 1980 papers mentioned at the beginning of section 3.2 represent
three approaches to nonmonotonic logic that remain important subfields to this
day: circumscription (McCarthy), modal approaches (Doyle and McDermott),
and default logic (Reiter).

In (1993a), McCarthy urges us, when considering the early history of cir-
cumscription, to take into account a group of three papers (McCarthy 1987,
1980, 1986). The first paper connects the strategic ideas of McCarthy and
Hayes (1969) with the need for a nonmonotonic logic, and sketches the logical
ideas of domain circumscription, which is now classified as the simplest case of
circumscription. The second paper provides more thorough logical foundations,
and introduces the more general and powerful predicate circumscription ap-
proach. The third paper concentrates on developing techniques for formalizing
challenging commonsense examples.

All forms of circumscription involve restricting attention to models in which
certain sets are minimized; for this reason, circumscription can be grouped
with the preferred models approaches to nonmonotonicity; see section 3.4.
McCarthy’s formalism is fairly conservative; though it raises interesting logical
issues in higher order logic and complexity, it uses familiar logical frameworks.
And much of the focus is on the development of formalization techniques. The
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other varieties of nonmonotonic logic, including default logic and the modal
nonmonotonic logics, raise issues of the sort that are familiar to philosophical
logicians, having to do with the design of new logics, the systematic inves-
tigation of questions concerning validity, and managing the proliferation of
logics.

As the discussion of truth maintenance indicated, it is very natural to think
of nonmonotonic inferences as being hedged. That is, a nonmonotonic inference
may require not merely the presence of a set of proved conclusions, but the
absence of certain other conclusions. The general form of such a rule is:

DR In the presence of {A1, . . . , An}
and in the absence of {B1, . . . , Bn},
conclude C.

An important special case of DR is a normal default, a simple rule to the
effect that C holds by default, conditionally on A. This can be formalized by
taking the condition that must be absent to simply be the negation of the
conclusion.

NDR In the presence of {A1, . . . , An}
and in the absence of ¬C,
conclude C.

At first sight, it is somewhat perplexing how to formalize this notion of
nonmonotonic inference, since it seems to require a circular definition of
provability that can’t be replaced with an inductive definition, as in the
nonmonotonic case. The difficulty with the early theory of Sandewall (1972)
is that it does not address this difficulty successfully. McDermott and Doyle
(1980) and Reiter (1980) use fixpoint definitions to solve the problem. In both
cases, the logical task is (1) to develop a formalism in which rules like DR can
be expressed, and (2) to define the relation between a theory DT (which may
incorporate such rules) and the theories E which could count as reasonable
consequences of DT . In the terminology that later became standard, we need
to define the relation between a theory DT and its extensions.

In retrospect, we can identify two sorts of approaches to nonmonotonic logic:
those based on preference and those based on conflict. Theories of the first
sort (like circumscription) involve a relatively straightforward modification
of the ordinary model-theoretic definition of logical consequence that takes
into account a preference relation over models. Theories of the second sort
(like default logic) involve a more radical rethinking of logical consequence.
The possibility of multiple extensions—different possible coherent, inferentially
complete conclusion sets that can be drawn from a single set of premises—
means that we have to think of logical consequence not as a function taking
a set of axioms into its logical closure but as a relation between a set of
axioms and alternative logical closures. Because logical consequence is so
fundamental, this represents a major theoretical departure. With multiple
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extensions, we can still retrieve a consequence relation between a theory and a
formula in various ways, the simplest being to say that DT nonmonotonically
implies C if C is a member of every extension of DT . Still, the conflict-based
account of consequence provides a much richer underlying structure than the
preferential one.

Reiter approaches the formalization problem conservatively. Nonmonotonic-
ity is not expressed in the language of default logic, which is the same as
the language of first-order logic. But a theory may involve a set of default
rules—rules of the form DR. Reiter (1980) provides a fixpoint definition of
the extensions of such a theory, and develops the theoretical groundwork for
the approach, proving a number of the basic theorems.

Of these theorems, I mention one in particular, which will be used in
section 4.5, in connection with the Yale shooting anomaly. The idea is to take a
conjectured extension (which will be a set T ∗) and use this set for consistency
checks in a proof-like process that applies default rules in 〈W,D〉 successively
to stages that begin with W .

We define a default proof process T0, T1, . . . for W,D, relative to T ∗, as
follows.

Let T0 =W .

If no default rule in D is nonvacuously applicable to Ti relative to T ∗,
then Ti+1 = ThFOL(Ti).

Otherwise, choose some default rule

A : B1, . . . , Bn
C

that is nonvacuously applicable to Ti relative to T ∗, and let

Ti+1 = ThFOL(Ti ∪ {C}).
In other words, as long as we can nonvacuously close the stage we are

working on under an applicable default, we do so; otherwise, we do nothing.
A theorem of Reiter’s says that under these circumstances:

T is an extension of 〈W,D〉 if and only if there is a proof process
T0, T1, . . . for W,D, relative to T , such that

T =
∞⋃
i=0

Ti.

Thus, we can show that T is an extension by (1) using T for consistency checks
in a default reasoning process from 〈W,D〉, (2) taking the limit T ′ of this
process, and (3) verifying that in fact T ′ = T .

The modal approach represents a “higher level of nonmonotonic involvement”
than default logic. The unprovability construct is represented explicitly in
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the language, by means of a modal operator L informally interpreted as
“provable” (or, as in McDermott and Doyle 1980, by the dual of this operator).17

Although McDermott and Doyle’s terminology is different from Reiter’s, the
logical ideas are very similar—the essence of their approach, like Reiter’s, is a
fixpoint definition of the extensions of a nonmonotonic logic. Incorporating
nonmonoticity in the object language creates some additional complexities,
which in the early modal approach show up mainly in proliferation of the
logics and difficulties in evaluating the merits of the alternatives. As better
foundations for the modal approach emerged, it became possible to prove the
expected theorems concerning equivalence of modal formalisms with default
logic.18

Reiter’s paper (1980) appears to have developed primarily out of tactical
considerations. The earlier paper (1978) is largely concerned with providing an
account of database queries. Unlike the other seminal papers in nonmonotonic
logic, Reiter’s shows specific influence from the earlier and independent work
on nonmonotonicity in logic programming—the work seems to have been
largely inspired by the need to provide logical foundations for the nonmono-
tonic reasoning found in deductive databases. Doyle and McDermott’s paper
shows both strategic and tactical motivation—citing the earlier literature in
logicist AI, it motivates nonmonotonic logic as part of a program of modeling
commonsense rationality. But the theory is also clearly influenced by the need
to provide a formal account of truth maintenance.

3.4. Approaches to Nonmonotonic Logic
Nonmonotonic logic is a complex, robust research field. Providing a survey of
the subject is made difficult by the fact that there are many different founda-
tional paradigms for formalizing nonmonotonic reasoning, and the relations
between these paradigms is not simple. An adequate account of even a signifi-
cant part of the field requires something like a book-length treatment. A number
of books are available, including Antoniou (1997), Besnard (1992), Brewka
(1991), Brewka et al. (1997), Lukaszewicz (1990), Marek and Truszczyński
(1994), and Schlechta (1997). Two collections are especially useful: Ginsberg
(1987) and Gabbay et al. (1994). The former is a useful source for readers
interested in the early history of the subject and has an excellent introduction.
The handbook chapters in Gabbay et al. (1994) provide overviews of important
topics and approaches. My current recommendation for readers interested in a
quick, readable introduction to the topic would be Brewka et al. (1997) and
self-selected chapters of Gabbay et al. (1994). I will rely on these references for
technical background and concentrate on intellectual motivation, basic ideas,
and potential long-term significance for logic.

Preference Semantics At the outset in section 3.1, I mentioned how preferred
models could be used to characterize a nonmonotonic consequence relation.
This general model theory of nonmonotonicity emerged in Shoham (1988) five
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years after the work discussed in section 3.2, and represents a much more
general and abstract approach.

Preferential semantics rely on a function S taking a set K of models into a
subset S(K) of K. The crucial definition of preferential entailment stipulates
that A is a (nonmonotonic) consequence of Γ if every model M of S([[Γ]])
implies A. Shoham’s theory is based on a partial order ) over models: S(K)
can then be characterized as the set of models in K that are )-minimal in
K. To ensure that no set can preferentially entail a contradiction unless it
classically entails a contradiction, infinite descending ) chains need to be
disallowed.

This treatment of nonmonotonicity is similar to the earlier modal semantic
theories of conditionals—the similarities are particularly evident using the
more general theories of conditional semantics, such as the one presented in
Chellas (1975). Of course, the consequence relation of the classical conditional
logics is monotonic, and conditional semantics uses possible worlds, not models.
But the left-nonmonotonicity of conditionals (the fact that A �→ C does
not imply [A ∧B] �→ C) creates issues that parallel those in nonmonotonic
logics. Early work in nonmonotonic logic does not seem to be aware of the
analogy with conditional logic. But the interrelations between the two have
become an important theme more recently; see, for instance, Alcourrón (1995),
Arlo-Costa and Shapiro (1992), Asher (1995), Benferat et al. (1997), Boutilier
(1992), Delgrande (1998), Gabbay (1995), Gärdenfors and Makinson (1994),
and Pearl (1994).

Preference semantics raises an opportunity for formulating and proving rep-
resentation theorems relating conditions over preference relations to properties
of the abstract consequence relation. This line of investigation began with
Lehmann and Magidor (1992).

Modal and Epistemic Theories Neither Doyle or McDermott pursued the modal
approach much beyond the initial stages of McDermott and Doyle (1980) and
McDermott (1982). With a helpful suggestion from Robert Stalnaker (see
Stalnaker 1993), however, Robert C. Moore produced a modal theory that
improves in many ways on the earlier ideas. Moore gives the modal operator
of his system an epistemic interpretation, stressing the interpretation of a
default rule that licenses a conclusion for a reasoning agent unless something
that the agent knows blocks the conclusion. In Moore’s autoepistemic logic, an
extension E of a theory T is a superset of T that is stable, that is, deductively
closed, and that satisfies the following two rules:

if A ∈ E then �A ∈ E;(1)
if A �∈ E then ¬�A ∈ E;(2)

It is also usual to impose a groundedness condition on autoepistemic extensions
of T , ensuring that every member of an extension has some reason tracing
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back to T . Various such conditions have been considered; the simplest one
restricts extensions to those satisfying

(3) E is the set of nonmodal consequences of
T ∪ {A : �A ∈ E } ∪ {¬�A : A �∈ E }.

Autoepistemic logic remains a popular approach to nonmonotonic logic, in
part because of its usefulness in providing theoretical foundations for logic
programming. For more recent references, see Antoniou (1997), Konolige (1994),
Marek and Truszczyński (1989, 1991), and R. C. Moore (1993, 1995).

Epistemic logic has inspired other approaches to nonmonotonic logic. Like
other modal theories of nonmonotonicity, these use modality to reflect con-
sistency in the object language, and so allow default rules along the lines
of DR to be expressed. But instead of consistency, these use ignorance. See
Halpern and Moses (1985) and Levesque (1987) for variations on this idea.
These theories are explained, and compared to other nonmonotonic logics,
in Meyer and van der Hoek (1995). In more recent work, Levesque’s ideas
are systematically presented and applied to the theory of knowledge bases in
Levesque and Lakemeyer (2000).

3.5. Further Topics
This brief historical introduction to nonmonotonic logic leaves untouched a num-
ber of general topics that might well be of interest to even a nonspecialist. These
include graph-based and proof-theoretic approaches to nonmonotonic logic,
results that interrelate the various formalisms, complexity results, tractable
special cases of nonmonotonic reasoning, relations between nonmonotonic
and abductive reasoning, relations to probability logics, the logical intuitions
and apparent patterns of validity underlying nonmonotonic logics, and the
techniques used to formalize domains using nonmonotonic logics. For these
and other topics I have to refer the reader to the literature. As a start, I highly
recommend the chapters in Gabbay et al. (1994).

4. Reasoning about Action and Change
4.1. Priorian Tense Logic
Time and temporal reasoning have been associated with logic since the origins
of scientific logic with Aristotle.19 The idea of a logic of tense in the modern
sense has been familiar since at least the work of Jan Łukasiewicz (see, for
instance, Łukasiewicz 1970), but the shape of what is commonly known as
tense logic was standardized by Arthur Prior’s work in the 1950s and 1960s
(see Prior 1956, 1967, 1968).20 As the topic was developed in philosophical
logic, tense logic proved to be a species of modal logic; Prior’s work was heavily
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influenced by both Hintikka and Kripke, and by the idea that the truth of
tense-logical formulas is relative to world-states or temporal stages of the world;
these are the tense-theoretic analogs of the timeless possible worlds of ordinary
modal logic. Thus, the central logical problems and techniques of tense logic
were borrowed from modal logic. For instance, it became a research theme
to work out the relations between axiomatic systems and the corresponding
model theoretic constraints on temporal orderings. See, for instance, Burgess
(1984) and van Benthem (1983).

Priorian tense logic shares with modal logic a technical concentration on
issues that arise from using the first-order theory of relations to explain the
logical phenomena, an expectation that the important temporal operators
will be quantifiers over world-states, and a rather distant and foundational
approach to actual specimens of temporal reasoning. Of course, these temporal
logics do yield validities, such as

A→ PFA
(if A, then it was the case that A was going to be the case), which certainly
are intuitively valid. But at most, these can only play a broadly foundational
role in accounting for realistic reasoning about time. It is hard to think of
realistic examples in which they play a leading part.

This characteristic, of course, is one that modal logic shares with most tra-
ditional and modern logical theories; the connection with everyday reasoning is
rather weak. Although modern logical techniques do account with some success
for the reasoning involved in verifying mathematical proofs and logic puzzles,
they do not explain other cases of technical or commonsense reasoning with
much detail or plausibility. Even in cases like legal reasoning, where logicians
and logically minded legal theorists have put much effort into formalizing the
reasoning, the utility of the results is controversial.

4.2. Planning Problems and the Situation Calculus
Planning problems provide one of the most fruitful showcases for combining
logical analysis with AI applications. On the one hand, there are many practi-
cally important applications of automated planning, and on the other hand,
logical formalizations of planning are genuinely helpful in understanding the
problems and in designing algorithms.

The classical representation of an AI planning problem, as described in
Amarel (1968), evidently originates in early work of Herbert Simon, published
in a 1966 CMU technical report (Simon 1966). In such a problem, an agent in
an initial world-state is equipped with a set of actions, which are thought of
as partial functions transforming world-states into world-states. Actions are
feasible only in world-states that meet certain constraints (these constraints
are now called the “preconditions” of the action). A planning problem then
becomes a search for a series of feasible actions that successively transform
the initial world-state into a desired world-state.



Logic and Artificial Intelligence 867

The situation calculus, developed by John McCarthy, is the origin of most
of the later work in formalizing reasoning about action and change. It was
first described in 1969, in McCarthy (1983); the earliest generally accessible
publication on the topic is McCarthy and Hayes (1969).

Apparently, Priorian tense logic had no influence on Amarel (1968). But
there is no important difference between Amarel’s world-states and those of
Priorian tense logic. The “situations” of the situation calculus are these same
world-states, under a new name.21 They resemble possible worlds in modal
logic in providing abstract locations that support a consistent and complete
collection of truths. As in tense logic, these locations are ordered, and change is
represented by the variation in truths from one location to another. The crucial
difference between the situation calculus and tense logic is that change in the
situation is dynamic—changes do not merely occur, but occur for a reason.

This difference, of course, is inspired by the intended use of the situation
calculus: It is meant to formalize Simon’s representation of the planning
problem, in which a single agent reasons about the scenarios in which a series
of actions is performed.22 In this model, what drives change is the performance
of actions, so the fundamental model theoretic relation is the relation

Result(a, s, s′)

between an action a, an initial situation s in which a is performed, and a
resulting situation s′ immediately subsequent to the performance of the action.
Usually (though this is not absolutely necessary) the deterministic assumption
is made that s′ is unique. In general, actions can be successfully performed
only under certain limited circumstances. This could be modeled by allowing
for cases in which there is no s′ such that Result(a, s, s′). But usually, it is
assumed that Result is in fact a total function, but that in cases in which
s does not meet the “preconditions” of a, there are no restrictions on the
s′ satisfying Result(a, s, s′), so that the causal effects of a will be entirely
unconstrained in such cases.

A planning problem starts with a limited repertoire of actions (where sets of
preconditions and effects are associated with each action), an initial situation,
and a goal (which can be treated as a formula). Solving such a problem is a
matter of finding a sequence of actions that will achieve the goal, given the
initial situation. That is, given a goal G and initial situation s, the problem
will consist of finding a sequence a1, . . . , an of actions that will transform s
into a final situation that satisfies G. This means (assuming that Result is a
function) that G will be satisfied by the situation sn, where s0 = s and si+1 is
the s′ such that Result(ai+1, si, s′). The planning problem is in effect a search
for a sequence of actions meeting these conditions. The success conditions
for the search can be characterized in a formalism like the situation calculus,
which allows information about the results of actions to be expressed.

Nothing has been said up to now about the actual language of the situation
calculus. The crucial thing is how change is to be expressed. With tense
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logic in mind, it would be natural to invoke a modality like [ a ]A, with the
truth condition


s [ a ]A iff 
s′ A, where Result(a, s, s′).

This formalization, in the style of dynamic logic, is in fact a leading candidate;
see section 4.7.

But McCarthy and Hayes (1969) deploy a language that is much closer
to first-order logic. (This formalization style is characteristic of McCarthy’s
work; see McCarthy 1979.) Actions are treated as individuals. And certain
propositions whose truth values can change over time (propositional fluents) are
also treated as individuals. Where s is a situation and f is a fluent, Holds(f, s)
says that f is true in s.

4.3. Formalizing Microworlds
Since the pioneering work of the nineteenth- and early twentieth-century
logicians, the process of formalizing mathematical domains has largely become
a matter of routine. Although (as with set theory) there may be controversies
about what axioms and logical infrastructure best serve to formalize an area
of mathematics, the methods of formalization and the criteria for evaluating
them are relatively unproblematic. This methodological clarity has not been
successfully extended to other domains; even the formalization of the empirical
sciences presents difficult problems that have not yet been resolved.23

The formalization of commonsense reasoning presents an extreme with
respect to such methodological difficulties. The work in logical AI has not
converged successfully on a solution to this problem. But it has provided the
idea of formalizing microworlds that represent limited domains of knowledge
and reasoning, and work on formalizing these domains has provided some
instructive case studies. In addition, there are a few projects that strive for
more extensive coverage, as well as some useful methodological ideas. An
adequate study of this work would take up a great deal of space. Here, I only
mention some topics and provide some references to the literature.

Temporal reasoning, and in particular reasoning about actions and plans, is
the best-developed domain. At least one important methodology will emerge in
section 4.5: the development of a library of scenarios for testing the adequacy of
various formalisms, as the creation of specialized domains like the blocks-world
domain (mentioned in section 4.2) that serve a laboratories for testing ideas.
For more on the blocks world, see Davis (1991) and Genesereth and Nilsson
(1987). McCarthy’s ideas about elaboration tolerance (McCarthy 1999) provide
one interesting attempt to provide a criterion for the adequacy of formalizations.
Still other important ideas have emerged in the course of formalizing common-
sense domains. One is the importance of an explicit ontology; see, for instance,
Lenat and Guha (1989) and Fikes (1996). Another is the potential usefulness
of explicit representations of context; see Guha (1991). Finally, Davis (1991)
provides many extended examples of formalizations of commonsense domains.
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4.4. Prediction and the Frame Problem

To tell whether a plan achieves its goal, you need to see whether the goal holds
in the plan’s final state. Doing this requires predictive reasoning, a type of
reasoning that was, as far as I know, entirely neglected in the tense-logical
literature. As in mechanics, prediction involves the inference of later states
from earlier ones. But (in the case of simple planning problems at least) the
dynamics are determined by actions rather than by differential equations. The
investigation of this qualitative form of temporal reasoning, and of related sorts
of reasoning (e.g., plan recognition, which seeks to infer goals from observed
actions, and narrative explanation, which seeks to fill in implicit information
in a temporal narrative) is one of the most impressive chapters in the brief
history of commonsense logicism.

The essence of prediction is the problem of inferring what holds in the
situation that ensues from performing an action, given information about the
initial situation. I will assume that the agent has complete knowledge about
the initial situation—this assumption is usual in classical formalizations of
planning.24

A large part of the qualitative dynamics that is needed for planning consists
in inferring what does not change. Take a simple plan to type the word
“cat” using word processing software: My plan is to first enter “c,” then enter
“a,” then enter “t.” Part of my confidence in this plan is that the actions
are independent—for instance, entering “a” does not also erase the “c.” The
required inference can be thought of as a form of inertia. The frame problem
is the problem of how to formalize the required inertial reasoning.

The frame problem was named and introduced in McCarthy and Hayes
(1969). Unlike most of the philosophically interesting technical problems to
emerge in AI, it has attracted the interest of philosophers; most of the relevant
papers, and background information, can be found in Pylyshyn (1987) and Ford
and Pylyshyn (1996). Both of these volumes document interactions between
AI and philosophy.

The quality of these interactions is discouraging; as a philosopher, I even
find it somewhat embarrassing. Like any realistic commonsense reasoning
problem, the frame problem is open-ended, and can depend on a wide variety
of circumstances. If I put $20 in my wallet and go to the store with the wallet
in my pocket, I can safely assume that the $20 is still in my wallet. If I leave
the $20 on the counter at the store while shopping, I can’t safely assume it will
be there when I get back. This may account for the temptation that makes
some philosophers25 want to construe the frame problem very broadly, so that
very soon it becomes indiscernible from the problem of formalizing general
common sense in arbitrary domains. Such a broad construal may serve to
introduce speculative discussions concerning the nature of AI, but it loses all
contact with the genuine, new logical problems in temporal reasoning that
have been discovered by the AI community. It provides a forum for repeating
some familiar philosophical themes, but it brings nothing new to philosophy.
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I find this approach disappointing because I believe that philosophy can use
all the help it can get, and that the AI community has succeeded in extending
and enriching the application of logic to commonsense reasoning in dramatic
ways that are highly relevant to philosophy. The clearest account of these
developments to be found in the volumes edited by Pylyshyn is Morgenstern
(1996). A recent extended treatment can be found in Shanahan (1997); also
see Sandewall (1994).

The purely logical frame problem can be solved using monotonic logic, by
simply writing explicit axioms stating what does not change when an action
is performed. This technique can be successfully applied to quite complex
formalization problems.26 But nonmonotonic solutions to the framework have
been extensively investigated and deployed; these lead to new and interesting
lines of logical development.

Some philosophers (Fodor 1987; Lormand 1996) have felt that contrived
propositions will pose special difficulties in connection with the frame problem.
As Shanahan points out (Shanahan 1997, 24), Fodor’s “fridgeon” example is
readily formalized in the situation calculus and poses no special problems. How-
ever, as Lormand suggests, Goodman’s examples (Goodman 1946) do create
problems if they are admitted as fluents; there will be anomalous extensions
in which objects change from green to blue to preserve their grueness.

This is one of the few points that I can find in the philosophical literature
on the frame problem that raises a genuine difficulty for the formal solutions.
But the difficulty is peripheral, since the example is not realistic. Recall
that fluents are represented as first-order individuals. Although fluents are
situation-dependent functions, an axiom of comprehension is certainly not
assumed for fluents. In fact, it is generally supposed that the domain of fluents
will be a very limited set of the totality of situation-dependent functions;
typically, it will be a relatively small finite set of important variables, and will
be chosen in particular cases much as a set of variables is chosen in statistical
modeling.

I know of no systematic account in the AI literature of how to choose an
appropriate set of fluents, but it would certainly be part of such an account
that all fluents should correspond to projectable predicates, in Goodman’s
sense.

4.5. Nonmonotonic Treatments of Inertia and a Package of Problems
The idea behind nonmonotonic solutions to the frame problem is to treat
inertia as a default; changes are assumed to occur only if there is some special
reason for them to occur. In an action-centered account of change, this means
that absence of change is inferred when an action is performed unless a reason
for the change can be found in axioms for the action.

For explicitness, I use Reiter’s default logic to illustrate the formalization.
Recall that in Reiter’s theory, defaults are represented as rules, not formulas,
so that they are not subject to quantification. To formalize inertia, then, we
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need to use default rule schemata. For each fluent f, action a, and situation s,
the set of these schemata will include an instance of the following schema:

IR(f, a, s)
T : Holds(f, s) ↔ Holds(f,Result(a, s))

Holds(f, s) ↔ Holds(f,Result(a, s))
.

This way of doing things makes any case in which a fluent changes truth value
a prima facie anomaly. But it follows from Reiter’s account of extensions that
such defaults are overridden when they conflict with the monotonic theory of
situation dynamics. So if, for instance, there is a monotonic causal axiom for
the action blacken ensuring that blackening a block will make it black in the
resulting situation, then the appropriate instance of IR will be inefficacious,
and there will be no extension in which a white block remains white when it
is blackened.

The frame problem somehow managed to capture the attention of a wide
community—but if one is interested in understanding the complex problems
that arise in generalizing formalisms like the situation calculus, while at the
same time ensuring that they deliver plausible solutions to a wide variety
of scenarios, it is more useful to consider a larger range of problems. For
the AI community, the larger problems include the frame problem itself,
the qualification problem, the ramification problem, generalizability along a
number of important dimensions including incomplete information, concurrency
(multiple agents), and continuous change, and finally a large assortment of
specific challenges such as the scenarios mentioned later in this section.

The qualification problem arises generally in connection with the formal-
ization of commonsense generalizations. Typically, these involve exceptions,
and these exceptions—especially if one is willing to entertain far-fetched cir-
cumstances—can iterate endlessly. The same phenomenon, under labels like
“the problem of ceteris paribus generalizations,” is familiar from analytic phi-
losophy. It also comes up in the semantics of generic constructions found in
natural languages.27 In a sense, this problem is addressed at a general level by
nonmonotonic logics, which—though they do not provide a way to enumerate
exceptions—do allow commonsense generalizations to be formulated as defaults,
as well as enabling further qualifications to be added nondestructively. Ideally,
then, the initial generalization can be stated as an axiom and qualifications
can be added incrementally in the form of further axioms.

The qualification problem was raised in McCarthy (1986), where it was
motivated chiefly by generalizations concerning the consequences of actions;
McCarthy considers in some detail the generalization that turning the ignition
key in an automobile will start the car. Much the same point, in fact, can be
made about virtually any action, including stacking one block on another—the
standard action that is used to illustrate the situation calculus. A circumscrip-
tive approach to the qualification problem is presented in Lifschitz (1987); this
explicitly introduces the precondition relation between an action and its pre-
conditions into the formalism, and circumscriptively minimizes preconditions,
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eliminating from preferred models any “unknown preconditions” that might
render an action inefficacious.

Several dimensions of the qualification problem remain as broad, challenging
research problems. For one thing, not every nonmonotonic logic provides
graceful mechanisms for qualification. Default logic, for instance, does not
deliver the intuitively desired conclusions. Suppose one formalizes the common
sense generalization that if I press the “a” key on my computer it will type “a”
as a normal default:

T : Value(text,Result(Press-a, s)) = Value(text, s) + “a”
Value(text,Result(Press-a, s)) = Value(text, s) + “a”

.

If I then formalize the exception to this generalization that if I press the “a”
key while the Alt key is depressed the cursor moves to the beginning of the
current sentence as a similar normal default, I get two extensions: one in which
pressing “a” while the Alt key is depressed adds “a” to the text and another in
which it moves the cursor. The problem is that default logic does not provide
for more specific defaults to override ones that are more general. This principle
of specificity has been discussed at length in the literature. Incorporating it in
a nonmonotonic logic can complicate the theory considerably; see, for instance,
Asher and Morreau (1991) and Horty (1994). As Elkan (1995) points out, the
qualification problem raises computational issues.

Relatively little attention has been given to the qualification problem
for characterizing actions, in comparison with other problems in temporal
reasoning. In particular, the standard accounts of unsuccessful actions are
somewhat unintuitive. In the formalization of Lifschitz (1987), for instance,
actions with some unsatisfied preconditions are distinguished from actions
whose preconditions all succeed only by the fact that the conventional effects of
the action are ensured when the preconditions are met. It is as if an action of
spending $1,000,000 can be performed at any moment—although if you don’t
have the money, no effects in particular will be guaranteed.28 And there is no
distinction between actions that cannot even be attempted (like boarding a
plane in London when you are in Sydney), actions that can be attempted but in
which the attempt can be expected to go wrong (like making a withdrawal when
you have insufficient funds), actions that can be attempted with reasonable
hope of success, and actions that can be attempted with guaranteed success.

As J. L. Austin made clear (1961), the ways in which actions can be at-
tempted, and in which attempted actions can fail, are a well-developed part
of commonsense reasoning. Obviously, in contemplating a plan containing
actions that may fail, one may need to reason about the consequences of
failure. Formalizing the pathology of actions, providing a systematic theory of
ways in which actions and the plans that contain them can go wrong, would
be a useful addition to planning formalisms, and one that would illuminate
important themes in philosophy.

The challenge posed by the ramification problem (characterized first in
Finger 1987) is to formalize the indirect consequences of actions, where “in-



Logic and Artificial Intelligence 873

direct” effects are not delayed,29 but are temporally immediate and causally
derivative. If I walk into a room, the direct effect is that I am now in the room.
There are also many indirect effects: For instance, my shirt also is now in
the room. You can see from this that the formulation of the problem presup-
poses a distinction between direct consequences of actions (ones that attach
directly to an action, and that are ensured by the successful performance of
the action) and other consequences. This assumption is generally accepted
without question in the AI literature on action formalisms. You can make a
good case for its commonsense plausibility—for instance, many of our words
for actions (“to warm,” to “lengthen,” “to ensure”) are derived from the effects
that are conventionally associated with them. And in these cases, success
is entailed: If someone has warmed something, this entails that it became
warm.30 A typical example is discussed in Lin (1995): a certain suitcase has
two locks, and is open if and only if both locks are open. Then (assuming
that actions are not performed concurrently) opening one lock will open the
suitcase if and only if the other lock is open. Here, opening a lock is an action,
with direct consequences; opening a suitcase is not an action, it is an indirect
effect.

Obviously, the ramification problem is intimately connected with the frame
problem. In approaches that adopt a nonmonotonic inertial axiom to solve
the frame problem, inertial defaults will need to be overridden by conclusions
about ramifications to obtain correct results. In case the left lock of the suitcase
is open, for instance, and an action of opening the right lock is performed,
then the default conclusion that the suitcase remains closed, simply because
it is closed initially, needs somehow to be overridden. The most detailed and
promising approaches to the ramification problem depend on the development
of theories of commonsense causation, and therefore are closely related to the
causal approaches to reasoning about time and action discussed in section 4.6.
See, for instance, Lin (1995), Thielscher (1989), and Giunchiglia et al. (1997).

Philosophical logicians have been content to illustrate their ideas with
relatively small-scale examples. The formalization of even large-scale mathe-
matical theories is relatively unproblematic. Logicist AI is the first branch of
logic to undertake the task of formalizing large examples involving nontrivial
commonsense reasoning. In doing so, the field has had to invent new methods.
An important part of the methodology that has emerged in formalizing action
and change is the prominence that is given to challenges, posed in the form
of scenarios. These scenarios represent formalization problems that usually
involve relatively simple, realistic examples designed to challenge the logical
theories in specific ways. Typically, there will be clear commonsense intuitions
about the inferences that should be drawn in these cases. The challenge is to
design a logical formalism that will provide general, well-motivated solutions
to these benchmark problems.

Among the many scenarios that have been discussed in the literature are the
baby scenario, the bus ride scenario, the chess board scenario, the ferryboat
connection scenario, the furniture assembly scenario, the hiding turkey scenario,
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the kitchen sink scenario, the Russian turkey scenario, the Stanford murder
mystery, the Stockholm delivery scenario, the stolen car scenario, the stuffy
room scenario, the ticketed car scenario, the walking turkey scenario, and the
Yale shooting anomaly. Accounts of these can be found in Shanahan (1997)
and Sandewall (1994, esp. chapters 2 and 7).

Many of these scenarios are designed to test advanced problems that I do
not discuss here—for instance, challenges dealing with multiple agents, or with
continuous changes. Here, I concentrate on one of the earliest, and probably
the most subtle of these scenarios: the Yale shooting anomaly, first reported in
Hanks and McDermott (1985) and published in Hanks and McDermott (1986,
1987).

The Yale shooting anomaly involves three actions: load, shoot, and wait.
A propositional fluent Loaded tracks whether a certain pistol is loaded; another
fluent, Alive, tracks whether a certain person, Fred, is alive. load has no pre-
conditions; its only effect is Loaded. shoot has Loaded as its only precondition
and Alive as a negative effect; wait has no preconditions and no effects.

Causal information regarding the axioms is formalized as follows.

∀sHolds(load,Result(load, s))Load
∀s[Holds(Loaded, s) → Holds(¬Alive,Result(shoot, s))]Shoot 1
∀s[Holds(Loaded, s) → Holds(¬Loaded,Result(shoot, s))]Shoot 2

There is no wait axiom—that is, wait has no preconditions and no effects.
We will formalize the inertial reasoning in this scenario using a nonmonotonic

logic—to be specific, we use Reiter’s default logic. The set D of defaults for
this theory consists of all instances of the inertial schema IR.

In the initial situation, Fred is alive and the pistol is unloaded.

Holds(Alive, s0)IC 1
¬Holds(Loaded, s0)IC 2

The monotonic theory W of the scenario consists of (1) the action axioms
Load, Shoot 1, and Shoot 2 and (2) the initial conditions IC 1 and IC 2.

Let s1 = Result(load, s0), s2 = Result(wait, s1), and s3 = Result

(shoot, s2).
The Yale shooting anomaly consists of the fact that the theory allows an

extension in which the actions are load; shoot; wait, and in the final situation
s3, the pistol is unloaded and Fred is alive. The initial situation in the anomaly
and the three actions, with their resulting situations, can be pictured as follows.

s0
load−−−−→ s1

wait−−−−→ s2
shoot−−−−−→ s3

The natural, expected outcome of these axioms is that the pistol is loaded
and Fred is alive after waiting, so that shooting yields a final outcome in which



Logic and Artificial Intelligence 875

Fred is not alive and the pistol is unloaded. There is no problem in showing
that this corresponds to an extension; the problem is the presence of the other,
anomalous extension, which looks like this.

Alive
¬Loaded

s0

load−−−−→
Alive
Loaded

s1

wait−−−−→
Alive

¬Loaded
s2

shoot−−−−−→
Alive

¬Loaded
s3

Here is a narrative version of this extension. At first, Fred is alive and the
pistol is unloaded. After loading, the pistol is loaded and Fred remains alive.
After waiting, the pistol becomes unloaded and Fred remains alive. Shooting
is then vacuous since the pistol is unloaded, so finally, after shooting, Fred
remains alive and the pistol remains unloaded. The best way to see clearly
that this is an extension is to work through the proof. Less formally, though,
you can see that the expected extension violates just one default: The frame
default for Alive is violated when Fred changes state in the last step. But
the anomalous extension also violates only one default: The frame default
for Loaded is violated when the pistol spontaneously becomes unloaded while
waiting. So, if you just go by the number of defaults that are violated, both
extensions are equally good.

The Yale shooting anomaly represents a major obstacle in developing a
theory of predictive reasoning. A plausible, well-motivated logical solution to
the frame problem runs afoul of a simple, crisp example in which it clearly
delivers the wrong results. Naturally, the literature concerning the Yale shooting
problem is extensive. Surveys of some of this work, with bibliographical
references, can be found in Morgenstern (1996) and Shanahan (1997).

4.6. Some Emergent Frameworks
Many formalisms have been proposed to deal with the problems surveyed in
the previous section. Some are more or less neglected today. Several are still
advocated and defended by leading experts; some of these are associated with
research groups who are interested in not only developments of logical theory
but in applications in planning and cognitive robotics.

The leading approaches provide solutions to the main problems mentioned
in section 4.5, and to many of the scenarios designed to test and illustrate
theories of reasoning about action and change. It is commonly agreed that
good solutions need to be generalizable to more complex cases than the early
planning formalisms, and that in particular the solutions they offer should be
deployable even when continuous time, concurrent actions, and various kinds
of ignorance are allowed. Also, it is generally agreed that the formalisms should
support several kinds of reasoning, and, in particular, not only prediction and
plan verification but retrodiction, that is, construction of a sequence of states
and actions given partial information in the form of a narrative.
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I will describe four approaches here: (1) features and fluents (Sandewall),
(2) motivated action theory (Morgenstern and Stein), (3) state minimization in
the event calculus (Shanahan), and (4) causal theories (Lifschitz and others).
My accounts of the first three will be fairly brief; fortunately, each approach
is well documented in a single reference. I believe that the fourth approach
is likely to be most interesting to philosophers, and that it contains elements
that will be of lasting importance whatever changes future developments in
this area may bring.

Features and Fluents This approach, described in Sandewall (1994), uses
preference semantics as a way to organize nonmonotonic solutions to the
problems of reasoning about action and change. Rather than introducing a
single logical framework, Sandewall considers a number of temporal logics,
including ones that use discrete, continuous, and branching time. The properties
of the logics are systematically tested against a large suite of test scenarios.

Motivated Action Theory This theory grew out of direct consideration of the
problems in temporal reasoning described in section 4.5, and especially the
Yale shooting scenario. Morgenstern and Stein (1994) seek to find a general,
intuitively motivated logical framework that solves the difficulties. They settle
on the idea that unmotivated actions are to be minimized, where an action
(“actions” construed generally enough to include any change) can be motivated
directly, for example, by an axiom, or indirectly, through chains of motivations.
The key technical idea of the paper is a (rather complicated) definition of
motivation in an interval-based temporal logic. Morgenstern (1996) presents a
summary of the theory, along with reasons for rejecting its causal rivals. The
most important of these reasons is that these theories, based on the situation
calculus, do not appear to generalize to cases allowing for concurrency and
ignorance. She also cites the failure of early causal theories to deal with
retrodiction.

State-Based Minimization in the Event Calculus Baker (1989) presented a
solution to the version of the Yale shooting problem in the situation calculus,
using a circumscriptive inertial axiom. The very brief account of circumscription
in section 3 indicated that circumscription uses preferred models in which
the extensions of certain predicates are minimized. In the course of this
minimization, a set of parameters (including, of course, the predicates to be
minimized) is allowed to vary; the rest are held constant. Which parameters
vary and which are held constant is determined by the application.

In the earliest circumscriptive solutions to the frame problem, the inertial
rule CIR is stated using an abnormality predicate:

CIR ∀f∀s∀a[¬Ab(f, a, s) → [Holds(f, s) ↔ Holds(f,Result(a, s)]].

This axiom uses a biconditional, so that it can be used for retrodiction; this is
typical of the more recent formulations of common sense inertia.
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In circumscribing, the abnormality predicate is minimized while the Holds
predicate is allowed to vary and all other parameters are fixed. This formal-
ization succumbs to the Yale shooting anomaly in much the same way that
default logic does. (Circumscription does not involve multiple extensions, so
the problem emerges as the nonderivability of the conclusion that Fred is alive
after the occurrence of the shooting.)

In Baker’s reformulation of the problem, separate axioms ensure the ex-
istence of a situation corresponding to each Boolean combination of fluents,
and the Result function is allowed to vary, while the Holds predicate is held
constant. In this setting, the Result function needs to be specified for “coun-
terfactual” actions—in particular, for shooting as well as for waiting in the
Yale shooting anomaly. It is this feature that eliminates the incorrect model
for that scenario; for details, see Baker (1989) and Shanahan (1997, chapter 6).

This idea, which Shanahan calls “state-based minimization,” is developed
and extended in Shanahan (1997), in the context of a temporal logic deriving
from the event calculus of Kowalski and Sergot (1986). Shanahan’s formalism
has the advantage of being closely connected to implementations using logic
programming.

Causal Theories Recall that in the anomalous model of the Yale shooting
scenario the gun becomes unloaded after the performance of the wait action,
an action that has no conventional effects—the unloading, then, is uncaused.
In the context of a nonmonotonic logic—and without such a logic, the Yale
shooting anomaly would not arise—it is very natural to formalize this by
treating uncaused eventualities as abnormalities to be minimized.

This strategy was pursued by Hector Geffner (1990, 1992), and he formalizes
this simple causal solution to the Yale shooting anomaly. But the solution is
presented in the context of an ambitious general project in nonmonotonic logic
that not only develops properties of the preferred model approach and shows
how to apply it to a number of reasoning problems but relates nonmonotonic
logic to probabilities, using ideas deriving from Adams (1975). In Geffner
(1992), the causal theory is sketched; it is not developed to show its adequacy
in dealing with the battery of problems presented, and in particular the
ramification problem is left untouched.

The work beginning with Lifschitz (1987) has contributed to a sustained
line of research in the causal approach—not only by Lifschitz and students of
his such as Enrico Giunchiglia and Hudson Turner but by researchers at other
sites. For work in this area, and further references, see Haugh (1987), Elkan
(1991), Baral (1995), Lin (1995), McCain and Turner (1995, 1997), Gustaffson
and Doherty (1996), Thielscher (1989, 1996), Gelfond and Lifschitz (1998),
Lifschitz (1997, 1998), Nakashima et al. (1997), Giunchiglia and Lifschitz
(1998), and Turner (1999).

Here, I briefly describe some of the features of the theory presented in
Turner (1999), which returns to the ideas of Geffner (1992), but places them
in a simpler logical setting and applies them to the formalization of more
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complex scenarios that illustrate the interactions of causal inertia with other
considerations, especially the ramification problem.

The idea is to treat Caused as a modal operator [ c ], making this the basis
of a modal nonmonotonic logic. In the preferred models of this logic, the caused
propositions coincide with the propositions that are true, and this must be the
only possibility consistent with the extensional part of the model. To make
this more explicit, recall that in the possible-worlds interpretation of S5, it
is possible to identify possible worlds with state descriptions, which we can
represent as sets I of literals (atomic formulas and their negations). Making
this identification, then, we can think of a model as a pair 〈I, S〉, where S
is a set of interpretations including I. The modal operator [ c ] is given the
standard semantics: Let S be a set of interpretations. Then, where I ∈ S,
S 
I [ c ]A if and only if S 
I′ A for all I ′ ∈ S. 〈I, S〉 satisfies a set of formulas
T if and only if S 
I A for all A ∈ T .

Turner’s preferred models of T are the pairs 〈I, S〉 such that (1) 〈I, S〉
satisfies T , (2) S = {I}, and (3) 〈I, S〉 is the unique interpretation 〈I ′, S′〉
meeting conditions (1) and (2) with I ′ = I. Condition (2) guarantees the
“universality of causation”; it validates A↔ [ c ]A. Condition (3) “grounds”
causality in noncausal information (in the models in which we are interested,
this will be information about the occurrence of events), in the strongest sense:
It is uniquely determined by this information.

Although it is not evident from the formulation, Turner’s account of preferred
models is related to the constructions of more general nonmonotonic logics,
such as default logic. Consult Turner (1999) for details.

The axioms that specify the effects of actions treat these effects as caused;
for instance, the axiom schema for loading would read as follows.

Causal-Load [ c ]Holds(load,Result(load, s))31

Ramifications of the immediate effects of actions are also treated as caused.
And the nonmonotonic inertial axiom schemata take the form

[[[ c ]Holds(f, s)] ∧Holds(f,Result(a, s))] → [ c ]Holds(f,Result(a, s))

and

[[[ c ]¬Holds(f, s)] ∧ ¬Holds(f,Result(a, s))] → [ c ]¬Holds(f,Result(a, s)).

Thus, a true proposition can be caused either because it is the direct or indirect
effect of an action, or because it involves the persistence of a caused proposition.
Initial conditions are also considered to be caused, by stipulation.

To illustrate the workings of this approach, let’s consider the simplest case
of inertia: We have a language with just one constant denoting a fluent, f,
and one action-denoting constant, wait. As in the Yale shooting problem,
there are no axioms for wait; this action can always be performed and has
no associated effects. Let s1 be Result(wait, s0). The theory T contains an
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initial condition for f, Holds(f, s0) and a statement that the initial condition is
caused, [ c ]Holds(f, s0), as well as the inertial schemata.

Two models of T satisfy conditions (1) and (2): M1 = 〈I1, {I1}〉 and
M2 = 〈I2, {I2}〉, where I1 = {Holds(f, s0), Holds(f, s1)} and I2 = {Holds(f, s0),
¬Holds(f, s1)}.
M1 is the intended model, in which nothing changes. It satisfies condition (3),

since if 〈I1, S〉 satisfies T it satisfies [ c ]Holds(f, s1) by the inertial axiom

[[ c ]Holds(f, s)] ∧Holds(f, s1))] → [ c ]Holds(f, s1).

Therefore, S = {I1}.
M2 is an anomalous model, in which the fluent ceases spontaneously. This

model does not satisfy condition (3), since M3 = 〈I2, {I1, I2}〉 also satisfies
T ; in particular, it satisfies the inertial axiom for f because it fails to satisfy
Holds(f, s1). So, while M1 is a preferred model, M2 is not.

The apparent usefulness of a “principle of universal causality” in accounting
for a range of problems in qualitative commonsense reasoning will be tantalizing
to philosophers. And the causal theory, as initiated by Geffner and developed by
Turner, has many interesting detailed features. For instance, while philosophical
work on causality has concentrated on the causal relation, this work in logical
AI shows that a great deal can be done by using only a nonrelational causal
predicate.

Morgenstern’s two chief criticisms of the causal approach to reasoning about
actions are that it does not give an adequate account of explanation32 and
that the logical context in which it works (the situation calculus) is limited.
As work on the approach continues, progress is being made in these areas. But
the constraints that a successful logic of action and change must meet are so
complex that it is a reasonable research methodology to concentrate initially
on a restricted logical setting.

4.7. Action Formalisms and Natural Language
Although for many AI logicists, the goal of action formalisms is to illuminate
an important aspect of common sense reasoning, most of their research is
uninformed by an important source of insights into the commonsense view
of time—namely, natural language. Linguists concerned with the semantics
of temporal constructions in natural language, like the AI community, have
begun with ideas from philosophical logic but have discovered that these ideas
need to be modified to deal with the phenomena. A chief discovery of the
AI logicists has been the importance of actions and their relation to change.
Similarly, an important discovery of the “natural language logicists” has been
the importance of different kinds of events (including structured composite
events) in interpreting natural language. From work such as this the idea of
“natural language metaphysics” (see, for instance, Bach 1989) has emerged.

The goal of articulating a logical framework tailored to a representational
system that is motivated by systematic evidence about meanings in natural



880 The Development of Modern Logic

languages is not acknowledged by all linguistic semanticists. Nevertheless, it is
a significant theme in the linguistic literature. This goal is remarkably similar
to those of the commonsense logicists, but the research methodology is entirely
different.

Can the insights of these separate traditions be reconciled and unified? Is it
possible to constrain theories of temporal representations and reasoning with
the insights and research methodologies of both traditions? In Steedman (1995,
1998) these important questions are addressed, and a theory is developed that
extends action formalisms like the situation calculus, and that incorporates
many of the insights from linguistic semantics. The project reported in Steed-
man (1998) is still incomplete, but the results reported there make a convincing
case that the event-based ideas from linguistics can be fruitfully combined
with the action-centered formalisms in the AI literature. The possibility of
this unification is one of the most exciting logical developments in this area,
bringing together as it does two independent descendants of the earlier work
in the logic of time.

5. Causal Reasoning
In section 4.6, we traced the reasons for the development of theories incorpo-
rating causality in work on reasoning about action and change. This is not the
only area of AI in which causality has emerged. Causality figures in qualitative
reasoning about devices; for Herbert Simon’s important work in this area,
which goes back to the 1950s, see Simon (1952, 1977) and Iwasaki and Simon
(1986). Both these traditions are important. But the most robust and highly
developed program in AI relating to causality is that of Judea Pearl and his
students and associates, which derives from the use of causal diagrams in the
formalism for reasoning about probabilities known as Bayesian belief networks.

Pearl’s program has developed into a far-reaching campaign to rehabilitate
causality in statistical thinking. I do not discuss this topic here. For one thing,
this survey omits probabilistic reasoning in AI. For another, Pearl’s views
on causality are systematically and comprehensively presented in a recent
book-length study (Pearl 2000).

But I do wish to point out that the work on causality discussed in section 4.6
and Pearl’s ideas do share some common themes. On both approaches: Action
is central for causality. Also there is a focus on causality as a tool in reasoning
that is necessitated in part by limited resources. Another important theme
is the deployment and systematic study of formalisms in which causality is
related to other constructs (in particular, to probability and to qualitative
change) and a variety of realistic reasoning problems are addressed.

These commonalities provide reason to hope that we will see a science of
causality emerging from the AI research, unifying the contributions of the
probabilistic, the qualitative physics, and the nonmonotonic traditions, and
illuminating the various phases of causal reasoning.



Logic and Artificial Intelligence 881

Whether you take causality to be a fundamental construct in natural science,
or a fundamental natural phenomenon, depends on whether you have in mind
an idealized nature described by differential equations or you have in mind the
view of nature we have to take to act, either in everyday situations, or for that
matter in designing experiments in the laboratory. The fact that, as Bertrand
Russell noted (1957), causality is not to be found as a theoretical primitive in
contemporary physical theories is at odds with its seeming importance in so
many familiar areas of reasoning. The rigorous theories emerging in AI that
are beginning to illuminate the workings of causality are important not only
in themselves but in their potentiality to illuminate wider philosophical issues.

6. Spatial Reasoning
The precomputational literature in philosophical logic relating to spatial rea-
soning is very sparse in relation, for instance, to the temporal literature. The
need to support computational reasoning about space, however, in application
areas such as motion planning and manipulation in physical space, the indexing
and retrieval of images, geographic information systems, diagrammatic rea-
soning, and the design of high-level graphics programs has led to new interest
in spatial representations and spatial reasoning. Of course, the geometrical
tradition provides an exceptionally strong mathematical resource for this enter-
prise. But as in many other AI-related areas, it is not clear that the available
mathematical theories are appropriate for informing these applications, and
many computer scientists have felt it worthwhile to develop new foundations.
Some of this work is closely related to the research in qualitative reasoning
mentioned in section 2.2, and in some cases has been carried out by the same
individuals.

The literature in spatial reasoning is extensive; for references to some areas
not discussed here, see Forbus et al. (1991), Kapur and Mundy (1988), Renz
and Nebel (1999), Stock (1997), Wilson (1998), Yeap and Jeffries (1999),
Allwein and Barwise (1996), Glasgow et al. (1995), Hammer (1995), Kosslyn
(1990), Osherson and Lasnik (1990), Burger and Bhanu (1992), and Chen
(1990). Here, I discuss only one trend, which is closely connected with parallel
work in philosophical logic.

Qualitative approaches to space were introduced into the logical literature
early in the twentieth century by Leśniewski; see Leśniewski (1916), which
presents the idea of a mereology, or qualitative theory of the part-whole
relation between physical individuals. This idea of a logical theory of relations
among regions or the objects that occupy them, which does not depend on
construing regions as sets of points, remained an active area of philosophical
logic, even though it attracted relatively few researchers. More recent work in
the philosophical literature, especially Clarke (1981, 1985), Simons (1987), and
Casati and Varzi (1996, 1999), was directly influential on current computational
work.
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The regional connection calculus (RCC), developed by computer scientists
at the University of Leeds, is based on a primitive C relating regions of space:
The intended interpretation of C(x, y) is that the intersection of the closures
of the values of x and y is nonempty. (See Cohn et al. 1997; Cohn 1996 for
details and references.) One area of research concerns the definability of shapes
in RCC. The extent of what can be defined with this simple primitive is
surprising, but the technicalities quickly become complex; see, for instance,
Gotts (1994, 1996). The work cited in Cohn et al. (1997) describes constraint
propagation techniques and encodings in intuitionistic propositional logic as
ways of supporting implemented reasoning based on RCC and some of its
extensions. More recent work based on RCC addresses representation and
reasoning about motion, which of course combines spatial and temporal issues;
see Wolter and Zakharyaschev (2000). For more information about qualitative
theories of movement, with references to other approaches, see Galton (1997).

7. Reasoning about Knowledge
Epistemic logic is another area in which strong influences from philosophical
logic can be traced on logic in computer science. The classical source for
epistemic logic is Hintikka (1962), in which Jaakko Hintikka showed that
a modal approach to single-agent epistemic attitudes could be informative
and rewarding. This work discusses at length the question of exactly which
constraints are appropriate for knowledge and belief, when these attitudes are
viewed as explicated by a model theoretic relation over possible worlds; in
both cases, Hintikka argues for S4 type operators.

In several papers (including McCarthy 1979), McCarthy has recommended
an approach to formalizing knowledge that uses first-order logic, but that
quantifies explicitly over such things as individual concepts. In this section I’ll
discuss the approach taken by most computer scientists, however, who use a
modal language to formalize propositional attitudes.

The logical aspects of modal epistemic logic were not significantly developed
after Hintikka’s 1962 presentation; instead, the philosophical literature (which
is not extensive, compared with many other topics in the area) concentrates on
the issue of hyperintensionality, that is, whether epistemic attitudes should be
closed under logical consequence. This topic is especially challenging, turning
out to be closely related to the semantic paradoxes, and the philosophical
literature is inconclusive. Intuitions seem to conflict, and it is difficult to find
ways to model the important phenomena using logical techniques.33

Fagin et al. (1984) begins a tradition in computational logic that revives the
modal approach to epistemic logic, developing generalized logical foundations
and applications that had not occurred to the philosophers. The technical idea
is to simplify the modality, using S5 (or deontic S5 for belief), but to intro-
duce multiple agents and concentrate on reasoning having to do with agents’
attitudes about one another’s attitudes. Such logics have direct applications
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in the analysis of distributed systems, dynamic systems in which change is
effected by message actions, which change the knowledge of agents according
to rules determined by a communications protocol.

As such, this work belongs to a separate area of computer science, but one
that overlaps to some extent with AI. Later, this work has interacted with a
research tradition in economics that is concerned with the role of knowledge
in games and bargaining; see, for instance, Geanakopolos (1994) and Osborne
and Rubenstein (1994, chapter 5).

For some reason, the multiagent case did not occur to philosophical logi-
cians.34 This is another example of the way in which need for an application (in
this case, the need for a theory of distributed systems) provided the inspiration
for an important logical development. I will not present details concerning the
logic here, since they are extensively and systematically recorded in Fagin et al.
(1995); this is essential reading for anyone seriously interested in this topic.

Much of the interdisciplinary work in applications of the logic of knowledge
is reported in the proceedings of a series of conferences initiated in 1986
with Halpern (1986). These conferences record one of the most successful
collaborations of philosophers with logicians in computer science, although
the group of involved philosophers has been relatively small. The focus of the
conferences has gradually shifted from computer science to economics.

AI applications deal with with knowledge in the form of stored represen-
tations, and the tradition in AI with which we are concerned here thinks of
reasoning as the manipulation of symbolic representations. Also, it is mainly
due to AI that the problem of limited rationality has become a topic of se-
rious interest, providing a counterbalance to the idealizations of philosophy
and economics.35 So you would think that a logical model of propositional
attitudes that is committed to closure under logical consequence would be
highly unpopular in AI. But this is not so; the possible worlds approach to
attitudes is not only the leading theory in the areas discussed in Fagin et al.
(1995) but has even been advocated in robotics applications; see Rosenschein
(1989) and Rosenschein and Kaelbling (1995).

Nevertheless, the issue of hyperintensionality has been investigated in the
AI literature; see Konolige (1986), Lakemeyer (1997), Levesque (1984), and
Perlis (1985). Though there are some new positive results here, the AI work in
this area, in my opinion, has been as inconclusive as that in philosophy.

The philosophical literature on a related topic, the logic of perception, has
not been extensive; the main reference is Hintikka (1970).36 But sensation is
addressed in recent work in the AI literature which is concerned with developing
logical frameworks for general-purpose applications in Robotics. The main idea
in this area is to add sensing actions to the repertoire of a planning formalism
of the sort discussed in section 4. The earliest work in this area was carried
out in the 1980s by Robert Moore; see R. C. Moore (1985, 1995). For some of
the contemporary work in cognitive robotics, see Bacchus et al. (1999), Baral
et al. (2000), Golden and Weld (1996), Pirri and Finzi (1999), and Thielscher
(2000).
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8. Logical Approaches to Natural Language
and Communication

Over the last 25 years or so, many profound relations have emerged between
logic and grammar. Computational linguistics (or natural language processing)
is a branch of AI, and it is fairly natural to classify some of these developments
under logic and AI. But many of them also belong to an independent tradition
in logical foundations of linguistics; in many cases it is hard (and pointless) to
attempt a classification. This sketch concentrates on developments that focus
on reasoning; other applications of logic to linguistics are described in van
Benthem and ter Meulen (1996).

9. Parsing and Deduction
Grammar formalisms—special-purpose systems for the description of linguistic
systems and subsystems—can be thought of as logics designed to axiomatize
the association of linguistic structures with strings of symbols. You might be
able to infer from such a system, for instance, that “assignments” is the plural
form of the nominalization of the verb “assign.” So you can look at the process
of parsing a string of words—of finding the linguistic structures, if any, that
are associated with it—as a search for a proof in a certain logical system.

This approach has been highly successful as an analytic tool. It makes
model-theoretic techniques applicable to linguistic reasoning, This makes the
underlying reasoning problems much more transparent, and makes it possible
to apply many well-developed areas of logic to grammar formalisms. For more
information on these topics, see Shieber (1992) and Buszkowski (1996).

10. Feature Structure Logic
The usefulness and scope of logical techniques in relation to linguistics is
greatly increased by the development of techniques for analyzing the way
information is attached to linguistic units. It is very natural to represent the
information attaching, say, to a lexical item in the form of a set of functions
(or attributes) that produce values in some linguistic domain. A pronoun x
may have a number, a person, and a case: if x = “we” then

number(x) = plural,
person(x) = first,
case(x) = nominative.

In more general cases, the values of these functions may themselves be linguistic
units that take on values for certain attributes.

Allowing these functions to be partial provides a useful informational
representation of the stages of a linguistic parse; much of the work of parsing
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involves completing this partial information, subject to constraints imposed
by linguistic agreement conditions. Feature structures have a natural algebraic
treatment, and there is an elegant treatment of their logic. For more information
and references, see Rounds (1996).

11. Logic and Discourse
The reasoning associated with discourse is the probably the least well under-
stood area of computational linguistics. Although logical techniques do not yet
play a major role in discourse, they seem to offer one of the most promising
ways of providing a uniform account of the many forms of reasoning that are
involved in generating and interpreting language in interactive conversation.

I briefly mention three contributions to this area. Building on the fact that
the rules governing conversation are exception-ridden, Alex Lascarides and
Nicholas Asher have developed techniques for formalizing discourse phenomena
based on nonmonotonic logic; see Asher and Lascarides (1994, 1997). Jerry
Hobbs and various co-workers look at the inference processes used in discourse
as abductive, and propose to formalize abduction as a search for a proof in
which certain “low-cost” assumptions may be made that serve as data or
additional axioms for the proof. Hobbs et al. (1993) shows how an impressive
range of discourse phenomena can be formalized using this idea. In practice,
this abductive account looks rather similar to that of Lascarides and Asher,
because it involves deploying axioms about discourse (in the form of Horn
clause rules supplemented with weights giving the assumption costs of premises)
that in effect are nonmonotonic.

In more recent work, Matthew Stone (1998) shows how modal logic can in-
form the complex reasoning involved in natural language generation. Generating
a coherent, appropriately phrased text that usefully performs a task-oriented
communication task is difficult to formalize because it requires the integration
of complex and sophisticated domain information with discourse planning, user
modeling, and linguistic constraints. Stone shows that modal logic can be used
to modularize the formalization of the information required in this task; he also
shows how modal theorem proving can be used to implement the reasoning.

12. Taxonomic Representation and Reasoning
12.1. Concept-Based Classification
Traditionally, the task of representing large amounts of domain information
for general-purpose reasoning has been one of the most important areas
of knowledge representation. Systems that exploit the intuitive taxonomic
organization of domains are useful for this purpose; taxonomic hierarchies not
only help to organize the process of knowledge acquisition but provide a useful
connection to rule-based reasoning.37
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For domains in which complex definitions are a natural way to organize
information, knowledge engineering services based on definitions of concepts
have been extremely successful. Like variable-free versions of first-order logic
(see, for instance, Quine 1960), these systems are centered on concepts or
first-order predicates, and provide a number of mechanisms for their definition.
The fundamental algorithm associated with these taxonomic logics is a classifier
that inputs a system of definitions and outputs the entailment relations between
defined and primitive concepts. For background on these systems, see Brachman
et al. (1991) and Woods and Schmolze (1992).

The simplest taxonomic logics can be regarded as subsystems of first-order
logic with complex predicates, but they have been extended in many ways,
and the issues raised by many of these extensions overlap in many cases with
topics in philosophical logic.

12.2. Nonmonotonic Inheritance
Much more complex logical issues arise when the organization of a domain
into hierarchies is allowed to have exceptions. One way to approach this topic
is to explore how to make a taxonomic logic nonmonotonic in its own right;
but nonmonotonic inheritance is a topic in its own right. Although there
are strong affinities to nonmonotonic logic, nonmonotonic logic relies more
heavily on graph-based representations than on traditional logical ideas, and
seems to provide a much finer-grained approach to nonmonotonic reasoning
that raises entirely new issues, which quickly becomes problematic. For this
reason, systems of nonmonotonic inheritance tend to be expressively weak,
and their relations to the more powerful nonmonotonic logic has never been
fully clarified. For background on this topic, see Thomason (1992) and Horty
(1994).

13. Contextual Reasoning
In the tradition in philosophical logic dealing with contextual effects on the
interpretation of expressions, as well as in the more recent tradition in dynamic
logic, context is primarily formalized as an assignment of values to variables,
and the language is designed to make explicit reasoning about context either
very limited or outright impossible.

Concern in AI about the representation of large and apparently heteroge-
neous domains and about the integration of disparate knowledge sources, as
well as interests in formalizing common sense of the sort discussed in section 2.2,
have led to interest in the AI community in formalizing languages that take
context into account more explicitly.

McCarthy (1993b) recommends the study of languages containing a con-
struct

ist(c, φ),
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where ist is read “is-true.” This is analogous to the Holds construct of the
situation calculus—but now c stands for a context, and φ is a possibly complex
propositional representation, which many (including McCarthy) take to refer
to a sentence.

There are analogies here both to modal logic and to languages with an
explicit truth-predicate. But the applications that are envisioned for a logic of
context create opportunities and problems that are in many ways new. For
more about the logic of context, see Guha (1991), McCarthy and Buvač (1998),
and the papers in Bouquet et al. (1999) and Akman et al. (2001).

14. Prospects for a Logical Theory of Practical Reason
I believe there is reason to hope that the combination of logical methods with
planning applications in AI can enable the development of a far more compre-
hensive and adequate theory of practical reasoning than has heretofore been
possible. As with many problems having to do with commonsense reasoning,
the scale and complexity of the formalizations that are required are beyond
the traditional techniques of philosophical logic. However, with computational
methods of implementing and testing the formalizations and with areas such
as cognitive robotics to serve as laboratories for developing and testing ideas,
we can hope to radically advance a problem that has seen little progress since
it was first proposed by Aristotle: the problem of devising a formalization of
practical reasoning that is genuinely applicable to commonsense reasoning
problems.

The classical work in deontic logic that was begun by von Wright (1983)
is one source of ideas; see van der Torre (1997) and Horty (2001). In fact, as
the more recent work in deontic logic shows, nonmonotonic logic provides a
natural and useful way to modify the classical deontic logic.

An even more robust account of practical reasoning begins to emerge when
these ideas are supplemented with work on the foundations of planning and
reasoning about action that were discussed in section 4. But this development
can be pursued even further, by extending the formalism to include preferences
and intentions.38

Ultimately, what is needed is a model of an intelligent reasoning and acting
agent. Developing such a model need not be entirely a matter of logic, but
according to one school of thought, logic has a central role to play in it; see, for
instance, Baral and Gelfond (2000), Burkhard et al. (1998), Rao and Georgeff
(1991), and Wobcke et al. (1998).
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Notes
1. See, for instance, Nilsson (1995).
2. For two debates, see volume 3, number 3 of Computational Intelligence, devoted

to McDermott (1987), and the later exchange Nilsson (1991), Birnbaum (1991).
3. For some of the historical background, see Davis (1988).
4. See Stefik (1995) for general background on expert systems. For information

concerning explanation, see Clancey (1983) and J. Moore (1995).
5. For a good example of the use of these intuitions to motivate a system of logic,

see the extended argument in Hintikka (1962) that the modal logic S4 is the correct
logic of belief.

6. The submissions to the 1989 conference were unclassified as to topic; I sampled
every other article, a total of 522. The 1989 conference divided its contributed articles
into 26 topical sessions; I sampled the first paper in each of these sessions.

7. In the decade from 1990 to 1999 I counted one JPL publication by an AI
researcher, Boutilier (1996), and five papers showing some AI influence; all of these
dealt with nonmonotonic logic.

8. This includes robots (or “softbots”) that navigate artificial environments such
as the Internet or virtual worlds as well as embodied robots that navigate the physical
world.

9. I was surprised at first to hear the AI community refer to its logical advocates as
logicists. On reflection, it seems to me much better to think of logicist projects in this
general sense, as proposals to apply what Alonzo Church called “the logistic method”
in seeking to understand reasoning in various domains. It is far too restrictive to
narrowly associate logicism with Frege’s program.

10. Data integration is one such area. See Levy (2000). Large-scale knowledge
representation is another. See Lenat and Guha (1989).

11. See Reiter (2001) for an extended contribution to cognitive robotics, with
references to some of the other literature in this area. Reiter’s book also contains
self-contained chapters on the situation calculus and the problems of formalizing
reasoning about action and change. I recommend these chapters to anyone wishing
to follow up on the topics discussed in section 4. Another extended treatment of
action formalisms and issues is Shanahan (1997).

12. Much of the work in this last area has not made heavy use of logical techniques.
Qualitative physics and the formalization of other forms of qualitative reasoning is
an independent specialty in AI, different in many ways from logical AI. Nevertheless,
the two specialties have certainly influenced each other. For information concerning
qualitative reasoning, consult Forbus (1988), Weld and de Kleer (1990), and Kuipers
(1993).

13. For further details concerning this approach, see section 3.4.
14. John McCarthy makes a similar point, illustrating it with an example, in

McCarthy (1993a).
15. This very difficult and not particularly well-defined problem was very much

on the minds of many AI researchers in the area that later became knowledge
representation, but it has not proved to be a productive focus for the field. Natural
language interpretation has developed into a separate field that is largely concerned
with less sweeping problems, such as automated speech-to-speech discourse, data
mining, and text summarization. Logical techniques have been used with some
success in this area, but it is fair to say that natural language interpretation has
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not been the best showcase for logical ideas. Even the problem of providing an
adequate semantic interpretation of generic constructions—a natural application of
nonmonotonic logic—has turned out to be problematic. See Krifka et al. (1995) for
a general discussion of the issues.

16. This use of the word “frame” is unconnected to the use of the term in the
“frame problem,” and is not to be confused with that problem.

17. The analogy to modal logics of provability inspired by Gödel’s work (Boolos
1993) has, of course, been recognized in later work in nonmonotonic logic. But it has
not been a theme of major importance.

18. See Konolige (1988).
19. Readers interested in the historical aspects of the material discussed in this

section might wish to compare it to Ohrstrom and Hasle (1995)
20. For additional historical background on Prior’s work, see Copeland (1996).
21. In retrospect, the term “situation” is not entirely fortunate, since it was later

adopted independently and in quite a different sense by the situation semanticists
(see, for instance, Seligman and Moss 1996). In the AI literature, the term “state” is
often used interchangeably with “situation” and this, as far as I can see, causes no
confusion: The connections with physical states, as well as with the more general
states of any complex dynamic system are entirely appropriate.

22. The early versions of the situation calculus were meant to be compatible with
concurrent cases, that is, with cases in which there are multiple planning agents,
possibly acting simultaneously. But most of the logical analyses have been devoted
to the single-agent case.

23. Carnap’s attempts to formalize dispositional terms and inductive methods
are classical examples of the problems that emerge in the formalization of empirical
science.

24. For information about planning under uncertainty, see, for instance, Bacchus
et al. (1999), Boutilier et al. (1996), and DeJong and Bennett (1989).

25. Examples are Dennett (1987) and Fodor (1987).
26. See Schubert (1990) and Reiter (1993).
27. See Carlson and Pelletier (1995).
28. This way of putting it is a little misleading for the situation calculus, since

there is no robust notion of performing an action; instead, you consider the results
of performing hypothetical action sequences. Even so, the point that the theory of
unsuccessful actions has not been explored holds up.

29. Effects of actions that are delayed in time are a separate problem, which, as
far as I know, no one has solved.

30. The relationship between an action and the occurrence of its conventional
consequences is complicated, of course, by the “imperfective paradox” (see Dowty
1977; Lascarides 1992). Some of the work on AI theories of action and change is
informed by these complexities; see Steedman (1998, 1995). But for the most part,
they have not been taken into account in the AI literature.

31. Turner uses a discrete temporal logic other than the situation calculus. But
for uniformity of presentation I have used the situation calculus to present the ideas.

32. In explanation problems, one is reasoning backward in time. Here, information
is provided about a series of occurring states and the problem is to provide actions
that account for the occurrences.

33. For information about the philosophical tradition, see Hintikka (1986). Also,
see Laux and Wansing (1995).
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34. A personal recollection: I was certainly aware of this case in the early 1970s, but
did not devote much attention to it because it seemed to me that the generalization
from the single-agent case was relatively trivial and did not pose any very interesting
logical challenges.

35. See, for instance, Simon (1982a,b) and Russell and Wefald (1991).
36. Although this topic has received attention more recently in situation theory,

the logical issues, in my opinion, have not been illuminated by this work.
37. See Stefik (1995) for background on considerations having to do with knowledge

engineering.
38. For background on quantitative models of preference and decision, see Doyle

and Thomason (1999). For work in AI on intentions, see, for instance Cohen and
Levesque (1990), Konolige and Pollack (1993), Pollack (1992), and Sadek (1992).
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Indian Logic

1. Introduction
J. N. Mohanty and Amita Chatterjee

In India, logic was never developed as a distinct discipline but was embedded
in epistemology. The roots of Indian logic can be traced to two slightly distinct
traditions—the vāda and the pramān. a traditions. While the former lays down
the principles of argumentation to be used in debates, the latter discusses
inference as a source of sound knowledge of the world. “On account of this
genesis, Indian logic imbibed an epistemological character which was never
removed throughout the history” (Matilal 1970).

Indian theories of inference have evoked two diametrically opposite senti-
ments in the Western mind. On the one hand, we find concerted efforts to
translate Indian “logic” into Anglo-European formal logics, like syllogistics or
the first-order predicate calculus, and on the other hand, we find statements to
the effect that Indian logic is no logic at all. Both these groups are, however,
construing “logic” in a very narrow sense. “Logic” to them means the formal
deductive theory of inference, which revolves around “the consequence relation”
and its properties. But no Indian philosophical system takes a purely formal
approach to inference or inferential knowledge. Yet we consider these theories
of inference as logic insofar as these are theories of human reasoning and tell us
how to distinguish good arguments from bad arguments, acceptable arguments
from unacceptable ones.

Since theory of inference in India has been steeped in epistemology, it has de-
veloped some unique features not found in Western logic. First, over and above
its truth-preserving aspect, an inference must possess a truth-giving aspect.
That is, for inference as a way of knowing, it is not enough that the conclusion
follows from the premises, the conclusion must also be true. It is expected of
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such a theory of inference that it lays down conditions of validity/consistency as
well as conditions of soundness. In Western formal logic, conditions of validity
do not depend in any way on conditions of truth or soundness. So, an inference
can yield a true conclusion without being valid, and an inference can be valid
even without yielding a true conclusion. In a formal system, syntax can be
developed without any reference to semantics. Hence in Western formal logic,
semantic considerations are brought in after all syntactic rules are laid down
and syntactic consequences are derived. The connection between the syntactic
and the semantic sides of a logical system is made by two metatheorems of
completeness and soundness. But in Indian theory of inference, syntax always
remains hyphenated with semantics. For inference as an accredited source of
knowing the world, validity is not enough; soundness and epistemic progress
also need to be guaranteed. Besides, in Indian theories of inference the notion
of validity/invalidity of an inference usually presupposes a host of background
information and often essentially hinges on them. Two necessary corollaries
of this stance are (a) no constituent of an inference can have zero-information
content like a tautology, and (b) validity of an inference cannot be delinked
from soundness, hence an inference is valid only if it yields a true conclusion.

Second, inference as a cognitive process admits of causal analysis. In Indian
theories of inference we find elaborate discussions on how inference results
from a number of cognitive states, and what conditions give rise to cognitive
certainty. Here the relation between premise and conclusion is viewed not as an
abstract logical relation but as a psychocognitive relation of causal sequence.
Consequently, inferential necessity is understood in terms of a deterministic
knowledge machine (Sarkar 1997) of which human cognitive processes, including
logical thinking, is a representative model. Thus, we find, psychology enters
the territory of logic. Yet no system of Indian logic is open to the charge of
“psychologism,” because psychological conditions involved in the causal process
are not unique to any individual, but are possessed by all those who infer.

Third, all Indian logicians adopted a grammar-based model of logical analy-
sis, while in Western logic the geometrico-mathematical model is in use. But
interestingly, this grammar-based model has led the Naiyāyika-s to the insight
of mathematical logicians. They understand general sentences as containing
two predicates and not in the manner of traditional Aristotelian logic. Even
then, this logic was never considered useful in scientific endeavors because of
its inextricable reference to the knowing subject.

Fourth, Western formal logic is extensional. Indian logic, it has been said, is
basically logic of properties and hence intensional. But what Indian logicians
mean by “property” is somewhat different from its meaning in English. The
term “property” here signifies any locatee, be it an abstract property or a
concrete object, which resides in a locus. So the basic combination in Indian
logic is not a straightforward subject-predicate proposition but a Sanskrit
sentence of the locus-locatee model, for example, “a has f -ness.” But as the
sentences of the form “a has f -ness” can be easily correlated with the sentence
of the form “a is f ,” it is possible to read such logic of properties extensionally.
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Fifth, there has been lots of debate in recent times over the question of
whether Indian philosophers admit propositions and what should be taken as
the truth-bearer. Though no general consensus has been reached, we think that
the content of episodic cognition is the most suitable to be the truth-bearer.
Indian logicians generally view the content of cognition as a relational complex
referring to a complex object and not to a fact.

Sixth, though ontological and epistemological commitments underlying
different Indian logical systems are diverse and there are controversies centering
the number of constituents (avayava) in an inference, every system accepts at
least three inferential components. These are sādhya (the provable property,
the probandum, the signified), hetu (the ground of inference, the reason, the
sign, the probans), and paks.a (the locus of inference). It will be evident from
the following sections that Indian systems of logic were basically logic of terms
but essentially different from syllogistic. But interestingly, there are fragments
indicating their interpretation of the so-called propositional connectives or
the sentence-forming operators, of which different varieties of negation have
been the subject of the most elaborate discussions. The subtle distinctions
that Indian logicians have made between absence and difference and different
readings of the principle of double negation that they have offered are being
appreciated by modern logicians and computer scientists.

Finally, Indian theories of inference cannot be neatly categorized as deductive
or inductive in the standard sense. Ancient Indian logicians were, in fact, trying
to formulate conditions of human reasoning in general. They were trying to
determine under what conditions an inferential leap from the known to the
unknown would be warranted. As Sarkar (1997) rightly points out,

The problem that Indian logicians were concerned with was neither
the development of a formal theory of deductive or syllogistic
reasoning, nor was it the problem of induction as we understand it
now, nor even the problem of how to make a palatable cocktail of
the two. Their real concern centered around the problem of selecting
the right sort of projection-base and of framing appropriate rules for
distinguishing between projectable and nonprojectable properties.

So Indian theories of inference are primarily theories of adequate evidence, but
they may also be viewed as systems of nonmonotonic reasoning, which is being
used in modern computer simulation of actual human reasoning processes.

2. Nyāya (Old) Logic
S. R. Saha

Nyāya philosophy is based on the aphorisms called Nyāya-sūtra of Gautama
who is believed to have compiled them in the second century after Christ.1 In
his first aphorism he mentions 16 kinds of things beginning with pramān. a. By
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pramān. a Gautama understands the means or instrument for pramā. Pramā
is knowledge and is obtainable through either perception or inference or
comparison or testimony. Prameya or knowable, strictly speaking, is that thing
whose ignorance or misconception leads to suffering and whose knowledge
yields freedom from suffering. The most important of these knowable entities is
ātman or self. The other knowables are related to inference, which is the second
pramān. a of the four admitted by Gautama. One of them is “limb” (avayava)
or constituent of an argument (nyāya). In a sense Gautama has developed
a new science (śāstra) about nyāya in fullness and that gives his system of
philosophy the name “Nyāya”; this suggests that of the various logical and
epistemological concerns in Nyāya, varieties of inference, structure of nyāya
or arguments and pseudo-probans constitute the most essential features of
Nyāya (old) logic. We shall not cover that part of Gautama’s philosophy that
deals with distinction between the different forms of debate (vāda, jalpa, and
vitan. d. ā) and the related topics of quibbles (chala), futile rejoinders (jāti), and
defeat situation (nigrahasthāna).2

2.1.
Gautama devotes three Nyāyasūtras (NS 1/1/5 and 2/1/37–38) to inference.
NS 1/1/5 gives both a definition and a classification of inference. In Sanskrit
the aphorism runs as the following.

Atha tatpūrvakam trividham anumānam pūrvavat śes.avat sāmānyatodr.s. t.a-
m. ca. The second word [the first word Atha (meaning after perception) is not
considered here] of NS 1/1/5 is tatpūrvakam and is supposed to give Gautama’s
definition of anumāna. The remaining words are trividham anumānam (the
word anumāna occurs only once) pūrvavat śes.avat sāmānyatodr.s. t.am. ca. The
word anumānam in this cluster is intended to be understood in relation to
the word for the definiens (tatpūrvakam) and also for enabling us to get the
full proposition of the classification by relating it to the word trividham. The
word tatpūrvakam may be understood as that which has that (tat, that is,
perception that has been discussed in the preceding sūtra) as its (causal)
antecedent (pūrvakam). The definition thus states that inference (anumāna
or anumiti) is that cognition (jñāna) which is due to (pūrvakam) the former
(tat) as its causal antecedent and which is veridical in nature (avyabhicāri)
(the words jñāna and avyabhicāri being brought forward from the preceding
aphorism).

Inference, according to the master, is directly based on perception in the
paradigmatic cases, but indirectly on it in special cases where it may be based
on other perception-based types of knowledge. But perception of what kinds
of things can act as such a basis? There is no mention of this in Gautama’s
aphorism. Vātsyāyana thus offers clarification in his commentary. He uses two
words in this context, which require some explanation. The words are lin. ga
and lin. gin. The etymological meaning of lin. ga is that a lin. ga is a (natural) sign
and the lin. gin is what is signified by it. In the familiar example of inference
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from smoke to fire, smoke is the lin. ga and fire is the lin. gin because perception
of the lin. ga in a given place leads to knowledge of fire in that place. Perception
of the lin. ga is called lin. ga-darśana, the latter component darśana here means
perception. This causal factor, however, is inadequate by itself. It can lead
to the desired inferential knowledge, if it is also known to the person that
there is an appropriate kind of relationship (sambandha) between the lin. ga
and the lin. gin. Such a relationship might have been, as a matter of fact, known
much earlier through perception. But on the occasion of the inference when a
person comes to have the knowledge of the lin. ga, that earlier knowledge of the
relationship between the lin. ga and the lin. gin gets revived leading to memory
of that relationship.3 Thus, Vātsyāyana thinks that Gautama has offered a
causal definition of inference in NS 1/1/5 as he has given us a causal definition
of perception in NS 1/1/4.

Gautama explicitly mentions that inference is threefold (trividha) and also
names its three varieties in NS 1/1/5, although he does not give their examples.
In NS 2/1/37 he records an objection against the claim of soundness of
inference and he offers his reply in the following aphorism. He uses words there,
which give us an idea of the inference whose soundness is being challenged.
Vātsyāyana did certainly have these aphorisms in mind while writing his
commentary on the earlier aphorism (NS 1/1/5). But he gave therein examples
of the three varieties, although all of these cannot be constructed from the
words used by Gautama in the two aphorisms (NS 2/1/37–38) under reference.
In other words, Vātsyāyana has certainly offered innovative interpretation of
NS 1/1/5.

The words for the three varieties mentioned in NS 1/1/5 are (a) pūrvavat,
(b) śes.avat, and (c) sāmānyatodr.s. t.a. These three words are all compound words.
Compound words in Sanskrit are often amenable to different interpretations.
The clue to the meaning of a word ending with vat [as in (a) and (b)] lies (a) in
deciphering the meaning of (i) vat and also of (ii) the other component of the
compound and (b) in determining how the two are to be related to one another
in the compound. The resultant multiplicity of alternatives makes it difficult to
understand the exact meanings of the compound words under reference. Added
to this ambiguity in respect of the component vat there is another problem,
which makes the situation more complicated, and that problem relates to the
fact that the first components of the compound words in question are also quite
ambiguous in meaning. Thus, the word pūrva in pūrvavat may be understood
simply as the preceding or in the stronger sense as the cause. Again, the word
śes.a in śes.avat may be understood as the succeeding or as the remainder (after
elimination of other possible alternatives in a given context).

So far as the third word sāmānyatodr.s. t.a is concerned, the problem may
not be that acute. But this word may be understood in the negative sense to
include all inferences, which are neither pūrvavat nor śes.avat, as we shall see
later. Or should we assign a positive meaning to the compound as Vātsyāyana
seems to have done? If we assign negative meaning to the third compound,
the scheme of classification promises to be exhaustive or complete in the sense
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that if an instance of inference does not merit inclusion under any of the first
two types, it can surely be accommodated under the third type. But in case
we assign a positive meaning to the third compound while doing the same for
the first two, the classification will pose a problem because a given instance
may seem to defy the types thus threatening the claim of exhaustive character
of the scheme of classification.

Vātsyāyana proposed two interpretations, in both of which all the three
compound words figuring in Gautama’s aphorism seem to have been assigned
positive meanings. His expectation was perhaps that if the first interpretation
leaves out any example outside the scheme then the second interpretation
would not. But it is advisable now to take a look at the examples themselves
and at Vātsyāyana’s interpretations.4

Vātsyāyana’s first interpretation treats both pūrvavat and śes.avat as ad-
jectives with respect to anumāna (inference) and the word pūrva is to be
understood in the sense of cause and the word śes.a in the sense of effect. Hence,
an inference is of the pūrvavat type in which from the perception of the cause
one infers the effect, for example, when one infers that there will be rain by
perceiving clouds in the sky. An inference is of the śes.avat type in which from
the perception of the effect one infers its cause, for example, when one infers
that there has been rain earlier by noticing that the river is full of water and
the current is moving very fast. In both the types of inference, the relationship
between the sign (lin. ga) and the signified is a matter of regular sequence
amenable to observation and the members of the sequence themselves are such
that they belong to different segments of time. Thus, from the perception
of a present phenomenon one infers the future in pūrvavat inference (from
cause to effect). In the śes.avat inference one infers the existence of the cause,
which belongs to the past on the basis of the effect, which belongs to the
present. It is to be noted that the sign and the signified are not both things
that belong to the present. Therefore, if in an inference both are things of
the present time it cannot be either of the pūrvavat or of the śes.avat variety,
such an inference then is of the third variety. Thus Uddyotakara in his gloss
on Vātsyāyana’s commentary on NS 1/1/5 mentions an example in which
one infers the presence of water nearby on seeing cranes in the vicinity. In
explanation of the negative meaning Tarkavagisa, in his Nyāyadarśana has
quoted from Gadādhara’s gloss on Raghunātha’s Anumitid̄ıdhiti in support of
this negative meaning. He has himself offered an example in which on the basis
of knowledge that earthen-ness is pervaded by substance-hood one infers about
an earthen object that it is a substance—an inference in which both the sign
and the signified are eternal entities and hence are not events of a sequence.5

Vātsyāyana is, however, silent about this negative meaning of sāmānyato-
dr.s. t.a and also about whether the foregoing examples should be subsumed
under this variety. In fact, he makes an altogether different stipulation here,
as indicated by the example chosen by him in which one infers that the sun
moves. But that the sun moves is never a datum to anybody’s perception,
although the sign that may lead one to that inference is something, which is
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given in perception. Therefore, the relationship between the possible sign and
the movement of the sun also will not be a perceptual datum. If one believes
that the sun moves as people of that time used to believe, his belief will have
to be the result of some inference, the lin. ga or sign which must be such that it
is something perceptible and must be so in respect of the sun. It is suggested
that since position of the sun in the sky is something one can observe, as we
all see that the sun rises in the eastern horizon and sets in the western horizon
and stays just above our head at noon, we can search for an explanation of
this phenomenon. But the varying positions of the sun in the sky that are
perceptible and the movement of the sun (which is not perceptible) cannot be
shown to be related on the basis of perception. Hence, the relationship between
the sign and the signified has to be conceived and formulated for the purpose
of the inference in such a way that it does not involve any reference to the sun.
Instead of taking the movement of the sun as one of the terms of the relationship
we shall have to take it in a general way (sāmānyatah. ) as the movement of a
body for making the relationship amenable to perception (dr.s. t.a). Consequently,
we shall have to drop the reference to the sun on the side of the sign too, thus
changing it to “varying positions of a body” from “varying positions of the sun.”
The required relationship between the sign and the signified may accordingly
be stated as that the fact of varying positions of a body must be associated
with the movement of that body. This relationship, it is claimed, can be seen
with respect to many known things, for example, an animal. On the strength
of this and on the basis of perception of varying positions of the sun in the
sky, one can legitimately infer that the sun moves from one place to another.
We thus see that Vātsyāyana here clearly suggests that we assign a positive
meaning to the type, and this he shows to be consistent with the etymological
meaning of the word. It may be noted here that the etymological meaning is
restricted only to the fact that the knowledge of relationship warranting the
inference is about a relationship not between a sign conceived as a particular
instance and a similarly conceived instance of the signified but between the sign
and the signified conceived in a general way. If sāmānyatodr.s. t.a is understood
only in this etymological sense, it would have to accommodate within its scope
the familiar example of inference of fire from smoke. If the relationship were
presented as obtaining between a given instance of smoke and a given instance
of fire and not between smoke in general and fire in general then it would not
have been justified for a person to infer fire in a place where he has perceived
a different instance of smoke. In fact a later logician, Nārāyan. a Bhat.t.a in
his treatise Mānomeyodaya, which is a textbook of Mı̄mām. sā philosophy, has
sought to include this example under the type by accepting only its etymological
meaning (sāmānyata—in general) as the guide.6 But as Vātsyāyana makes the
additional stipulation that the signified (lin. gin) in such a type of inference is
not amenable to perception (like the motion of the sun, which is imperceptible
to us), we cannot include the inference of fire from smoke under this type. And
because of similar considerations we shall not be allowed to include the other
two examples (of crane/water and earthen-ness/substance-hood) noted under
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this variety. Vātsyāyana does of course offer a second interpretation of the
tripartite classification, which makes room for such examples.

According to Vātsyāyana’s second interpretation, the word pūrvavat is not to
be treated as adjective of anumāna (inference) as in the first interpretation but
as an adjective of lin. ga (sign) and lin. gin (signified) although the word śes.avat
is to be understood as before as the adjective of anumāna. Under this new
interpretation the component vat in pūrvavat means “similar.” The relationship
between the sign and the signified is something that might have been learned
earlier as illustrated in a given case or cases of presence of particular instances
of the sign and the signified. If subsequently a thing of the kind of the sign that
figured in the previous knowledge of the relationship comes to be noticed at a
place then the person can infer the presence of a thing of the kind to which the
instance of the signified known earlier belongs. Vātsyāyana illustrates such a
pūrvavat case by reference to inference of fire from smoke. It seems to us that
under this interpretation of pūrvavat the relationship is in fact between the
sign in general and the signified in general. So understood the pūrvavat variety
can even include all cases of inference where relationship is not understood
as obtaining between the cause and the effect. It will also include all cases
of causal type inference either from cause to effect or from effect to cause
that have been mentioned in respect of the first two varieties of the earlier
interpretation. A given instance of effect may be due to a given instance of
cause, but when it comes to the matter of formulating the causal relationship
involved in the case, the relationship has to be conceived as that obtaining
between types and not between particular instances. If this explanation looks
acceptable, the pūrvavat variety under the second interpretation will certainly
be more inclusive, leaving room for cases of inference under the now vacant
śes.avat variety if these do not merit inclusion under the pūrvavat or the type.

Vātsyāyana picks up an example from Kan. āda to which he tags the label
śes.avat. He describes the process involved as one in which many alternatives
are probable ones in a given context, although only one of them will be true
while others will be false. Now it may be the case that after considering the
alternatives all but one are found unacceptable in the situation. Then the
remaining one can be inferred to be the case not on the basis of an autonomous
positive reason but on the strength of the supposition that the alternatives
are exhaustive in the given context and on finding all but the last (śes.a) one
to be untenable. Following Kan. āda, Vātsyāyana gives here the illustration of
the following Vaiśes.ika argument.

Sound is an event in time and is not eternal in nature. It must then be
distinct from the types of eternal entities like universal, the relation of inherence
and also viśes.a that distinguishes one particular eternal substance from all
others. Sound is consequently either a substance or a motion or a quality, all
of which may be noneternal in nature. Of these three alternatives, the first
one is not tenable as sound is inherent in a single and simple thing, which is
not true of a created substance because it has parts in which it inheres. Nor
can it be the case that sound is motion. Sound may be the cause of a second
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similar sound in a series, which the Vaiśes.ika philosopher admits for explaining
audibility of sound in all directions by persons with their respective auditory
sense organs located in their respective ear cavities while sound originates
initially at a given place outside. Although sound can beget sound, motion
cannot be said to generate a second motion in a series. Motion is causally
associated with separation of the moving body from some substance it is
attached to. Such a separation being achieved by the first motion, there is no
need to stipulate that a second motion will be necessary for the same purpose
of separation of the moving body from that other substance. Hence, two of
the three alternatives being eliminated, the third one, namely, that sound is a
quality, gets established.

The inference of the type just noted was known to the philosophers of that
time who employed many such inferences. Vātsyāyana’s second interpretation
signifies his recognition of soundness of such inference, and it goes to his
credit to have made a place for it within Gautama’s scheme of threefold
classification. After having rendered the pūrvavat type more inclusive and the
śes.avat one adequate for the disjunctive type inference, Vātsyāyana treats the
variety identically in both the interpretations for making room for inference
of a property in a locus on the basis of perception of the sign in that thing
and knowledge of relationship between the sign in general and the signified
in general. Vātsyāyana, however, gives a different example of the second
interpretation of the scheme. For proving the existence of the self as distinct
from the body and the senses it is argued that the features of cognition,
conation, and so on are qualities, and as quality belongs to a substance, these
features also must be features of a substance. This substance is nothing other
than the self. Many later thinkers have challenged the claim of an independent
and distinct character of such an inference as it involves, at least in part,
śes.avat model. But many others come to the defense of Vātsyāyana and hold
that there is something in the type of argument under consideration, which is
not reducible to any other variety. Phanibhusana in his Nyāyadarśana notes
that the argument that seeks to prove that the locus of cognition, conation,
and so on is the self has been shown by Uddyotakara to be based on the
principle of elimination as this locus must be shown to be different from other
substances than the self. In reply to the criticism, Phanibhusana mentions that
the fact that there is a locus of qualities like cognition and conation cannot be
said to have been established by the śes.avat type of inference and this justifies
us to say that variety is very much necessary.7 Matilal has discussed some
recalcitrant examples from Buddhist sources, which we are not taking into
consideration here.8

2.2.
Gautama’s theory of inference is closely related with his theory of Nyāya
(understood here not in the sense of a system of philosophy but as the set of
propositions that constitute an argument). In fact, according to Vātsyāyana
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and others, of the 16 items that constitute the subject of Nyāya philosophy
and which have been mentioned by Gautama in his first Nyāyasūtra, 14 items
are essential elements of Gautama’s theory of Nyāya, these being mentioned
by him after the first 2 items of pramān. a and prameya. According to all
Nyāya philosophers, Nyāya, which is referred to by Gautama by the word
avayava (the seventh of his 16 items under reference) is related to anumāna
or inference. The Naiyāyikas of later time admit two varieties of inference,
namely, svārthānumāna, which is believed to be inference for oneself, and
parārthānumāna, which is taken to be inference for others. According to them,
employment of argument (Nyāya) is not necessary for inference for oneself.
As thought is believed by some philosophers to be possible without language,
inference, too, may be considered possible for oneself without employment of
Nyāya (which is defined to be a sentence consisting of clauses [avayavas]). But
when it comes to the question of persuading another (be that an opponent in
a debate or some moderator acting as the judge in a debate), employment of
an argument through the vehicle of language becomes indispensable.

In Nyāyasūtra 1/1/32 Gautama mentions the five avayava-s (lit., “limbs”)
or constituents of a Nyāya and proceeds to define them in the following
seven aphorisms. In his commentary Vātsyāyana remarks that many logicians
recognize five more constituents than those mentioned by Gautama. In later
times, Buddhist and Jaina logicians have tried to make further reduction by
admitting between them the first three while the Bhat.t.as admit the first three
or the last three of Gautama’s five constituents of an argument. Parsimony
apart, Gautama’s proposal was accorded approval by these philosophers as
between themselves they accepted all the five to be good and acceptable
candidates as argument constituents. When we consider the fact that these
five constituents have been proposed not as independent sentences but as
ones that ought to be taken in relationship with one another, the differences
between Nyāya and other systems may not be as great as these have been
made to appear. After all if a perspicuous articulation of the steps involved
in an argument is considered desirable, the explicitly stated constituents of
Nyāya seem to be quite all right. We shall be following Vātsyāyana in giving
illustrations of the argument constituents.

The first step in the argument is called pratijñā. It is the statement of the
proposed thesis. A Naiyāyika, who believes in the impermanence of sound as
against other philosophers, according to whom it is eternal may announce the
thesis he proposes:

(1) Sound is noneternal.

That sound is noneternal is to be proved or established (i.e., sādhya). This
thesis itself is thus called sādhya or probandum. In the context of a debate this
thesis has also been referred to by Gautama as paks.a (thesis or position) to be
proved and its opposite by the word pratipaks.a (counterthesis). Vātsyāyana
however draws our attention to the fact that Gautama also uses the word
sādhya for the property that is sought to be established in the thing figuring as
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the subject of the proposition (in our example the property of being noneternal
will be such a provable property).

Similarly, in Gautama there is an ambiguity also in the use of the word
hetu. It designates the second sentence in the argument, and it also seems
that he would not object to the use of the word to mean a thing the sentence
is about. In later writings on logic in India, this word is almost universally
used in the sense of lin. ga or sign that we have come across earlier. Gautama
rightly regards the second constituent, which he calls hetu, as recording the
reason for the proposed thesis. This relationship between the two propositions
pratijña and hetu (the first one requiring proof and the second one offering the
reason) is very much essential for the names to be applied to the steps. The
second step, however, in relation to the proposed thesis under consideration is
as follows.

(2) Because of its being a product.

The proposition as expressed by the sentence has two contents, namely,
(i) sound is a product, and (ii) a product is noneternal. The first part involves
reference to the first step and represents what was mentioned earlier in NS
1/1/5 as perception of the lin. ga; the second part, on the other hand, involves
reference to the third step that records co-presence of the sign and the signified
in some known instance or co-absence of both in some other instance. If the
announcement of the proposed thesis in the first step was a matter of mere
statement (or what Vātsyāyana calls āgama or testimony in a loose sense) the
statement of the reason in the second step points toward the causal factors of
inference as we have noted. This second argument constituent may thus be
compared to the pramān. a or evidential support known as anumāna (literally,
that which leads to inferential knowledge). But what we have taken to be
the second part of the meaning of this argument constituent must receive
confirmation in a positive or a negative instance. This confirmation thus
points to the perceptual base of the general proposition at work in inference.
Gautama defines the hetu as the statement of the reason involving reference to
the confirming instance and he records next two possible ways of confirmation.
Thus, the third step for the argument under consideration is either:

(3) (A product is noneternal, thus) an (earthen) dish (sthāli) is a product
and is also noneternal;

or

(3′) (A product is noneternal, thus) the soul which is not a product is admitted
to be eternal.

This third step is called example or udāharan. a, (3) being sādharmya udāharan. a
or positive example recording co-presence of the probans and the probandum,
and (3′) being the vaidharmya udāharan. a or negative example in which both
are absent. Vātsyāyana explains the fourth step by noting two formulations,
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one being made consistent with (3) and another with (3′). The formulations
are:

(4) Like the (earthen) dish, sound also is a product;

or

(4′) Unlike the soul, sound is a product.

This fourth step records in (4) similarity between the subject of the inferential
knowledge and the positive example where both the probandum and the
probans have been noticed, or it states in (4′) dissimilarity between this and
the negative example where both are absent. Vātsyāyana notes that this step
represents knowledge of similarity or of dissimilarity, which is believed to be
related to knowledge by comparison or upamiti. Hence, in addition to the three
accredited sources of testimony, reasoning (anumāna) and perception which are
taken to be at work in the previous three steps the other accredited source of
knowledge (knowledge of similarity or dissimilarity known as upamāna pramān. a
is at work in the fourth step, although no knowledge of the nature of upamiti
results here). This completes the process of convergence of all the sources
of knowledge (pramān. asamavāya), and naturally enough if these backings
are really there the argument presented through the steps should really be
a dependable one not worthy of contradiction.9 Hence the steps culminate
in asserting over again in the fifth step what was initially proposed as the
thesis to be proved, beginning with the word “therefore” (tasmāt) showing its
following or transition (nigamana) from the earlier ones. Thus, the subject of
the inference is taken to be the seat of the probandum being warranted in its
journey by steps (1), (2), (3), and (4) or by steps (1), (2), (3′), and (4′) as the
case may be. The fifth step is thus:

(5) Therefore, sound is noneternal (because of its being a product).

Vātsyāyana is of the opinion that this theory of Nyāya is to be seen and
interpreted in the light of the theory of pseudo-probans (hetvābhāsa). Exposing
the unsound nature of an argument by showing the presence of pseudo-probans
is permissible in each of these three types—debate called vāda (dispassionate
discussion), jalpa (defense of a position) and vitan. d. ā (polemical argument),
while futile rejoinders and employment of other techniques of refutations such
as quibbles (chala) and (jāti) showing defeat situations (nigrahasthāna) are
apt only for the last two varieties.10

2.3.
Vātsyāyana regards a putative probans as a pseudo-probans (hetvābhāsa) if it
only looks like a genuine probans but is not really so. Philosophers in the Nyāya
tradition believe that the features of a genuine probans are five in number and
must be such that if these are all present in a probans it cannot be subsumed
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under any of the pseudo-probans. But normally every pseudo-probans should
have at least someone or the other of such features.

It is customary among philosophers of all schools to regard the following
three as properties of a genuine probans:11

i. it must be present in the subject of inference (paks.avr. ttitva),

ii. it must be present in at least one place where the probandum is known
to be present (sapaks.avr. ttitva), and

iii. it must be absent in all places where the probandum is known to be
absent (vipaks.a-avr. ttitva).

The followers of Nyāya, however, suggest that a genuine probans must have
two more marks or properties such as:

iv. the absence of the probandum is not established in the subject of infer-
ence on the basis of some other probans (the property called asatprati-
paks. itatva), and

v. it cannot be the case that an absence of the probandum is known in the
subject of inference on the basis of some veridical perception or reliable
testimony (the mark called abādhitatva).

But the Masters Gautama and Vātsyāyana themselves did not mention these
properties. Because absence of these properties can be mapped to someone or
the other of the five pseudo-probans admitted by them, it seems to us that
they attached primacy to the topic of pseudo-probans.

The Sanskrit names used by Gautama for these pseudo-probans along with
English terms within parentheses that we shall be using following B. K. Mati-
lal12 are (a) savyabhicāra (the deviating = D) representing the absence of the
property indicated in (iii); (b) viruddha (the contradictory = C) representing
the absence of the property indicated in (ii); (c) praka

¯
ran. asama (the coun-

terbalanced = CB) representing the absence of the property indicated in (iv);
(d) sādhyasama (the unestablished or the unproven = UE) representing absence
of the property indicated in (i); and (e) kālāt̄ıta (the untimely = U) represent-
ing absence of the property indicated in (v). The more familiar words for (c) is
satpratipaks. ita, for (d) is asiddha, and for (e) is bādhita. Using the abbreviations
mentioned within parentheses we give some examples of each of the five types.

D1: Sound is eternal as it is devoid of touch.

D2: This is a cow as it has horns.

C1: Sound is eternal as it is an event in time.

C2: This has no fire in it as it has smoke in it.

CB1: Sound is eternal as it is audible.

CB2: Sound is noneternal as it is an event.
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U1: Fire is not hot as it is a substance.

U2: The skull of a dead man is sacred as it is a part of the body of an animal.

UE1: Sound is eternal as it consists of parts.

UE2: The golden mountain has fire as it has smoke.

In later development of Nyāya, philosophers have come up with newer
examples, which led to classification of several of the pseudo-probans. Gan. geśa
who is regarded as the founder of the new movement called Navya Nyāya
offered a general definition of pseudo-probans and also definitions of each
specific variety.

3. Buddhist Logic
Amita Chatterjee

3.1.
Exploring Buddhist logic is a twentieth-century phenomenon. It started with
Satish Chandra Vidyabhusana’s studies in the first decade of the twentieth
century (1921) and received a boost from Stcherbatsky’s Buddhist Logic, which
appeared in 1930. Ever since, there is a steady flow of articles on the subject.

I begin the exposition of the Buddhist logic proper with their theory of
inference as we find in the Buddhist epistemology. Due to space constraint, it
will not be possible for me to discuss their science of debate at all.13 Buddhist
logic developed over a period of 1500 years. In course of interactions with other
Indian systems, the Buddhists had to change the contour of their logic many
times. I shall, however, mainly confine myself to the Diṅnāga-Dharmak̄ırti
tradition covering only a period of 300 years, highlighting en passant the points
of difference between the stalwarts.

The Buddhists divided knowable objects into two groups—particular and
general—and accordingly admitted two different ways of knowing—perception
and inference. Unlike the Naiyāyika-s, they thought that objects of perception
cannot be known through inference, nor is it possible to perceive objects of
inference. Perception is the means of directly apprehending particulars in their
pristine purity, undistorted by the play of fanciful imagination. Inference, on
the other hand, is the means of indirectly apprehending objects in general after
the mind imposes names, forms and the so-called universals on them. Both
perception and inference are supposed to yield certain and correct knowledge
of objects. But of these two, perception is considered the means of correct
awareness par excellence, because it is free from all possible errors. Error creeps
in with conceptualization, with play of imagination. Inference, however, yields
certainty when based on adequate evidence. Hence the Buddhist theory of
inference is primarily a theory of adequate evidence.
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The Buddhists also divide inference into two types—inference for oneself
(svārthānumāna) and inference for others (parārthānumāna). I use SA and PA
to refer to these two types of inference henceforth. This distinction was first
introduced by Diṅnāga and was adopted by all later logicians. All inferences,
according to the Buddhists too, must possess three terms: (a) a logical sign
(hetu/probans), (b) the signified (sādhyadharma/probandum) and (c) the
subject-locus (paks.a). When, for example, one infers fire on a hill, seeing smoke
coming out of the hilltop, smoke is generally taken to be the logical sign, the
hill the subject-locus and fire the signified.

Dharmak̄ırti (600–660 a.d.), following Diṅnāga, defines SA as knowledge of
the signifier in the subject-locus originating from a logical sign having triple
character. PA is defined as the expression or statement of the logical sign
having triple character. Diṅnāga’s definition of PA had two additional clauses,
namely, the logical sign must express reality and must be experienced by the
person making an inference. The first clause is related to the soundness of
inference and the second clause emphasizes the inadequacy of mere hearsay
evidence.

The major difference between SA and PA lies in the fact that while SA
deals with the psychological conditions, that is, causally connected cognitive
states leading to one’s own inferential knowledge, PA essentially deals with the
proper linguistic expression of this inference with a view to convincing others.

But before taking up SA and PA separately, let me address two questions
related to both. These are: When do we infer and what do we infer? The
older Naiyāyika-s maintain that doubt or absence of certainty is a necessary
precondition of any inference. Diṅnāga and Dharmak̄ırti point out that only
those doubtful facts, which are admitted by the disputants for proof or disproof,
lead to inference. This way of explaining the motivation of inference clearly
hints at the genesis of inference from the debating tradition.

Logicians differ among themselves regarding what it is that we are supposed
to infer. Diṅnāga asks, what actually are we supposed to prove in an inference
like “the yonder hill is fiery, since it has smoke?” Is it the hill, the fire, the fire
and the hill, the relation between the fire and the hill, the fire characterized by
the hill, or the hill characterized by the fire? He rejects five of these alternatives
and admits the last one to be the object of inference in this particular case.

3.2.
A person infers for himself to have certain awareness of some object, which he
cannot directly apprehend through sense perception. So the SA theory specifies
conditions that yield certainty whenever one infers something (sādhya) on the
basis of an adequate sign (hetu) in a particular subject-locus (paks.a). Any
property can be a sign for another property, says Diṅnāga, provided (a) the
first property is observed at least once and (b) if no instance has been observed
where the first is present but the second is absent. A sign to be adequate must,
therefore, possess triple characters as follows.
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i. A sign must be present in the subject-locus (paks.a) where the signified
would be inferred.

ii. It must be present in similar locations (sapaks.a) or homologs.

iii. It must not be present in dissimilar locations (asapaks.a/vipaks.a) or
heterologs.14

The significance of the theory of triple character will be clear if we apply it
in the case of an actual inference. Consider the condensed inference: Sound
is impermanent because it is produced by human effort. Here sound is the
subject-locus, impermanence is the signified or the object of inference, and
the property of being produced by human effort is the logical sign. A similar
location or a homolog is similar to the subject-locus in respect of the presence of
the signified. So, in this case, a homolog is any location other than sound where
impermanence is present, say, a pot. A dissimilar location or a heterolog here
would be any permanent entity, for example, an atom,15 because a dissimilar
location has been described as the contradictory or “the other” of the similar
location. The Naiyāyika defines a heterolog as that where the absence of the
probandum is known to be present.

The language of Diṅnāga’s original formulation of the triple character was
quite objective, but actually in all three conditions “must be present” should
be read as “must be known to be present.” Besides, in Diṅnāga’s original
formulation, we do not get any hint regarding how to quantify paks.a, sapaks.a,
and vipaks.a. He was severely criticized by Uddyotakara for that. Dharmak̄ırti,
therefore, tells us how we are to quantify three different locations in (i), (ii),
and (iii). It becomes obvious from Hetucakrad. amaru that this reading is not
contrary to Diṅnāga’s intention. Hence the final formulation of the triple
character as pointed out by Dharmottara is as follows.

I. A sign must be known to be present in the entire class corresponding to
the subject-locus.

II. A sign must be known to be present in at least one similar location.

III. A sign must never be known to be present in any dissimilar location.

Diṅnāga thinks that these three conditions taken together constitute the
necessary condition of a projectible sign. This means paks.adharmatā16 and
vyāpti17 together constitute the ground of a legitimate inference. Logically
speaking, if all cases of H are cases of P , then only cases of P could be cases
of H, that is, all cases of non-H are cases of non-P , which means no case of
H is a case of non-P . In other words, the sign surely leads to the signified, if
it is present in the subject-locus and if it is backed by the relation of universal
concomitance between the sign and the signified, which is obtainable through
positive and negative concomitance.

Dharmak̄ırti, on the contrary, thinks that either (I) and (II) or (I) and (III)
should be sufficient for arriving at an acceptable conclusion. Dharmak̄ırti’s view



Indian Logic 919

accords well with the Nyāya position. Besides, strictly from the logical point
of view, where the interpretation of negation is standard, (II) and (III) are
equivalent and should have the same meaning. It thus appears that Diṅnāga
did not subscribe to the principle of double negation; his negation was rather
nonstandard.18

Diṅnāga’s theory of the triple-charactered sign was questioned by the
Indian logicians long ago. Śāntaraks.ita in his Tattvasam. graha19 discusses the
objections of a Jaina logician named Pātrasvāmı̄. Pātrasvāmı̄ says that even a
triple-character sign is inadequate because it cannot lend any guarantee that
the resulting inference will be acceptable. So he proposes the view that a sign is
adequate if it satisfies just one character, that is, “being otherwise impossible”
(anyathānupapannatva). In this context, he mentions an inference in which
the sign allegedly possesses three characters, but the inference is unacceptable.
The inference is of the form: He must be dark because he is a son of so and
so—like all other sons of his who are found to be dark. Śāntaraks.ita answers
that the sign in this case does not really fulfill the third condition. It may be
true that whoever is a son of this person is dark, but it cannot be shown that
whoever is not a son of this person is not dark. Thus Śāntaraks.ita reinforces
Diṅnāga’s view that fulfilment of the first two characters only does not make
a sign predictable.

Besides providing epistemic certainty, the third character of a sign has
another special significance for Diṅnāga. Dharmak̄ırti did not consider the
third character from this perspective. Diṅnāga extended his theory of signs
beyond the theory of inference to the context of language, especially to the
famous Buddhist doctrine of apoha. Let me tell you very briefly wherein lies
the similarity between an inferential sign and a linguistic sign. When someone
infers fire on a hill, seeing smoke there, he does not know for sure any particular
fire on the hill. He is only sure about one thing—that the hill does not lack
fire. Similarly, when somebody hears the word “fire,” the word acts as a sign
for the object which is not nonfire, that is, “knowledge of the word ‘fire’ ” leads
to our knowing the object of reference as excluded from nonfire.20 That means
the sign leads to the knowledge of the signified if we know that the former is
excluded from whatever excludes the latter.

3.3.
We have seen that the second and the third character of a logical sign are
intimately connected with the ascertainment of universal concomitance between
the sign and the signified (vyāpti), which everybody admits to be the ground of
inference. The Cārvāka-s deny inference as a means of knowing, because they
think that the knowledge of the invariable connection between the sign and the
signified is not obtainable. The Buddhists assert that one can be sure about
the inferential relation, if any of the two following conditions hold: (a) when
there is essential identity between the sign and the signified (tādātmya), that is,
when the inferential relation is a relation of class-inclusion, as in “It is a tree,
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because it is a śim. śapā”21; and (b) when there is a causal connection between
the signified and the sign (tadutpatti), as in “There is fire here, because there
is smoke.” Since “All śim. śapā-s are trees” is a necessary identity statement,
which not many will try to deny, Dharmak̄ırti concentrates on the second
type of universal statement. In fact, in his Pramān. a-vārttika and Hetubindu,
Dharmak̄ırti discusses elaborately on causality. He has written at length to
establish that (1) every event has a cause, (2) the same cause produces the
same effect, and (3) the relation of causality holds without exception. If one
reads between the lines of Dharmak̄ırti’s texts, one gets the impression that
Dharmak̄ırti, unlike the Naiyāyika-s, wants to treat causality as a necessary
relation.

Diṅnāga was in favor of the view that causality can be apprehended if one
can rule out the contrary possibilities with the help of negative concomitance.
It appears from Dharmottara’s commentary that Dharmak̄ırti agreed with
Diṅnāga on this point. But in Pramān. a-vārttika Dharmak̄ırti categorically
states that the necessary inferential relation cannot be known only by observa-
tion of positive or negative concomitance between the sign and the signified.22

Prajñākaragupta, therefore, suggests in his commentary that causality is to be
apprehended with the help of some extraordinary perception. But this is not
Dharmak̄ırti’s view. Dharmak̄ırti insists that both class inclusion and causality
are conceived in imagination (vikalpabuddhi). Once the mind constructs this
concept, we impose them to derive an orderly world out of our perception of
real particulars. So these two relations are unlikely to be derived from our
experience; rather, they precede our experience of the orderly world.23

3.4.
Logical signs possessing the triple character can be divided into three types:
(1) sign in the form of nonapprehension (anupalabdhi), (2) sign in the form of
essential identity (svabhāva), and (3) sign in the form of effect (kārya). The
first type of sign establishes a negative conclusion, but the second and the
third are meant for establishing positive conclusions. I give a list of inferences
involving three types of sign to make their connection with the necessary
inferential relation clear.

A. There is no pot in this location, because no pot is perceived here
(nonapprehension).

B. This is a tree, because it is a śim. śapā (identity).

C. There is fire in this location, because there is smoke here (effect).

Essential identity acts as a sign for deducing a signifier, the nature of which is
not different from that of the sign. Sign in the form of an effect is sufficient to
deduce the signified in the form of a cause. But the question remains, how is (A)
relevant to the ascertainment of the inferential relation? (A) is relevant because
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according to the Buddhists, the contrary supposition that there is no universal
concomitance is disproved by contrary evidence (viparyaye bādhakapramān. a
vr. ttih. ). The absence of the pervading property (vyāpakābhāva) is, therefore,
the logical sign for the absence of the pervaded property (vyāpyābhāva). This
is, in fact, nothing but the restatement of the third character of a sign.

It is possible to offer other reasons, both ontological and epistemological,
behind the Buddhists’ acceptance of the sign in the form of nonapprehension.
The Nyāya-Vaiśes.ika philosophers admit absence as a separate ontological
category. The Naiyāyika-s uphold that the absence of a perceptible thing is
perceptible. The Buddhists do not admit absence as a separate ontological
category, nor do they admit a separate means of apprehending absence like
the Bhāt.t.a Mı̄mām. saka-s. They think that perception of an empty locus leads
to the nonperception of a character of the locus, which acts as a sign in the
inference of nonexistence of the signified in that particular locus.

Dharmak̄ırti in Nyāyabindu classifies sign in the form of nonapprehension
into 11 types, but asserts almost immediately that all the different types
are in fact reducible to one, namely, nonapprehension of the essential na-
ture (svabhāvānupalabdhi) of an entity. He also mentions that differences are
applicational and not essential.

3.5.
According to Dharmak̄ırti, communicating the sign with the triple character
to others is to be called Parārthānaumāna (PA). Because PA is meant for
convincing others, it has to be expressed in language in a structured way.
That is, statements constituting a PA must have specific forms and follow a
specific order. Yuktid̄ıpikā, a Sām. khya text, mentions PA with 10 constituent
members. The Naiyāyika-s have reduced the number of members to five, but
the Buddhists have gone in for further reduction. They recommend just two
constituents—hetu or the Reason (the statement containing the logical sign in
the subject locus) and dr.s. t.ānta or the Example (the statement containing a
general rule of universal concomitance together with one application):

PA 1. R: The hill has smoke
E: Wherever there is smoke, there is fire, as in a kitchen.

The Buddhists don’t even feel the necessity of stating the conclusion. They
think that if the sign is a projectible one, then after hearing R and I, the
hearer will draw the conclusion right away without waiting for a prompt.24

Dharmak̄ırti first divides PA into two types: (a) those based on similarity
(between the example and the subject-locus in respect of the logical sign) and
(b) those based on dissimilarity (between the example and the subject-locus in
respect of the logical sign). The distinction between these two types of example
will be evident from the following examples.
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PA 2. R: Sound is a product
E: Whatever is a product is impermanent, for example, a pot.

PA 3. R: Sound is a product
E: Whatever is permanent is not a product, for example, the sky.

In PA 2 there is similarity between sound and a pot in respect of being a
product, whereas in PA 3, there is dissimilarity between sound and the sky in
the same respect (i.e., sound is a product but the sky is not). PA 2 depends
on positive concomitance, and PA 3 depends on negative concomitance. So
the former contains a co-instance and the latter contains a counterinstance.

Here Dharmak̄ırti makes an interesting observation. There is no difference
in the intent of these PAs; the difference between them is in formulation only.
This observation shows that Dharmak̄ırti, unlike Diṅnāga, had no qualms over
contraposition. That is why, he upholds that

Whatever is a product, is impermanent
and

Whatever is permanent is not a product

mean the same thing and vice versa.
Each of these two types of PA is again subdivided into three subtypes

depending on the nature of the logical sign—in the form of essential identity, or
in the form of an effect, or in the form of nonapprehension. A detailed discussion
of all types of PAs together with suitable examples is available in Nyāyabindu.

3.6.
In this section I propose to discuss the fallacies of inference. In the Buddhist
texts, the discussion of fallacies is confined to the chapter on PA. But we
should not, therefore, think that in case of SAs there is no possibility of
error. SAs are also equally vulnerable. In the Svārthānumānapariccheda of
Pramān. a-vārttika, Dharmak̄ırti first defines a pseudo-sign or a pseudo-probans.
Still all discussions of fallacies have been pushed to the end of the discussion
on PA probably because one needs to be more careful while communicating to
others. At least this is Dharmottara’s explanation.

Inferences, think the Buddhists, may be vitiated by fallacies relating either
to the Subject locus, or to the Reason or to the Example. Of these three
categories, the Naiyāyika-s are mainly concerned with the fallacies of Reason,
for logic or theory of inference is, according to them, the theory of adequate
evidence or of legitimate signs. Yet the Buddhists and the Vaiśes.ika-s mentioned
possible defects of thesis and example.

In Nyāyapraveśa, a sixth-century Buddhist text, allegedly written by Śan. ka-
rasvāmin, we find a list of possible defects of the thesis that the arguer wants to
establish. Later, Dharmak̄ırti also endorsed them. A subject-locus is considered
defective (paksābhā. sa/pseudo-minor) under the following conditions:
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a. When a thesis is contradicted by perception as in “Sound is inaudible”;
b. When a thesis is contradicted by inference, such as, “a pot is permanent”;
c. When a thesis contradicts the tradition, such as, when a Vaiśes.ika would

pose the thesis that sound is permanent;
d. When a thesis is contradicted by common knowledge, for example, “a

human skull is pure” (because it is a part of a living organism like a
conch shell);

e. When a thesis is contradicted by one’s own statement, such as, “My
mother is barren”;

f. When one wants to establish a thesis that does not need any proof, such
as, “sound is audible.”

Fallacies that occur in Example (dr.s. t.āntābhāsa/pseudo-exemplar), that is,
the statement containing an example are as follows. The first set of fallacies
relates to inferences based on similarity. An example is faulty,

1. when the sign is not found in the example, such as, sound is permanent
because it is incorporeal like an atom;

2. when the object of inference is not found in the example, for example,
sound is permanent because it is incorporeal like cognition;

3. when neither the sign nor the signified is found in the example, such as,
sound is permanent because it is incorporeal like a pot;

4. when positive concomitance between the sign and the signified is not
properly mentioned in the Illustration, for example, impermanence and
the property of being produced are known to reside in a pot;

5. when positive concomitance is mentioned in the wrong order, such as,
whatever is impermanent is known to be produced.

We now mention the second set of fallacies of Example that relates to inferences
based on dissimilarity. An Example is defective,

6. when the signified is not excluded from the example, for example, sound
is permanent because it is incorporeal and whatever is impermanent is
known to be corporeal like an atom;

7. when the sign is not excluded from the example, such as, sound is
permanent because it is incorporeal and whatever is impermanent is
known to be corporeal like an action;

8. when neither the signified nor the sign is excluded from the example,
for example, sound is permanent because it is corporeal and whatever is
impermanent is known to be corporeal like the sky;

9. when negative concomitance between the sign and the signified is not
properly stated, such as, corporeality and impermanence are seen to
reside in a pot;
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10. when negative concomitance is expressed in wrong order, for example,
whatever is corporeal is known to be impermanent.

Let us now look closely at the defects of Reason (hetvābhāsa/pseudo-
sign/pseudo-probans). We have seen that a sign, according to the Buddhists,
is adequate for projection into unknown cases if and only if it possesses the
triple character. Hence all defects of sign arise from the absence of one or two
of the said triple character. These three characters thus act both as conditions
of validity as well as conditions of soundness of an inference. When the first
character is violated, we have the pseudo-signs of the unestablished (asiddha)
variety. The violation of the third character leads to inconclusive (aniścita)
pseudo-signs, and when both the second and the third are violated we get
hostile (viruddha) pseudo-signs.

A sign involves defects of the unestablished variety when something is wrong
with the relation between the sign and the subject-locus. The first type of
unestablished pseudo-sign arises when the sign is known not to be present in
the subject locus both by the proponent and by the opponent (ubhayāsiddhi),
for example, word is impermanent because it is visible.

The second type of unestablished pseudo-sign arises when the opponent
does not admit that the sign resides in the subject-locus (prativādyasiddhi),
for instance, tree is conscious because it dies, when its bark is removed. The
Jainas propose this inference and admits the death of a tree due to removal of
the bark, but not the Buddhists.

The third type of unestablished pseudo-sign arises when the relation between
the sign and the subject-locus is not admitted by the proponent (vādya-
siddhi), such as, when the Sām. khya argues against his opponent that sound is
impermanent because it has an origin. For the Sām. khya does not believe in the
origination of effects but only in manifestation. Diṅnāga and Śan.karasvāmin
have combined the second and the third varieties together, but Dharmak̄ırti
mentions them separately. Recognition of all these three defects is again a
legacy of the debating tradition.

The fourth type of unestablished pseudo-sign arises when the arguer himself
has some doubt regarding the nature of the sign actually residing in the subject-
locus (sandigdhāsiddhi). For example, when a person has doubts whether it is
smoke or mist he sees on the hill, he cannot establish the presence of fire on
the hill.

The fifth type of pseudo-sign of the same group is known as unestablished
due to the nonexistence of the subject-locus (dharmyasiddhi/āśrayāsiddhi)
because there is no possibility of the sign residing in the subject-locus due to
its nonexistence. For example, when one who does not admit that the soul
exists argues that the soul is a substance because it is a substratum of qualities.
The contraposed version of the Buddhists’ doctrine of momentariness is also
likely to get vitiated by this type of pseudo-sign.

Pseudo-signs of another variety, which we discuss now, are called inconclusive.
A sign may be inconclusive under any of the following circumstances:
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I.1. When a sign resides both in similar and dissimilar locations, for example,
sound is permanent because it is knowable;

I.2. When the sign is unique and resides neither in similar nor in dissimilar
locations, for instance, sound is permanent because it is audible;

I.3. When a sign resides in some similar and in all dissimilar locations, such
as, sound is not produced by human effort because it is impermanent;

I.4. When a sign resides in all similar and some dissimilar locations, for
example, sound is produced by human effort because it is impermanent;

I.5. When a sign resides in some similar and some dissimilar locations, for
instance, sound is permanent because it is not amenable to touch.

The next variety of pseudo-signs is called hostile. A sign is hostile if it
proves the opposite of the signified in any of the following manners:

H.1. When a sign resides in all dissimilar locations and in no similar location,
for example, sound is permanent because it is produced;

H.2. When a sign resides in some dissimilar locations but not in any similar
location, for instance, sound is permanent because it is produced by
human effort.

In Nyāyapraveśa, which was modeled after Diṅnāga’s Nyāyamukha, we find
another entry in the list of inconclusive pseudo-signs. It reads like this: An
inconclusive pseudo-sign is that which establishes a set of contradictory results,
for example, sound is impermanent because it is produced like a pot; sound is
permanent because it is audible like soundness. Dharmak̄ırti calls this pseudo-
sign viruddhavyabhicārin which the Naiyāyika-s name satpratipaks.a. Literally
viruddhavyabhicārin means a sign, which is not without a countersign.25 In this
case two signs warrant two different facts, which are opposed to one another.
Whenever a person faces such a situation he is in a doubtful frame of mind.
Both alternatives being equally cogent, he does not know which one to support.
Dharmak̄ırti objects to this very point. He says that two mutually opposed
phenomena cannot hold at the same time, hence two logical signs proving them
cannot be of equal strength. One of the signs is bound to be illegitimate, and an
illegitimate sign cannot nullify a legitimate sign. Hence Dharmak̄ırti does not
include it in his list. Consequently, he does not think that asatpratipaks. itatva,
that is, the property of a sign not being contradicted by a countersign, is
a necessary prerequisite for any logical sign’s being legitimate, which is the
Nyāya view. Nor do the Buddhists admit that bādhita or a contradictory sign
should be listed as a separate pseudo-sign. The example of a contradictory
pseudo-sign as found in the Nyāya literature is: Fire is nonhot because it is a
product. The Buddhists point out that if a person is in a position to assert that
fire is not hot, then he is not aware of the invariable concomitance between fire
and hotness. That means, this type of defect originates from the violation of
the second and/or the third character(s) of a logical sign and can be subsumed
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under some other pseudo-sign already mentioned. Hence they do not even
include noncontradictoriness as necessary.

Later Buddhists, maybe due to the Nyāya influence, overcame Diṅnāga’s
reservations about contraposition as a logical operation. In Ratnak̄ırti we find a
defense of the Buddhist doctrine of momentariness along with its contraposed
version. Thus Ratnak̄ırti argues not only for the thesis that “all existents are
momentary” but also for “all nonmomentary things are nonexistent.” Accep-
tance of the contraposed version of the doctrine of momentariness leads to two
important philosophical issues. Let me address them one by one.

A nonmomentary or a permanent object, according to the Buddhists, is
as unreal as a sky lotus or a hare’s horn. Now as the subject-locus is unreal,
the sign becomes a pseudo-sign of the unestablished type. Hence, urges the
Naiyāyika, the contraposed version remains unestablished even by the Buddhist
standard. Not only that, Ratnak̄ırti here ascribes some unreal attribute to an
unreal subject, which is anathema to the Naiyāyika. The Naiyāyika-s will not
allow statements like “The hare’s horn is sharp” or “The hare’s horn is not
sharp.” Besides, it appears that the Buddhists are ready to treat “existence”
and “nonexistence” as predicates, which is not a valid move within first-order
logic. The Naiyāyika has problems with ascribing an unreal predicate to an
unreal object because they are committed to a realist ontology. But some
Buddhists do not fight shy of positing a Meinongian domain as their universe of
discourse. In fact, they treat all conceivable things at par, real or fictitious. That
is how Ratnak̄ırti could avoid the charge of using an inconclusive pseudo-sign.

There is also another apparently insurmountable difficulty with these two
inferences involving “whatever is existent is momentary” and “whatever is
nonpermanent is nonexistent.” Most Indian logicians demand that in an ac-
ceptable inference, one should be able to cite a supporting example to which
both the proponent and the opponent agree; the supporting example must
not be identical with or included in the subject-locus. Now, if the subject
locus includes everything existent and real, then it is not possible to cite a
supporting example in favor of the thesis because a fictitious or an unreal
example will not do.

Such a predicament can be avoided by introducing the notion of internal
concomitance (antarvyāpti) as opposed to the notion of external concomitance
(bahirvyāpti). The distinction between external and internal concomitance may
be formulated as follows. In case of external concomitance, this concomitance
is apprehended in a corroborative example, but in case of internal concomi-
tance, it is apprehended in the subject-locus (Bhattacharya 1986). So if the
concomitance between the sign and the signified is taken as internal, that
is, as one apprehended in the subject-locus of the inference itself, then it is
not necessary to cite a supporting example. That is why, Ratnākaraśānti, a
Buddhist logician after Ratnak̄ırti, has given an elaborate defense of internal
concomitance following the Jaina philosopher Siddhasena.

Buddhist logicians earlier than Ratnākaraśānti were much more conservative.
That is why we find that all of them including Dharmak̄ırti, Jñānaśr̄ımitra,
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and Ratnak̄ırti stuck to Diṅnāga’s principle of the triple-charactered sign and
remained committed to external concomitance. The trairupya theory is in
favor of external concomitance, “since in accordance with it, the concomitance,
positive and negative, between the sign and the signified has to be apprehended
in external examples, homogenous and heterogenous” (Bhattacharya 1986).
Probably, this is why Ratnak̄ırti tried to solve the problem by subscribing to
a Meinong-like ontology of the unreal conceivables, so that he could take a
nonmomentary entity as a “disagreeing example” for the universal concomitance
between existence and momentariness.

A section on PA in Buddhism cannot be ended without some discus-
sion of their reductio argument (prasan. gānumana). The Buddhists, like the
Naiyāyika-s, are for excluding them from inference proper. For inference proper
is a valid means of acquiring knowledge, but reductio is not. In a reductio argu-
ment, there is a counterfactual premise, which the agent hypothetically offers,
knowing fully well that such is not the case. Dharmak̄ırti in Pramān. a-vārttika
and Moks.ākaragupta in Tarkabhās. ā recommend reductio argument mainly
for ascertaining the relation of universal concomitance. But Nāgārjuna has
used his reductio argument to solve some metaphilosophical problems. Take
for example the argument,

If knowability had been the cause of nameability, the statement,
“A thing which is nameable is knowable” would have been true.

But it is impossible that the statement is true (rather it is
nonsense).

Therefore, it is impossible that the assumption “knowability is
the cause of nameability” be true.

The logical form of Nāgārjuna’s Reductio is as follows.

L (p→ q)
L ∼q / ∴ L ∼p.

Nāgārjuna has used his reductio argument to reject all philosophical views.
But he insists that he is not committed to any view. He uses four-cornered
negation for this purpose. It is like this:

A. He negates the thesis p.

B. He negates the thesis ∼p.
C. He negates the thesis (p&∼p).
D. He negates the thesis (p ∨ ∼p).26

Surely Nāgārjuna’s negation is non–truth-functional. For, under truth-func-
tional interpretation, Neg.(p&∼p) and Neg.(p ∨∼p) can never have the same
truth value. Besides, Nāgārjuna maintains that all four theses are meaningless
and should therefore be rejected, but their negations are not true. He thus
upholds that the negation of a philosophical thesis is no philosophical thesis.
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This is, in sum, an oversimplified overview of Buddhist logic. In this exposi-
tion I have deliberately refrained from all attempts at formalization. But if
such an attempt is to be made at all, the best way will be to try our hand
within a model-theoretic framework.

4. Jaina Logic
Tushar Kanti Sarkar

4.1. Definition of Anumāna and Its Constituents (Avayavas)
The Jaina logicians define inferential knowledge (hereafter “inference” for
short) as “getting at the knowledge about the probandum (sādhya) on the
basis of one’s knowledge about the probans (sādhana).” This very definition of
inference is repeated verbatim by Hemacandra (PM) and also by Yaśovijaya
(JTB 12). Yaśovijaya adds that inference is of two kinds, namely, svārtha (for
personal conviction of the inferer) and parārtha (for the conviction of others,
that is, the public in general).

Originally (as in Tattvārthasūtra), the Jainas were inclined to accept the
three component view of inference. This view was supported by Sāmantabhadra
(AM 6, 17), Pujyapāda (SS 10/5, 6), and Siddhasena (NAv 13, 14). Bhadrabāhu
in his Daśavaikālikaniryukti (DVN: 49–137) speaks of two, three, four, five,
and ten components of inferences. However, the standard view of the Jainas
is two-component view of inference. Hemacandra (PM 2/1/9), Mān. ikyanand̄ı
(PMS 37), and Anantav̄ıryācārya (PRM) (in his commentary on the above
sūtra 37) support the two component view.27

Most supporters of two-constituent theory make it amply clear that the
restriction of the number of components to two is not a logical requirement.
One may go on adding more and more components, if needed, taking into
consideration such contextual factors as the intellectual level and background
knowledge of the person for whose conviction the inference is being made.
Stripped down to its barest minimum, an inferential unit takes the following
form: The hill is fiery because of having smoke (which would not be there
otherwise). This is an enthymeme of the second order. An enthymeme does
not really have a lesser number of premises, only a lesser number of premises
explicitly stated. It makes use of the information background of the inferer.
Similarly, the Jaina two-constituent theory tries to emphasize the fact that if
inference is considered as a deterministic input-output sequence, then depend-
ing on how rich the database of the inferer is, the amount of input information
to be fed for getting a certain output may be minimized gradually. With this
background in mind, it becomes quite understandable why the Buddhists
go even a step further and regard the Reason (hetu) as the only necessary
constituent.28 Actually, the controversy regarding the number of components
that is required for an inference to be possible is not a logical controversy in the
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sense in which the question of consistency of an axiom system is. It is actually a
controversy about how much background information may be taken for granted
in drawing an inferential result. Hemacandra states that a probans (which
cannot be explained otherwise) plus the declaration of what is to be proved
(pratijñā) are the only two constituents needed. Because pratijñā does not
have any assertional force, it acts only as a signpost for the desired conclusion.
The one operative (prayojaka) constituent of an inferential unit is therefore
probans alone. So the Buddhist and the Jaina views do not really differ on
this point. The real and truly logical point of controversy comes to relief only
when we seriously analyze the implications of the views of Jaina thinkers like
Anantav̄ıryācārya,29 who rejects the three-constituent theory (pratijñā, hetu,
udāharan. a) of the Sām. khya-s and the four-constituent theory (pratijñā, hetu,
udāharan. a, upanaya) of the Mı̄mām. sakas. As the Jainas deny any role to
paks.adharmatā and udāharan. a is not required, (we shall presently say why)
this third constituent is dropped by them. On the other hand, upanaya is
dropped from the list as well because it actually is a metalogical step rather
than a logical one. Upanaya only tells that the substitution instance say, “a” of
the universal variable “x” in the sentence “(x)(Lxh→ Lxs)&(Lah&Las)” is a
legitimate one. This is like the rule of E.G., which entitles one to infer “(Ex)Fx”
from “Fa,” provided “a” is nonempty. The role that the upanayavākya plays
is that of explicitly stating that the said proviso (which is a metalogical rule)
has been fulfilled.

Now, if udāharan. a and upanaya be dropped, in this way, we are left with only
three constituents out of the five. These are pratijñā, hetu, and nigamana. Of
these, pratijñā is the provisionally entertained, but assertionally noncommitted,
expression of the conclusion. As such, pratijñā acquires the “right to assertion,”
so to say, only on the basis of the hetu and thus becomes the nigamana at
the fifth step. Hence, given the pratijñā and the hetu the conclusion need not
be stated separately for anyone except a very dull fellow. Finally, therefore,
only two components are retained, namely, pratijñā and hetu. But why may
we not go further and drop even pratijñā from the list of five? From the same
probans we may infer a lot of different things. From the presence of smoke on
the hill not only can we infer presence of fire there, we could also infer with the
same legitimacy the presence of wet fuel there. What we actually would infer
depends on what we aim at establishing (abh̄ıpsita). Hence pratijñā, acting as
the signpost for the desired inferential cognition, must also be regarded as a
nondispensable constituent of an inferential unit and should be mentioned at
the very beginning.30

4.2. Svārtha and Parārthānumāna
Indian logicians classify inference patterns or types by using different prin-
ciples of classification. One such scheme of classification about which the
Jainas, the Buddhists, and the Naiyāyikas agree, classifies inferences into
svārthānumāna (i.e., inferences where the subjective feeling of conviction of the
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inferer himself is the adequate criterion of justification) and parārthānumāna
(i.e., inferences where the justifications need to be convincing to others, i.e., the
public).31 Although the unchallenged practice is to translate svārthānumāna
and parārthānumāna as “inference for oneself” and “inference for others” re-
spectively,32 I propose to use “privately justified inference” and “publicly
justified inference” for svārthānumāna and parārthānumāna respectively. This
deviant translation, as we shall see, would help avoiding a number of misun-
derstandings. The way svārthānumāna and parārthānumāna is characterized
in some texts (e.g., TS and TSD) tends to suggest, misleadingly, that

i. svārtha and parārtha inferences are inferences in the same sense33 except
that svārthānumāna is a less elaborate, covert, and compact version of
parārthānumāna; and

ii. the role of svārthānumāna is to convince the inferer himself, while the
aim of parārthānumāna is to convince others.34

The real import of the distinction, however, is quite different. The role of
svārthānumāna according to our view, consists in showing how an associative
bond between hetu and the sādhya, once it is established, automatically leads
one to arrive, under appropriate initial conditions, at the relevant conclusions.
Svārthānumāna therefore should be viewed as providing the required psycho-
logical grounding for a corresponding parārthānumāna, that is, an inferential
argument fit to be presented in a public discursive context. A closer look at the
characterizations of the two as given in various Jaina texts35 clearly indicates
that the Jaina logicians did understand the distinction between the two types
of inference basically in the way suggested by us.

Viewing the natures of and the distinction between the two inference patterns
in this way also helps one to tackle the following two vexing questions, namely:

i. how to understand and answer those who claim that, strictly speaking,
justification of no inference can be public (i.e., there is no parārthānu-
māna)?36

and

ii. how to reconcile the standard view that svārthānumāna requires a lesser
number of steps with the views of those Buddhist logicians or of those
Jaina logicians (who hold that an inference needs to have just one com-
ponent) but at the same time also accept the classification of inferences
into svārtha and parārtha?

On the interpretation proposed here, the second of the two questions gets
answered immediately because svārthānumāna is not an inference at par with
parārthānumāna at all and hence cannot be regarded just as a condensed form
of the latter. On the other hand, if svārthānumāna be viewed as providing
the required psychological basis of parārthānumāna, as I indicated, then
there is a sense in which the notion of an exclusively public justification of
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any inference (i.e., parārthānumāna) becomes a nonstarter—all empirical
justificatory inferential grounds being, on ultimate analysis, based on the
establishment of subjective psychological bonds of association.37

4.3. Nature of Vyāpti
Inference is the process of justified passage from an inferential ground or
probans to its consequent, that is, the probandum. This entails that there has
to be an unfailing concomitance between the probans and the probandum. Such
an unfailing concomitance relation is called vyāpti. By what marks can tell an
arbitrary relation from a concomitance relation (vyāpti) between a probans
and a probandum? The Naiyāyikas, hold that when a probans has all the five
characteristics (viz., presence in the paks.a [locus of a probans], presence in
sapaks.a [homologous] cases, absence in vipaks.a [heterologous] cases, not being
countermanded by a stronger epistemic evidence [abādhitatva] and not being
counterbalanced by opposing evidences [asatpratipaks.atva]) that indicates that
such a probans has unfailing concomitance relation with its probandum. The
Buddhist thinker Diṅnāga insisted that a probans must fulfill the three of these
requirements to ensure that vyāpti relation holds between a probans and its
corresponding probandum.38 Vādibhasim. ha in Syadvādasiddhi shows that even
when a probans is characterized by all the five required characteristics, it may
still fail to ensure a vyāpti relation with its probandum. As a counterexample,
he gives the following argument: “The as yet unborn offspring of Maitri will
be of dark complexion because of being an offspring Maitri (like all of Maitri’s
other offsprings, who are dark complexioned).” Clearly, the probans of this
inference (viz., being an offspring of Maitri) fulfills all the five requirements
(and thus also the three conditions laid down by the Buddhists), but it still
fails to ensure any universal concomitance relation (vyāpti) between itself
and the probandum (viz., having dark complexion).39 Hence, the Naiyāyikas’
five-characteristic as well as the Buddhist’s three-characteristic criterion fail
as indicators of vyāpti relation.

The Jaina logician Pātrasvāmı̄ holds that a probans to ensure unfailing
concomitance with probandum need and must fulfill just one single condition,
which is the sine qua non of unfailing concomitance. This single requirement is
called anyathānupapannatva (probans being otherwise unexplainable without
positing the relevant probandum as its explanans). It is also called avinābhāva
(constant conjunction between the two). Avinābhāva may also be taken to mean
(logically) inseparable conjunction, as opposed to a merely factual constant
conjunction. The Jaina logicians were not very careful or consistent in their
use of the term avinābhāva. The Jaina thinkers also reject repeated observation
(bhūyodarśana) as capable of ensuring knowledge of unfailing concomitance,
they ultimately have to fall back on the use of avinābhāva as a conceptually
inseparable relation.40 Although the Jaina logicians used avinābhāva and
anyathānupapanna interchangeably, I think, it will be helpful to keep the
two senses of constant conjunction (viz., merely empirical, that is, factual
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inseparability and conceptual inseparability) apart. We shall use avinābhāva to
mean empirically ascertained constant conjunction and use anyathānupapanna
to mean conceptual inseparability or inseparability in principle.

Thus in the Jaina texts like Pramān. a-par̄ıks. ā,41 Nyāyāvatāra,42 Pramān. a-
sam. graha,43 and Sat.khan. d. āgama,44 single-feature criterion of probans (which
is capable of ensuring appropriate kind of concomitant relation) has been given
in terms of inseparability.

4.4. Ascertainment of Vyāpti
In their answers to the question “how is vyāpti relation ascertained?” different
schools of Indian logicians differ widely from one another.

The Jaina logicians point out that elimination of all possible accidental
factors from a postulated probans is possible neither by perception nor by
some other inference.

Akalan. ka sums up in a verse the Jaina position about how vyāpti is known
(Nyāyaviniścaya, 2/326). The verse says: Given observation of uncontradicted
constant conjunction between a probans and a probandum, it would still have
to be supported by tarka to yield the knowledge of an invariable universal
concomitance.45

4.5. Nature of Tarka
The Jainas were also very clear and emphatic about one point, namely, the
relation of invariable concomitance (avinābhāva) and conceptual inseparability
(anyathānupapannatva) cannot be ascertained either by direct perception or
by another inference. So they proposed that hypothetical reasoning (tarka) be
taken as an independent pramān. a (means of epistemic justification leading to
knowledge). Tarka alone is capable of ascertaining invariable concomitance in
the required sense. Not only does tarka help ascertaining avinābhāva (tarkāt
tanniścaya),46 but such ascertainment is the specific aim of tarka. Even a
Naiyāyika like Udayana (in NVTP 1.1.5) had to admit that where invariable
concomitance is ascertained merely on the basis of observation of instances of
co-presence, it runs the risk of being vitiated by the presence of an accidental
factor (upādhi) called paks.etaratva.47

The idea of tarka as a mode of hypothetical reasoning starting with some
tentatively entertained posits (posit-based hypothetical reasoning or PBHR
for short) failed to be appreciated by other Indian logicians. The Jainas seem
to have had a vague inkling of the methodological significance of tarka as a
PBHR.48 No direct textual evidence can be given for this claim. However,
some circumstantial evidence can be given to show its plausibility.

i. The Jainas were unequivocal about the indispensability of universal
law-like generalizations for an inference and also about the inadequacy
of an inductivist approach to law-like generalizations.49
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ii. They were sure that reliable law-like generalizations are possible.

iii. So they held that there is some noninductivist solution to the problem.

iv. Bhūyodarśana or observation of all cases was rejected by them and they
also rejected perception and ordinary inference as means of ascertaining
the relation.

v. Not mere constant conjunction but anyathānupapannatva (the probans’s
being unexplainable without the relevant probandum being posited)
was substituted for “constant conjunction” as an essential mark of the
relation.

vi. Some sort of analytical/conceptual link (antarvyāpti) between probans
and probandum was considered to be the only real guarantee to have for
the knowledge of their law-like regularity.

vii. Corroborating instances (udāharan. a) and extrinsic concomitance (vahir-
vyāpti) were considered inessential for establishing a law-like generaliza-
tion.

viii. Tarka was given the status of an independent full-fledged pramān. a
because, among other things, of its avisam. vāditva (pragmatic coherence).

All these clearly suggest that tarka for the Jainas is a methodological tool
crudely similar to what is nowadays called hypothetico-deductive method of
theory construction. Moreover, if this PBHR view of tarka is correct, then one
should also expect the notions of tarka and antarvyāpti to be closely related
ones and that actually happens to be corroborated by textual evidence from
Jaina sources.50

4.6. Antarvyāpti and Bahirvyāpti
The Nyāya school maintains that vyāpti can be ascertained by repeated obser-
vation of constant conjunction coupled with nonobservation of any exceptions
to it. This implies that for the ascertainment of vyāpti, observation of cor-
roborating instances is indispensable and hence all cases of vyāpti are cases
of instance-based empirical generalization. This uniform model of vyāpti is
accepted without qualms by most schools of Indian logic, except by the Jaina
and the Buddhist schools of logic. The Jaina logicians classify vyāpti into
antarvyāpti (intrinsic concomitance) and bahirvyāpti (extrinsic concomitance).
Vādidevasūri says: If a given minor (paks.a) is such that in it (i.e., within itself)
concomitance between probans and probandum holds then that is a case of
antarvyāpti: Elsewhere it is bahirvyāpti.51

According to Phanibhusana,52 antarvyāpti, that is, “concomitance of a
probans and its probandum holding internally in a given minor” should be
taken to refer only to those cases where for the purpose of inferring “fire-on-
the-hill” from “smoke-on-the-hill,” one concentrates on the cognitive awareness
of concomitance between “this hill-smoke” and “this hill-fire” to the exclusion
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of similar other cases of smoke-fire relation. This hardly makes any sense.
Moreover the Jainas claim53 that if antarvyāpti is capable of justifying the
inferential transition from probans to probandum, then bahirvyāpti (extrinsic
concomitance) is redundant; again, if antarvyāpti is not capable of it, then
taking recourse to bahirvyāpti becomes useless. Pandit S. C. Nyāyacārya54

maintains that by antarvyāpti the Jainas simply meant the type of vyāpti
used in inferences that yield pan-inclusive universal conclusions (kevalānvaȳı-
anumāna). This interpretation entails that antarvyāpti is a limiting case of
vahirvyāpti having sole application to what the Naiyāyikas call kevalānvaȳı-
anumāna. However, a more plausible interpretation of antarvyāpti would be to
take it as a concomitance relation that is grounded on some internal conceptual
link (roughly, a logico-semantic relation) between a probandum and its probans
(which happen to be co-located/correlated in the minor, i.e., paks.a). On this
interpretation the MTNL claim about the adequacy and indispensability
of antarvyāpti makes good natural sense. It is this: In the absence of any
internal conceptual link between the probans and the probandum, extrinsic
concomitance (universal generalization based solely on points of analogy in
similar other instances) remains an unreliable ground of inference; while in
the presence of such an internal conceptual link (with a priori ascertainability)
an empirical generalization and its factual corroboration (i.e., bahirvyāpti)
becomes redundant as the logical ground of a valid inference.55 Matilal (1998,
12) seems inclined to accept such an interpretation.

The Buddhists hold that every vyāpti is either a case of identity relation
(tādātmya) or else a case of cause-effect relation (tadutpatti).56 Of these, the
identity-based cases would ensure that there are conceptual links ascertainable
a priori. On the other hand, the cause-effect based ones would account for pure
empirical generalization. Accordingly, both the Jainas and the Buddhists had
to rely on antarvyāpti to justify their respective pet metaphysical theses like
“whatever is real is momentary” (Buddha) or “whatever is real has an infinite
number of modes” (Jaina). The use of such metaphysically loaded claims has
illustrative examples was unfortunate, as because of it, the ultimate shape that
the controversy about antarvyāpti took could fool both its opponents as well
as its proponents into believing that the only point for postulating antarvyāpti
was to defend some pan-inclusive metaphysical claims or else clinch such fairly
uninteresting issues like two-component theory of inference. Consequently the
true logical significance of antarvyāpti was missed by all.

4.7. Hetvābhāsa
The logicians of the Nyāya school, as we have seen, held that a legitimate
probans must be characterized by five features. A probans, in its turn, is
considered illegitimate if it lacks any one or more of the five required features.
Accordingly, the standard view of the Naiyāyikas is that there are five types
of hetvābhāsa or defects of inference. Since, according to the Buddhists, any
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defect of inference is due to the fact that the probans used lacks one or other
of the three legitimizing features mentioned by them, they admit of only the
three kinds of hetvābhāsa, namely, savyabhicara, asiddha, and viruddha.57

The Jainas, as we have seen, hold that neither the five nor the three
features can guarantee the legitimacy of a probans and ensure its ability
to logically lead to probandum as a conclusion.58 According to them, “not
otherwise accountable” (i.e., anyathānupapannatva) is the sole requirement
(both necessary and sufficient) for a probans being legitimate. So there is
only one type of defect of inference, which arises from the violation of the
requirement.59

Instead of calling all defects of inference hetvābhāsa the Jainas used a more
inclusive term—anumānābhāsa—to mean defects of inference in general.

Now, though there should be only one type of anumānābhāsa, how is it
that many Jaina writers speak of three or four types of them?60 This apparent
inconsistency in the Jaina position is explained by the Jaina thinkers following
a general strategy, namely, by maintaining that all the so-called varieties of
hetvābhāsa are but different ways of failing to satisfy the anyathānupapannatva
requirement.61 Akalan.ka goes even a step further and holds that all sorts of
violation of the anyathānupapannatva requirement have a common feature,
akiñcitkaratva (lack of inferential significance).62 Vādidevasūri (in PNT 6/57)
regards akiñcitkara as a defect that characterizes a pointless inference, (e.g.,
trying to inferentially justify a tautology or something that is obviously true).63

It is easy to see why Yaśovijaya refuses to accept akiñcitkara as a distinct type
of logical defect on top of the three mentioned by him.64

It is interesting to note that the nonorthodox Naiyāyika Jayanta Bhat.t.a
admitted akiñcitkara as the sixth type of hetvābhāsa (on top of the usual
five admitted in Nyāya logic) but subsequently succumbed to the pressure of
tradition and proposed to include it under asiddha.

4.8. Treatment of Existence in Jaina Logic
If logic, as the theory of inference, is always tied down to the actual world,
then how is it possible, even for the sake of an argument, to make inferences
about things, which are not known to exist? Yet any minimally powerful
logic must be able to tackle this problem. The Jainas were aware of this
problem and tried to find out a solution for it. First, they maintained that
when it comes to existence proofs of ordinary things, it can be ascertained
by one standard means of knowing (pramān. a) or another, for example, sense
perception. Second, when there is no such pramān. a we need to use vikalpa
proof. In vikalpa it is legitimate to hypothetically entertain as a posit the entity
whose existence is sought to be proved. Vikalpa proof depends on the principle
of self-consistency, which consists in the absence of a definite impossibility
proof 65 (Cp. the proof that the square roots of −1 exist, or that there is no
cardinality between Aleph-null and Aleph-one). Third, according to the Jainas,
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existence of something may be denied by changing the negative existential
statement to its proper logical form. For example, “there are no hare-horns”
is to be transformed into “there are no hares with horns.” Fourth, the Jainas
maintain that by means of vikalpa, only the existence or nonexistence of a
thing with certain properties can be established. Now, by the second condition,
vikalpa is applicable in proofs of only such entities which are not provable
by any standard pramān. a, such as perception (pratyaks.a), ordinary inference
(anumāna), and so on. This coupled with the fourth condition gives the first
rule of existence proof in Jaina logic.

This can be expressed in the form of a basic rule R0.

Rule 0 A hypothesis H will come under the scope of vikalpa proof provided

a. H is an existence postulate of the form “Φ a” where “a” denotes an
individual (dharmin) and “Φ” is a putative dharma.

b. The truth-claim of H cannot be ascertained by any of the standard
pramān. as, for example, ordinary perception or inference or the like.

It is a rule about the range of applicability of vikalpa. Hence, R0 is a meta-rule.

Rule 1 A dharmi with any property φ possibly exists if the assertion that
“φa,” that is, “a has φ” does not logically (necessarily) entail any contradiction.
(Since we allow a to be possibly an empty name the rule of E.G. fails to hold,
that is, here “φa” does not entail “(∃x)φx.”)

In symbols,

(R1) ∼L(φa→ C) ↔M(E | φa).
R1 gives a more tangible shape to the abstract principle of self-consistency as
a minimal requirement for any existence claim being entertainable.

(Here, “L” and “M” are standard modal operators, “∃ | φa” means there is a
“φ-characterized a.”)

The next rule, Rule 2, adds flesh and blood to the skeletal claim authorized
by R1. Clearly from the fact that the hypothesis “perfect human knower exists”
is

i. not ascertainable by any standard pramān. a, and

ii. does not logically entail any self-contradiction,

it follows by virtue of R0 and R1 that M(E | φa). However, from “M(E |
φa)” we can logically infer neither “(∃y)(E | φ y)” nor “(E | φa)” nor even
“(∃y)M(E | φ y).” Yet to be able to establish that sarvajna asti we must be
able to derive at least “(∃y)M(E | φ y)” from M(E | φa).

The rule that authorizes this passage/derivation is Rule 2. Before giving a
precise formulation of R2 we need to define a technical notion, namely, that of
a desirable property.
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Definition D1 Ψ is a desirable property iff

i. Ψ is an instantiated property,

ii. Ψ is an original (sahaja) property (dharma),

iii. The grades or degrees of Ψ can be linearly ordered.

Let P be the set of all desirable properties and φ be the property of being a
human knower.

Now, we can give a precise formulation of Rule 2.

Rule 2 If any dharmi a possess a dharma ψ such that (i) ψ ∈ P and (ii)M(E |
φa) holds then φ has a maximal upper bound (m.u.b.), say, φ∗ and there is
some y such that

(∃y)M(E | φ∗ y) holds.

Now, since φ (being a human knower) satisfies all the three conditions (i)–(iii)
of D1, R2 can be applied to “φa” to get the result (∃y)M(E | φ y) . . . (A).

Clearly, (A) is a logically stronger claim than both M(E | φa) and
M(∃y)(E | φ y).

The clearest standard example of this kind of existence-proof is the Jaina
proof for the existence of a most perfect human knower or omniscient being,
called kevalin.66 In short, the argument used by the Jainas to prove the
existence of omniscient persons (kevalin) runs thus:

i. The idea of a perfect human knower (kevalin) cannot be established by
any standard pramān. a such as perception, ordinary inference, and so
on.67 So, it is a case fit for coming under the scope of vikalpa method of
proof . . . by R0.

ii. Let “φ∗” stand for the property (dharma) of being a perfect human
knower. The idea of a perfect knower is not provably inconsistent. Hence,
such a knower possibly exists . . . by R1.

iii. Knowledge is an actually instantiated property, say φ, which admits of
gradations in terms of its degree of perfection and these various degrees
are linearly orderable.68 Hence, φ ∈ P , and thus φ has to have an m.u.b.
φ∗, such that there exists some knower y who has φ∗ and who is type-
homogeneous to imperfect knowers like us, that is, who (∃y)M(E | φ∗ y)
. . . by R2.69

But can we validly infer that there is a perfect smelling rose or a perfectly hot
thing by rules R0, R1, and R2? The Jainas would say that we cannot. But why
not? How to block such undesirable existence proofs? The only way it can be
done is by imposing some restrictions on the nature of P in R2, which would
ensure that only on properties of a very special kind the rules R0, R1, and
R2 can be applied and the resulting existence proof can be carried through.
The Jainas called such special properties sahaja dharma (original properties).
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Such restriction would exclude “perfect smell” or “a perfectly hot object,” etc.,
from the range of applicability of R0, R1, and R2. This is precisely what the
Jainas did.70

We may now look at the Nyāya-Jaina controversy about talks about
nonexistents. The controversy centers around three main points:

i. The Jainas admit, while the Naiyāyikas do not, that indirect proof
(vikalpa) is a legitimate way of proving existence in certain specific types
of cases.

ii. The Jainas hold that prior to establishing the existence or otherwise of a
purported entity we can significantly and meaningfully talk about it in a
logically legitimate way (JTB, 14, line 10). The Naiyāyikas hold that all
such provisional talks are meaningless and logically wrong.

iii. The Naiyāyikas follow the Paninian grammatical model of sentence anal-
ysis which leads them to treat sentences (about existence/nonexistence of
something) as composite wholes, for example, “Mermaids-as-possessors-
of-nonexistence” (= Mermaids are nonexistent = There are no mermaids.)
and then, “Mermaids are charming” and also “Mermaids are not charming”
become truth valueless (cp Strawson).

Thus, if lack of a truth value is the mark of nonsensicality of a sentence (as some
logical positivists held), then in the light of that, the Naiyāyika claim (namely,
prior to or in the absence of having a criterion of ascertaining the emptiness
(or otherwise) of the subject of a discourse, all talks about such a subject are
to be treated as meaningless (nonsensical)), becomes quite intelligible. The
Jainas strongly reject this Nyāya view.

Russell’s TDD tackled the problem of empty description by using the
five logical strategies, one of which was to logically recast the troublesome
sentences in a prescribed format. Jaina logicians too prescribed such a strategy
of recasting. For example, instead of the whole compound concept of “donkey’s-
horn-as-a-locus-of-existence” being negativized, the Jainas recommended that
the compound expression be componentially analyzed and be recast into “there
is no horn which belongs to a donkey.”71 This clearly avoids any commitment
to any such thing as “existenceless-donkey-horn” (khara-vis. ān. ābhāva) as a
quasi-real entity.

The Jaina theory of vikalpa as a sort of existence proof, it should be noted,
does not prove the actual existence of anything. It is more like a proof to
the effect that there exists a limit to which a given infinite geometrical series
(say, 1 + 1/2 + 1/4 + · · · ) converges (without that limit being ever actually
reached). The epsilon-delta definition of the limit of a function in terms of a
“neighborhood” would be an even better analogy to express the Jaina position.

Quine had a very strong ontological view backed up by his logic. His is
a classic case of logic dictating ontology. It is betrayed by Quine’s view on
deviant logics. The Naiyāyikas, on the other hand, started by subscribing
to a very rigid ontology. Moreover, their view about language-reality tie-up
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plus their view that everything knowable (jñeya) is necessarily linguistically
expressible (abhidheya) committed them to draw a sharp and fixed line of
demarcation between referring and nonreferring terms. So, theirs is a case of
ontology dictating logic. Although, in a sense, Jaina logic was also shaped by
their ontology, yet unlike Nyāya logic, Jaina logic was nonrigid and flexible
because of their highly accommodative ontology of anekāntavāda, supported
by an equally flexible logico-epistemic cum linguistic theory. Furthermore, the
Jaina nayavāda (epistemic perspectivalism) ensured that all knowledge-claims
are perspective-relative (and hence, incomplete or partial). Their syadvāda
(logic of propositional expressions) ensured that all propositionally made truth
claims are conditional. Jaina theory of language made its contribution by
developing, among other things, a scheme of classification of propositional
expressions (i.e., any meaningful sentence which either expresses a proposition
or seeks a propositional answer) into truth-functional (paryāpta) and non–
truth-functional (aparyāpta).72 Truth-functional expressions are classified as
“true” or “false.” “Non–truth-functional” expressions are classified into quasi–
truth-functional (satyamr.s. ā) and pure non–truth-functional (asatyamr.s. ā).73

The rule R1, as we know, says that if a claim does not entail logical
inconsistency, then it is provisionally entertainable as really being true. The
question now is how to define inconsistency, particularly in the context of
Jaina logic. For the Jainas even the notion of inconsistency is conditional,
that is, context-relative. In short, there is no absolute criterion of logical
inconsistency. If the notion of inconsistency itself be relative and conditional
then how is it that the Jainas regard some claims, such as, “He is the son of
a childless woman,” as unconditionally inconsistent? Second, if the notion of
inconsistency be always relative (and thus have multiple criteria) then which
of those possible criteria is to be chosen for use in R1 in the context of vikalpa
proof? In the context of defining fuzzy or graded consequence relations, the
choice of an appropriate notion of inconsistency becomes crucial.

4.9. Contradiction in Jaina Logic
Before one can answer these questions, some background information is
required.

i. The Jainas, like all other Indian logicians, define contradiction/inconsis-
tency in terms of epistemic incompatibility and not in terms of proposi-
tional incompatibility, as is done in Western logic.

ii. Contradiction is said to occur only when one epistemic state (jñāna) is
blocked (pratibaddha) by another (pratibandhaka).

iii. Any given negated proposition, say not-q, does not form a contradictory
pair with any arbitrary proposition p. A contradiction occurs only when
both the assertion and the negation of the same proposition are conjoined.
In the same way, an epistemic state J1, can form an incompatible pair
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with another epistemic state J2 only if J1 and J2 have exactly the same
epistemic content (vis.ayatā).

iv. Vis.ayatā is a multicomponent composite notion, consisting of a specific
set of relata and a specific relation between them. The vis.ayatā of the
knowledge “a pot is on the floor,” consists of

a. the characterizer (prakāra) (here, it is the pot),
b. the characterized (viśes.ya) (here, it is the floor),
c. the specific floor-pot contact-relation of “being-on” (sam. yoga sam-

bandha).

v. J1 and J2 cannot have the same epistemic content unless their respective
vis.ayatās have exactly the same componential cum relational specificity.

We may now proceed to analyze the notion of inconsistency in Jaina logic,
keeping the above points in mind.

Let J1 = a pot is on the floor, and
J2 = a pot is not on the floor.

Are J1, J2 incompatible? It need not be, because one with knowledge J2, may
be referring to the pot (a different one) which he saw here yesterday, whereas
J1 has as its prakāra the pot which is now on the floor. Even a slight difference
in any component of a vis.ayatā can change its identity. Clearly, J1, J2 need
not have the same vis.ayatā. So they are not absolute incompatibles.

According to the Jainas, epistemic content of any jñāna has four dimensions
of freedom (unspecificity), namely, dravya (substantiality), ks.etra (location),
kāla (temporality), and bhāva (features). Each of which again admits of an
infinite number of variations (JTB, 19).

It should be clear by now that any two epistemic claims like J1, and J2 can
be shown to be nonincompatible (i.e., jointly entertainable) so long as even
one dimension of freedom or a single degree of variations of their respective
vis.ayatā remain unfixed/unspecified. Exact specification of all dimensions and
degrees of a specific vis.ayatā is not possible (for obvious reasons) in normal
cases.74

Now, if no epistemic claim is ever wholly untrue (as the Jainas seem to
claim) then shouldn’t we say that the claim “he is the son of a childless woman”
is also partly true? The Jainas disagree. How to explain this? In Gun. aratna’s
commentary on Haribhadra’s SDS we find an argument for the position that
every real thing (vastu) has infinite number of characteristics (often apparently
incompatible ones).75 In that context it is said that whatever does not have
an infinite number of characteristics is not a vastu (real thing). Let us use
“E | d, k, t, b, a” to stand for “a exists relative to some d (dravya), k (ks.etra), t
(time or kāla), and b (bhāva),” where d, k, t, and b are variables and a is a
constant.
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Using quantifiers on d, k, t, and b, we get the following proposition:

(∃d)(∃k)(∃t)(∃b)(E | dktba),
which expresses an existential claim about a. This claim can be contradicted
only by (d)(k)(t)(b)∼(E | dktba), that is, only when there is not a single
substance, location, time or feature with respect to which it is true to say that
“a exists.” Clearly, if a is a four-sided triangle or the son of a childless woman
then there is not a single time or location or feature in respect of which it
is true to say that “a exists.” Therefore, a claim to the effect that “the son
of a childless woman exists,” is unconditionally or absolutely false. Hence, it
lacks the property of having infinite number of characteristics, but then by
the Jaina criterion of reality it is an avastu (unreal) and hence, not subject to
anekāntavāda, as expected.

The foregoing account gives a traditional interpretation and defense of the
Jaina anekāntavāda and its underlying notion of mutual inconsistency. There
are, however, other not so traditional interpretations of Jaina anekāntavāda
proposed by some mathematicians (P. C. Mahalanobis)76 and physicists (D. S.
Kothari, Partha Ghosh, M. D. Srinivas),77 and so on. The physicists prefer
what I call a strong realistic interpretation of anekāntavāda, which holds that
real, objective, contradictory properties can be and are simultaneously present
in the reality without inconsistency, in a way similar to how an electron has the
properties of a particle as well as of a wave78 or in the way seven colors of the
spectrum are simultaneously present in sun ray (cp. SDS). Some Jaina texts79

also lend support to this strong realistic interpretation. These nontraditional
interpretations are not to be discussed here. Elsewhere (Sarkar 1998), I have
discussed the possibility of incorporating a strong realistic interpretation of
anekāntavāda, which is based on an inconsistency tolerant paraconsistent logic.
The possibility of using fuzzy logic and default logic has also been explored
by some (Sarkar 1992; Brahma 1999) in an attempt to throw new lights on
Syadvāda and some other aspects of Jaina logic.

5. An Introduction to Navya-Nyāya Logic
Sibajiban Bhattacharyya

5.1. Introduction
Navya-Nyāya logic is mainly a logic of cognitions. It is necessary to explain
how “cognition” is used here.

1. “Cognition” is used in a very wide sense, to mean not merely proposi-
tional cognitions, like perceiving, inferring, remembering, imagining, assuming,
introspecting, and so on, but also nonpropositional cognitions like sensing. But
in developing the logical aspect of this system, we shall not have occasion to
refer to the nonpropositional type of cognition.
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2. “Cognition” is used only in the episodic sense, never in the dispositional
sense. The propositional cognitions are called qualificative cognitions, the
objects of which are always relational complexes of the form a R b. We now
introduce three epistemic definitions.

Definition 1 Qualificand of a qualificative cognition: a in the cognized struc-
ture a R b, is called the qualificand of the cognition as well as the qualicand
of b.

Definition 2 Qualifier (mode) of a qualificative cognition b in the cognized
structure a R b is called the qualifier (mode) of the cognition as well as the
qualifier (mode) of a.

Definition 3 Qualification of a qualificative cognition R in the cognized struc-
ture a R b is called the qualification of the cognition.

Here it is necessary to explain four points:

i. Every qualificative cognition of the structure a R b is interpreted in Navya-
Nyāya theory as cognition b in a by R. Thus “a R b” is a term, not a
proposition in the usual Western sense. For in Navya-Nyāya theory, every
qualificative cognition has to be analyzed as cognition of something in
something, of something possessing something, of something as something,
that is, something cognized under the mode of something. The structure
a R b is regarded as a complex object, and not as a proposition or fact
in the sense of the Tractatus.

ii. The second point to be noted here is that the expression “a R b” is to
be given a de re interpretation. Thus a, b, and R are objects in the real
world.

iii. When the fact is that I perceive a table, that is, something under the
mode of the property—being a table—what I say is just “a table” not that
“I perceive a table.” I do not perceive my perception. So also, generally,
when I cognize an object, the fact is that I cognize it, but what I say is
what I cognize, an expression for the object, not “I cognized the object.”
According to Navya-Nyāya, cognition is just belief, a true cognition is a
true belief. We may note here that the Sanskrit term for “know” is jña,
which is philologically cognate with the Greek “gnosis.” Yet in spite of
this philological affinity, semantically the Sanskrit noun Jñāna is very
different from the English noun “knowledge.”

iv. I have used “a R b” in symbols to mean the relational structure of a
and b related by a dyadic relation R. But “a R b” is not its correct
form, according to Navya-Nyāya philosophers. For (a) there are no
relations admitted in the ontology, except a particular relation, inherence;
(b) second, no relation can be expressed by a relation-word, for whatever
is meant by a word becomes a term, which cannot be a relation. A
relation is to be understood from the order of words occurring in an
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expression. To talk about a relational whole, it is usual in Navya-Nyāya
logic to use the expression “possessing” to stand for relation in general.
So the expression “b possessing a” is used, instead of “a R b.” Because
relation is not admitted as a separate category in the ontology, it is held
that any object of any category may function in a qualificative cognition.

What this function is, may be explained by a diagram:

Qualificative Cognition of a R b
b possessing a

ab

relation
(ontology)

R3
R2 R1

a, as we have already pointed out (Def. 1) is the qualificand, b the qualifier
(Def. 2), and “possessing” stands for the qualification (Def. 3). Any object
to which the cognition is related by R1 is the qualificand of the cognition;
any object to which the cognition is related by R2 is the qualifier; and any
object to which the cognition is related by R3 function in that cognition as
the relation between a and b, that is, as the qualification in the qualificative
cognition.

As R1, R2, R3 are relations by which the qualificative cognition is related to
a and b and R, the converse relations, Ř1, Ř2, Ř3, are the relations by which
the three elements in the objective structure are related to the cognition. There
is no difficulty in explaining how three elements in the objective structure
can be related to the same cognition by three relations, Ř1, Ř2, Ř3. These
relations, however, are cognized only in a second-order, introspective cognition,
that is, although in every qualificative cognition there are always a qualificand,
a qualifier and a qualification still they are cognized only in introspection.

I shall now state two objective definitions.

Definition 4 Property (superstratum) b is a property (superstratum) of a in
the relation R in a R b (b-possessing a).

Definition 5 Property-possessor (substratum, locus) a is the property-posses-
sor (substratum, locus) of b in the relation R in a R b (b-possessing a).

Now we explain how Navya-Nyāya language could apply to all serious discourse
in the humanities. Navya-Nyāya language developed so that it could describe
structures cognized on various occasions. Thus this language could be used in
every sphere where cognition, belief, doubt, and other epistemic and doxastic
factors play an essential role. This explains why this language could be used
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universally in the humanities, where epistemic factors predominate. In the
sciences, however, propositions are stated in total or near total independence of
the knowing subject. Hence Navya-Nyāya language, which is very helpful in the
humanities, does not seem to be applicable in the sciences. Although a mastery
of the Navya-Nyāya language is considered essential for studying medicine
(āyurveda), still no work of medicine seems to have used this language. Modern
Western logic, on the other hand, developed historically, so that it could be
applied to mathematics, and is thus inappropriate for use in the humanities.

5.2. Some Technical Terms of Navya-Nyāya
5.2.1. Abstraction

Usually in Sanskrit, as in English, abstract terms are formed from given
concrete terms, and concrete terms from given abstract terms. Thus, from the
concrete terms, “wise,” “honest,” and “man” we have the following abstract
terms by adding appropriate suffixes, making appropriate grammatical changes
in the stem where necessary: “wis-dom,” “honest-y,” “man-ness,” so also with
abstract terms. But Navya-Nyāya philosophers form abstract and concrete
terms from any terms. Thus, there will be higher-order abstract terms formed
from given abstract terms; and, similarly higher order concrete terms from
given concrete terms. The abstraction suffix is tva or its grammatical variant
tā (translated as “ness”) and the concretization suffix is vat or mat (translated
as “possessing”). Abstraction and concretization are inverse processes in the
sense that

(t-ness)− possessing = t(A1)
(t-possessing)− ness = t,

where “t” is any term whatsoever, corresponding to the law of symbolic logic.

(A2) [(λx)Fx] = F

To explain a higher order abstract term, we may use in symbols:

(A3) (λy)[y = (λx)(Fx)],

and so on.

Definition 6 Resident in: In a R b, a is the locus of b (Def. 5), and has,
therefore, the property of being the locus of b. This “having a property” is
stated in the form “the property of being the locus resident in a.” So also b,
which is the superstratum of a, has the property of being the superstratum
of a. Hence the property of being the superstratum of a is resident in b.

Definition 7 Determiner-Determined: To say a is the locus of b, is to say that
the property of being the locus (locus-ness) resident in a determines or is
determined by the property of being the superstratum (superstratum-ness)
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resident in b. The determiner-determined relation is between properties of two
correlatives. In symbols:

(λx) x R y determines or is determined by (λy) x R y.

The structure a R b (b-possessing a), which is interpreted as b in a by R is
described in theoretical terms of the Navya-Nyāya system thus:

(S1) R is the limiting relation of superstratum-ness resident in b, which
superstratum-ness determines the locus-ness resident in a.

5.2.2. The Concept of Limiter

Navya-Nyāya uses the “limiter” in many senses, extensively in its technical
language. I explain here only two senses of the term: (a) Navya-Nyāya philoso-
phers use the term to state explicitly the mode of cognition of any object;
(b) they also use it to state explicitly the quantity of the cognition, that is, of
the cognized structure.

a. This concept is needed because all expressions of cognitions have to be
given a de re interpretation. For example, if I see what is objectively a cat, I
may say (i) “a cat,” or I might say (ii) “a furry white object.” In (i) I see the
object as possessing cat-ness; in (ii) as possessing the properties of being furry
and being a white object. As the thing I see is the qualificand, in (i) cat-ness
is the limiting property of being the qualificand. It is, therefore, a property
under the mode of which the thing is cognized. In (ii) the two properties are
the limiting properties of being the qualificand in the cognition. There are
Navya-Nyāya philosophers who hold that in this instance, the limiting property
of being the qualificand is the same as the qualifier of the cognition. But if we
take a more complex case of cognition, of a brown cat (or “a cat is brown”),
we have here three properties: (i) the thing that I cognize is under the mode
of being a cat (cat-ness); (ii) the brown color as a qualifier of the thing, cat;
and (iii) the color is cognized under the mode of being brown (brown-ness).
Now in (i) the property of being a cat is the limiting property of being the
qualificand. In (iii), the property—being brown (brown-ness) is the limiting
property of being the qualifier (qualifier-ness). Here the limiting properties of
qualificand-ness and qualifier-ness are different from the qualifier, the brown
color.

The cognition of a brown cat is expressed in Navya-Nyāya as “a cat pos-
sessing brown color.” Now “possessing” indicates a relation. This relation in
this instance is inherence—the brown color inheres in the cat. So, inherence,
which goes with the qualifier, is the limiting relation of being the qualifier
(qualifier-ness) of the cognition.

It has to be noted that Navya-Nyāya has devised a technical language in
which the structure cognized is stated fully, so that the cognition itself is
specified. To develop this technical language, Navya-Nyāya has to first develop
a method of forming abstract terms, then the concept of determiner-determined,
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and last the concept of limiting properties and limiting relations. It has to
be noted here that these limiting properties cannot be meant by words in
ordinary nontechnical language. For a word means an object only under a
mode, so if a word is used for the limiting property, the mode under which
the object meant by the word is cognized would be a higher order abstract.
For example, when I perceive something as a cat, I say only “a cat,” but if
instead, I say “something possessing cat-ness,” then “cat-ness” is being used
to mean cat-ness under the mode cat-ness-ness, and so on, ad infinitum. If, on
the other hand, the word “cat-ness” is not used but only cognized as a mode
under which a cat is perceived, then cat-ness is cognized in and through itself,
not requiring any mode of cognition. So “cat-ness” can only be used in the
technical language, which makes explicit the structure cognized.

Thus it appears that the ordinary Sanskrit, which is used to state what is
cognized, is like the object language. And the technical language is like the
metalanguage. But there is a fundamental difference between the Western
concepts of object language and metalanguage and Navya-Nyāya concepts
of ordinary Sanskrit and technical language. The difference is due to the
Navya-Nyāya theory that all expressions in ordinary Sanskrit stating cognized
structures have to be given a de re interpretation. So the technical language,
too, talks about objects, not about names of objects. The technical language
does not mention any names, but uses names of objects, which are used in
ordinary Sanskrit. But, as is obvious, the technical language is essentially richer
than ordinary Sanskrit as it uses words for all concepts (objects) introduced
into the technical language. These words, too, have to be given a de re
interpretation. According to the Navya-Nyāya philosophers, being limited by a
limiting property or a limiting relation is itself as objective as a cat, cat-ness,
being a qualificand, or a qualifier or a qualification. But whether the properties
like being a qualificand (qualificand-ness), qualifierness, limiter-ness, and so
on belong to separate categories of reals is debated in Navya-Nyāya. For all
Navya-Nyāya philosophers do not hold the same view on this point.

b. Navya-Nyāya philosophers use the term “limit” very often in the second
sense to state the quantity of cognized structure. According to Western logicians,
every judgment has both a quantity and a quality, which determine its form.
Navya-Nyāya logicians make a radical distinction between quality and quantity
of judgments. The quality of judgment is always expressed by means of the
negative particles, used once, twice, or thrice. Whatever is expressed by words
becomes a part of the content of the judgment; the words cannot determine
the forms. The quantity of judgments is always understood and is therefore
to be expressed only in the technical language by means of the concept of
limiter. I give here an example of negation. Thus, in ordinary Sanskrit when
one says absence of (a) cow it is not clear what he has cognized. Is it the
absence of a particular cow or of all cows? This distinction is made in the
technical language by using the concept of a limiter. Thus if the limiter of the
property of being negated (counterpositive-ness of the negation) is cow-ness in
general, then absence of all cows is what is cognized. If, on the other hand the
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limiter of the counterpositiveness is this cow-ness (or this-ness and cow-ness)
or that-cow-ness (or that-ness and cow-ness), then absence of this or that is
cognized. Thus the concept of limiter is used here to indicate the quantity of
what is cognized.

5.3. Some Logical Words

5.3.1. Negation

Navya-Nyāya logicians treat negation not as belonging to the form of cognitions
but as belonging to their matter. This means that a negative cognition cannot
be true without a negative object corresponding to the negative cognition. So
Navya-Nyāya logicians have posited the reality of negative objects.

From any term “t,” its negative can be formed by the suffix “ abhāva”
(-negation), which we symbolize by “(t) neg.” In the ontology there is a
negative object as the referent of “(t) neg,” where the referent of “t” is the
counterpositive of the referent of “(t) neg.” Just as we have positive objects
like tables, chairs, and so on, so also we have negative objects like absence
of a chair, difference of a table from a chair, and so on. Thus Navya-Nyāya
theory of negation is a theory of negative terms and their referents. There is no
concept of propositional negation in Navya-Nyāya. Negative objects are of two
types—absence and difference. Absence, again, is of three types, (i) absence of
an object before it is produced; (ii) absence of an object when it is destroyed;
(iii) the absence which is eternal like absence of color from air, since air is
never colored. The first two types of absence, the not-yet type and the no-more
type, are limited in time, the former is beginningless but ceases to be with the
object; the latter is endless but begins with the destruction of the objects. The
never-type absence is both beginningless and endless.

Navya-Nyāya logicians put some restrictions on objects, which can be said
to be absent: that is, objects, which can be counterpositive of absence. (i) The
first restriction is, if the object be a global property, or a ubiquitous object, it
cannot be said to be absent, for there can be no locus of its absence. (ii) The
second restriction is that a purely imaginary or fictitious object cannot be said
not to exist in a certain locus, for it does not exist at all. To say significantly
that an object does not exist in a certain locus, it is necessary that it exists
elsewhere. Gan. geśa (circa thirteenth century a.d.) has given the example of
“hare’s horns do not exist” and has interpreted it to mean that there are no
horns on a hare. As horns do exist somewhere, they can be significantly said
not to exist in a certain locus. Now to exist elsewhere an object has to be
related to its locus by a certain relation. To say that the object does not exist
in this room is to say that the object does not exist in this room by that
relation in that it exists in some other locus. This relation is technically called
the limiting relation of the counterpositiveness of the absence. If this relation
is not understood as the limiting relation of counterpositiveness of absence,
then there will be no opposition between presence and absence of the same
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object. Thus we say correctly a pot is present in its parts by the relation of
inherence, but is not present in them by the relation of contact. A pot is on
the ground by a relation of contact, but it is not present in its parts by contact;
it inheres in its parts. Thus the counterpositive and the negation are opposed
only if the limiting relation is understood.

The difference between the never-type of absence and difference is explained
by reference to the limiting relations. We symbolize difference of t as “(t)-diff”
and absence of t as “(t)-ab.” Thus when we say that the pot is not the cloth,
the limiting relation of the counterpositiveness resident in the cloth is identity.
This limiting relation of identity is always present in cognition when we say
that this is not that, or that this is different from that. But it will not do to
say that the pot is not identical with the cloth, for in this cognition it is the
identity of the cloth that has become the counterpositive. Because negations
differ if their counterpositives differ, the two negations cannot be the same.
This means that identity, which is the limiting relation of counterpositiveness,
has always to be understood, but never said.

In the case of absence of the third type, the limiting relations of the
counterpositiveness can never be identity, but will always be other relations.
The not-type and the no-more types of absence do not have limiting relations
of their counterpositiveness. That is because, in the not-yet type of absence,
the counterpositive has not come into being; so it does not make sense to
say in which relation it is present somewhere, so also with no-more type of
absence. Here the counterpositive is destroyed and cannot be said to be present
somewhere else. It is only general absence, which has limiting relations of
counterpositiveness.

The limiting relations of counterpositiveness are relations in which the
counterpositive is located elsewhere. These relations are different from the
relations by which negations are located in their locus. For example, if there
is no pot on the ground, there is absence of pots located in the ground; this
relation is very different from the limiting relation of the counterpositiveness
of this absence.

Although I have explained the concept of limiter (limiting property) as
stating generality of cognitions, and the concept of limiting relation only in
case of negations, Navya-Nyāya philosophers use these concepts extensively in
various contexts.

5.3.2. Double Negation

As negation has two forms, absence and difference, double negation has four
forms.

i. a. Absence of absence of t = t,

where “t” is any term whatever.
This identity has been found defective by Raghunātha (circa fifteenth century

a.d.) His argument is that the lefthand side of the identity is a negative object



Indian Logic 949

(being absence), but the righthand side may be a positive object. It is not
possible to identify a negative object with a positive object. He therefore
revises the identity thus:

b. Absence of absence of absence of t = absence of t.

Now both sides of the identity sign are negative objects. Raghunātha does not
find any difficulty in identifying the third absence with the first absence.

ii. a. Absence of difference of t = t-ness.

The argument for this law is that difference of t is present everywhere except t.
So it’s absence is present in t. What is present in all t’s and only t’s is t-ness.
So the absence is t-ness.

But this argument has been challenged by many Navya-Nyāya logicians.
Their argument is that absence of difference is identity. So they have the
following law.

c. Absence of difference of t = t (i.e., identical with t). (For a different form
of the argument, see Ingalls.)80

iii. Difference from absence of A: This difference is located in everything
except absence of A. For example, if B is different from A, then absence
of B is different from absence of A. Moreover, absence of A is different
from B, which is a positive object. This positive object is the locus of
the negative object–(difference).

iv. Difference of difference of A from B: It is also a negative object-difference.
It is present everywhere except difference of A from B, which is different
from difference of C from D. So difference of difference of A from B, is
located in the difference of C from D, also from both C and D, and even
A and B, for all of them are different from difference of A from B.

Bimal Matilal has, however, explained Raghunātha’s theory in his Pada-
ārthatattva-nirũpan. a. in the following way. “Fl. ‘Difference from whatever is
different from anything that has x or is delimited by x = x’.” Matilal, however,
rejects the usual formulation: “The difference from difference from x = x.”81

5.3.3. Conjunction

As in the case of negation, so also with conjunction, the conjunctive particle
(“and”) occurs only between two terms. Terms may denote either simple
or complex objects. The meanings of sentences are complex objects, not
propositions.

The realistic metaphysics of Navya-Nyāya, explains conjunction as obtaining
metaphysically in cognitions. The reason is that although we may say “both a
horse and a cow,” still in reality there is no collection of objects. The objects
remain metaphysically separate. So a conjunction is really a conjunctive
cognition that has two principal qualificands, in the example, a horse is the
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qualificand of horseness, which is its qualifier, and a cow is also a qualificand
of cowness, which is its qualifier. But neither a horse nor a cow is a qualifier
of each other. So both of them are principal qualificands.

5.3.4. Disjunction

The disjunctive particle has two forms: “either-or,” and “either one of the
two.” “Either-or” is used to express doubt. For example, when we are not sure
whether the thing before us is a post or a man, we say that it is either a post
or a man.

Ingalls82 explained the sense of “either one of the two” as explaining De
Morgan’s law: p∨ q = ∼(∼p .∼q) (p. 64), and ∼(p∨ q) = (∼p .∼q) (p. 65) (he
uses “∼” to symbolize “absence”). Thus “either one of the two” is interpreted
as inclusive “or.”

5.4. Theory of Inference
5.4.1. General Introduction

Inference is a form of mediate, informative, cognition. It is cognition of some-
thing by cognizing something else. The process of inference is of two types—
(i) inference for one’s sake, and (ii) inference for the sake of others. After
performing an act of inference for one’s sake, one may express this inference
in language to communicate to others. I shall, first, explain inference for one’s
sake by a stock example.

Inference for One’s Sake We shall have to cognize certain objects to draw the
conclusion from them. In Nyāya there is no immediate inference. For example,
we first see that (i) the hill possesses smoke. This is perceptual cognition. Then
seeing the smoke, we are reminded that (ii) wherever there is smoke there
is fire. This second step is memory of pervasion of smoke by fire. Then (i)
and (ii) are combined to make a complex sentence called “Consideration” as
exemplified in

iii. The hill possesses smoke pervaded by fire.

And then the conclusion (iv) follows.

iv. The hill possesses fire.

There are several points that have to be explained here.
a. Although inference for one’s sake does not involve any language, yet for

the discussion of this type inference language has to be used. This language has
a canonical form. The verb “possess” functions like the copula in traditional
Western logic. In the sentence “the hill possesses fire” the hill is the subject and
fire is the predicate. But the sentence “this is fire” is not in its canonical form,
so it has to be transformed into “this possesses fireness.” Then the predicate is
fireness, not fire (and never “fire”).
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b. The predicate of the conclusion is called “the probandum” (sādhya abbrev.
“s”) (roughly the major term) and the subject of the conclusion is called the
“locus of the inference” (paks.a, abbrev. “p”) (roughly the minor term).

c. The most important cognition is the memory cognition of pervasion
recalled by the perception of smoke. Pervasion is the relation between the
pervader (fire in the example) and the pervaded (smoke). This relation can
be stated in language thus. Whatever possesses the pervaded possesses the
pervader. In symbols, in “x pervades y,” x is the pervader and y is the pervaded.

It is necessary to indicate the relation the pervader has to the locus of
the inference, and also the relation the pervaded has to it. In the locus of
the inference the pervaded occurs in a certain relation; then one can infer
that in the locus of inference the pervader occurs in a certain relation. The
relation in which the pervaded occurs in the locus of the inference (the hill,
in the example) is the limiting relation of pervadedness; and the relation in
which the pervader occurs in the locus of inference is the limiting relation of
pervaderness.

d. In pervasion, of course, wherever the pervaded occurs in the limiting
relation of pervadedness, the pervader occurs in the limiting relation of per-
vaderness. “Pervasion” may be defined in symbol thus: x pervades y = Df.(z)
[Hy,Ryz ⊃ Sx ⊃ Txz], where R stands for the limiting relation of being
pervaded, Hx = x is the probans (the hetu) of the inference, and Sx = x
is the probandum (the sādhya), and T stands for the limiting relation of
pervaderness.
R and T are not necessarily different for in some cases they may be the same

relation. As in the stock example, wherever smoke occurs by the relation of
contact, fire occurs there by the relation of contact. So in this case contact is the
limiting relation of pervadedness and also the limiting relation of pervaderness.

Although in Navya-Nyāya inference the sentence expressing pervasion is
a universal sentence, still in many inferences, the pervasion is between two
particulars, hence there is no scope for generalization. For example, if one eats
a ripe mango in a dark room, one may infer thus. This possesses this color, the
reason being this taste. The pervasion will take the form: Whatever possesses
this taste possesses this color. Even though the sentence is universal there is
only one instance of this taste and this color, namely, this mango. So there is
no universalization here.

e. The most important difference of Nyāya theory of inference for one’s
sake from the usual traditional syllogism is to be found in step (ii) in the
example. In traditional syllogism, it is said that the conclusion follows from
the conjunction of the two premises. This conjunction requires that the middle
term be specified. Without this specification of the middle term, it is not
possible to have conjunction of the premises. For example, in

1. All smoky things are fiery
2. The hill is smoky thing
3. ∴ The hill is fiery
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(1) and (2) can be conjoined. But Nyāya philosophers point out that it is not
necessary to specify the middle term at all. For example, if we want to have
the conclusion,

4. The hill is fiery,

the minor term and the major term are given; but what about the middle
term? It may be one of many things, smoke, light, and so on. So we may have
two different Western syllogisms thus:

A. 1. All smoky things are fiery
2. The hill is a smoky thing.

B. 5. All things which emit light are fiery.
6. The hill has a thing, which emits light.

From this we can draw the same conclusion, (3) the hill is fiery.
So even if the minor and the major terms are fixed, the middle term is not

always fixed. So Nyāya has the more complicated qualificative cognition, which
shows how the conclusion follows from the premises taken together thus:

Consideration (x) (the hill possesses x, and x is pervaded by fire).

From this we can conclude that the hill possesses fire.
What is necessary is that the pervaded (roughly the middle term) should

be related to the minor term and the major term in the required manner. It is
not necessary to further determine the specific nature of the middle term.

f. There is a fundamental difference between traditional Western logic and
Navya-Nyāya on the interpretation of universal sentences, especially those
expressing pervasion. On traditional Western logic, (i) “Socrates is mortal,”
has a subject and a predicate; but so also (ii) “all men are mortal” has
one subject and one predicate. But on Navya-Nyāya theory, (ii) has two
predicates. In its canonical form it will be “whatever possesses humanity
possesses mortality,” where humanity and mortality are the two predicates,
and humanity is pervaded by mortality. This Navya-Nyāya interpretation of
universal sentences has, therefore, some affinity with the interpretation of
modern symbolic logic.

Inference for the Sake of Others In this type of inference, language has to
be used for communication. Navya-Nyāya has a fixed number and order of
the sentences used to convey the inference to others. There are five different
sentences, which make one long sentence, thus:

Proposition: (1) The hill possesses fire.

This sentence states what is to be proved.

Reason: (2) The reason is smoke.
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This sentence states the reason for proving (1).

Pervasion with example: (3) Wherever there is smoke, there is fire as in
the kitchen.
Application: (4) The hill is similar (possesses smoke).
Conclusion: (5) ∴ The hill possesses fire.

The conclusion (5) is the same as (1); that is, what is to be proved has
been proved. The part sentences (1)–(4) are supported by the four different
sources of knowledge admitted in Nyāya. Thus step (1) produces only verbal
cognition. Step (2) is established by inference; step (3), especially the example,
is established by perception. Step (4) is due to analogy based on a cognition
of similarity. As the steps (1)–(4) are supported by all the four sources of
knowledge admitted in Nyāya, the whole sentence from (1)–(5) is called
“supreme demonstration” or “demonstration par excellence” (parama-nyāya).

Here the presence of the example in step (3) obtained by perception shows
that the whole inference has material truth. For the pervasion is based on this
example. All other steps are supported by means of knowledge admitted in
this system. All of them, therefore, are materially true.

5.4.2. Definition of Pervasion

Many defective definitions are first explained and examined and at last the
accepted definition is stated and explained. I shall explain here only one
defective definition of pervasion, and then the accepted definition.

Defective definition: A definition of pervasion is needed, for in the ontology
of Nyāya, relations are not admitted as a separate category; only one particular
relation, inherence, is given an independence status as real. Pervasion is not
inherence, so it has to be reduced to one of the seven categories of real
admitted in the system. The defective definition that I state and explain
reduces pervasion to absence, which is a negative object. The definition is the
following.

Pervasion is the absence of the occurrence of the probans (hetu) in
every locus of absence of the probandum (sādhya).

Because pervasion is not a necessary relation between the pervader and
the pervaded, I have used “⊃” in the definition just given. Very roughly
this definition of pervasion is the definition of “⊃” in terms of negation and
conjunction, thus,

p ⊃ q = Df. ∼(p . ∼q) where “p” stands for the occurrence of
the probans in a locus and “q” stands for the occurrence of the
probandum in the same locus.

The whole definition of “⊃” is a negation just as the defective definition
stated in Nyāya.
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This definition of pervasion is defective because it involves the absence of a
probandum in a locus. But it may be that the probandum is a global property,
which does not have any absence anywhere. The Nyāya example of such a
property is object-hood; everything real is an object of true cognition. Even
though ordinary persons cannot know every thing real, a yogin can. Surely
God, who is omniscient, knows all objects, past, present, and future, in one
act of direct knowledge. So everything real is an object, at least of divine
omniscience. So if we have an inference like the following:

(1) The jar possesses nameability; (2) nameability is pervaded
by object-hood; (3) the jar possesses nameability pervaded by
object-hood; (4) hence, the jar possesses object-hood.

In this inference, the probandum is object-hood, which pervades nameability.
Yet the definition cannot apply here for we cannot say that nameability is
absent in every locus of absence of object-hood. But as nameability as well as
object-hood is global property, neither can have any locus of absence. So the
definition becomes inadequate (too narrow).

The accepted definition of pervasion does not involve an absence of the
probandum anywhere. The definition is:

Pervasion is co-presence of the probans with the probandum such
that the probandum is not a counter-positive of any absence, which
may occur in any locus of the probans.

In every locus of the probans, something or the other would not occur; that is,
that something will be the counterpositive of its absence. But the probandum
will not be a counterpositive of any absence in any locus of the probans. This
definition does not involve any absence of the probandum; it is simply different
from being a counterpositive of absence of whatever in a locus of the probans.
So this definition does not suffer from the inadequacy of the defective definition.

5.4.3. Defective Probans (Fallacy)

The term hetvābhāsa is interpreted to mean either “defective probans” or “a
defect of the probans.” Here we shall use the first interpretation.

Definition: A defective probans is the object of a true cognition, which
blocks the conclusion of the inference.

We may explain this by an example. If someone infers from (i) q ⊃ p. (ii) p
to (iii) q, then he does not know the difference between q ⊃ p and p ⊃ q. If
he comes to know this distinction, then he will not make the inference. His
knowledge will prevent him from making the inference. We may explain this
by an example from Nyāya thus:

1. Fire is pervaded by smoke.
2. The hill possesses smoke.
3. ∴ The hill possesses fire.
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Now this inference is fallacious. Anyone who makes this inference does not
know the difference between “fire pervades smoke” and “smoke pervades fire.”
When he realizes this distinction and realizes that smoke is not a probans
here, he will not make the inference. It is interesting to note that many
Western philosophers have used the notion of blocking without explaining it.
For example, Gilbert Herman writes: “We might suggest that an inferable
conclusion is essential to an inference only if the assumption that t was false
would block the inference.”83

Navya-Nyāya philosophers explain the concept of blocking in terms of the
causal law. For any effect there are many causal conditions, some of which may
be positive, and some of which may be negative. The effect will be prevented
from occurring if the absence of something, which is a causal condition is
replaced by its counterpositive. Thus the counterpositive of a negation will
prevent or block the production of the effect if the negation were necessary for
it. In the case of cognition, Navya-Nyāya philosophers formulate the following
conditions. In the case of one cognition blocking another, there will be two
cognitions—the preventer cognition and the prevented cognition. There are
conditions for these two types of cognitions.

1. Conditions for the preventer cognition:

i. The cognition must be attended with firm belief, it must not be a
supposition, assumption, or doubt.

ii. It may be true or false, in either case it must not be cognized, in a
second-order introspective cognition, to be false or even doubted to
be false.

iii. It must have the negation of the object cognized by the prevented
cognition, as its own object.

2. Conditions for the prevented cognition:

iv. The cognition may be either true or false.
v. It may not be attended with belief. For even a doubt may be prevented

from occurring.
vi. It must not be a supposition or assumption.
vii. It must not be an ordinary perception, or an illusory perception due

to psychophysical defect. No perception can be prevented by any
cognition. It can be prevented only by the presence of noncognitive
impediments, like absence of light for visual perception, and so on.

viii. The cognition must be a qualificative cognition.

There is a detailed discussion of these conditions, which we do not give here.
But there is one point, which should be noted. As (i) shows, a mere assumption
cannot prevent or block any cognition. This is, therefore, contrary to what
Herman says. According to Navya-Nyāya philosophers, it has to be a firm
belief, not a mere assumption, that t was false, which will then block the
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inference. For even when we know something to be a fact, we can still assume
its contrary; in such a case, this will be a contrary-to-fact assumption, without
any attendant belief.

There are other cases of invalid inferences, for example, if one infers that
there is fire in the lake, for there is smoke there. Now this conclusion that
there is fire in the lake will be contradicted by perception. As a matter of fact,
if the person making the inference observed carefully that there is no fire there,
he would not have made the inference. Here the probans, smoke, is defective
because it does not exist in the locus of the inference, and the conclusion is
contradicted by knowledge derived from perception.

Notes
1. Gautama composed 528 aphorisms of Nyāya philosophy. These Nyāya-sūtra-s

are included in five parts, each consisting of two chapters. The standard notation for
referring to a Nyāya-sūtra is to use three digits each separated from the other by a
vertical line. The first digit stands for the part, the second for the chapter and the
third for the sūtra itself. Vātsyāyana has written a commentary (Bhās.ya) on the
Nyāya-sūtra-s on which Uddyotakara has given a gloss known as Nyāyabhās.yavārttika.
Vācaspati has written a commentarial work called Tātparyat̄ıkā on which again
Udayana has written his commentary called Pariśuddhi. References to these authors
have been given in the body of the text by mentioning the number of the Nyāya-sūtra.
These can very easily be checked by consulting any of the available editions of
these works. On our part we have used the Metropolitan edition (Gautama’s Nyāya-
sūtra, edited along with Bhās.ya, Vārttika, Tātparyat̄ıkā, and Viśvanatha’s V. r. tti by
Amarendramohan Tarkatirtha and Taranatha Tarkatirtha, Metropolitan Printing
and Publishing House, Calcutta 1936–1944; reprinted by Munshiram Manoharlal,
New Delhi, 1985). For Udayana we have used the Mithila edition of Nyāya-sūtra,
edited with Bhās.ya, Vārttika, Tātparyat̄ıkā and Pariśuddhi by Anantalal Thakur,
Volume I, Mithila Institute of Post-graduate Studies, 1967.

2. For a detailed account of these topics see chapters 2 and 3 of Matilal (1998)
and chapter 6 of Saha (1987).

3. In addition to the two cognitions mentioned by Vātsyāyana, Navya-Nyāya
admits parāmarśa as causally necessary for inference. It is taken to be an instance of
intuitive knowledge (mānasapratyaks.a) of a composite proposition about the presence
of reason in the subject of inference and also about the concomitance between the
probans and the probandum. Philosophers belonging to this school were probably
influenced by the views of Uddyotakara and Vācaspati. They hold that (NS 1/1/5)
a cognition by testimony results from the fourth step in argument called upanaya
that involves reference to earlier steps. Such a testimonial knowledge is also about a
composite content.

4. Philosophers before Gautama, for example, Caraka and Kan. āda have given
many examples. For Caraka’s examples see Matilal (1985), and for Kan. āda see
Tarkavagisa (1981) 179.

5. See ND, vol. 1, p. 169 for these examples.
6. Tadhi sāmānyatodr.s. t.am yathā vahnyanumānādikam. Quoted in ND, vol. 1,

p. 179.
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7. ND, vol. 1, p. 178.
8. LLR, pp. 30–31.
9. This concept of pramān. a-samavāya is certainly different from that of pramān. a-

sam. plava, which Vātsyāyana introduces in his commentary on NS 1/1/3 inasmuch
as the former hints at some kind of adequate or sufficient justification while the
latter refers to the idea of corroboration of the same fact which can be ascertained
by different pramān. a-s or independent lines of justification.

10. See PNLE, chapter 6.
11. See CLI, pp. 6–11 for views of other schools.
12. CLI, p. 5.
13. For a fairly elaborate discussion of the Buddhist science of debates covering

rules of debate and rejoinders, tricks, and defeat situations mainly reconstructed
from the Chinese-Tibetan texts, one may consult Matilal (1998).

14. Vide Pramān. a-samuccaya 2.5, translated in Hayes (1998). Diṅnāga writes,
“[the sign] must be present in object and what is similar to it and absent in their
absence.”

15. We must remember that according to most Buddhists, even atoms are
impermanent. They are actually borrowing this example from their opponents.

16. Paks.adharmatā means the property of the sign’s residing in the subject-
location.

17. Vyāpti is the relation of universal concomitance that obtains between the sign
and the signified.

18. For a detailed defense of Diṅnāga’s stance, see Matilal (1998).
19. Tattvasam. graha and its commentary, Pañjika, by Kamalaś̄ıla, were written

in the eight century a.d. For Pātrasvāmı̄’s criticism and Śāntaraks.ita’s defense see
verses 1364–1380.

20. Ibid., p. 99.
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we have vyāpti of the tādātmya type.
22. He writes in Svārthānumānapariccheda, “invariable concomitance between two
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the required properties.”

23. For a detailed discussion of this point of view please see Shah (1967).
24. Nyāyabindu III.31.
25. See Viśālāmalavat̄ı commentary on Pramān. a-samuccaya by Jinendrabuddhi.
26. Nāgārjuna asks in Mādhyamika-kārikā, a. Does a thing come out of itself? No.
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27. See note 30.
28. JTB: 16, §50 §51; PKM: 3/37, PNT: 3/28.
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Ahmedabad [AGT includes PS and LS].
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Moks.ākaragupta. Tarkabhās. ā, ed. E. Krishnamacharya. Oriental Institute, Baroda,
1942.
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Vidyānanda. Tattvārthaśloka-vārttika (TSV). Seth Rama Candra Natharang Trust,

Bombay, 1918.
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ātman (self) 906
attitude operators, 29

Augustine, 13, 15, 99, 101
Aurifaber, John, 31
Austin, John L., 576, 602–03, 872
automated planning, 866
Averroes (Ibn Rushd) 14, 54, 57, 91
Avicenna (Ibn S̄ınā) 14, 18–19
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Raghunātha, 908
ramification problem, 871–73, 877–78
ramified theory of types, 333, 335–37, 339,

341
Ramistic syllogistic moods, 102–3

Ramsey, Frank, 287, 339, 341, 347, 383,
474, 574–75, 597, 601, 603–4, 637,
724, 726, 730, 744, 757–62, 764, 769

Rasiowa, H., 704
Rasmussen, S., 705
rational acceptability, 689–90
rational acceptance and rejection, 690–91,

695
rational decision, theory of, 727
rational degree of belief, 726
rational obligations, 690
rational reconstruction, 615, 619, 634
rational thinking, 143
rationalist tradition, 775, 796
rationality, 8, 614, 626, 726

commonsense, 863
limited, 858, 883
logical or argumentative, 8
practical and theoretical, 9
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